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Abstract: We study distributed optimal control problems, gov-
erned by space-time fractional parabolic equations (STFPEs) involv-
ing time-fractional Caputo derivatives and spatial fractional deriva-
tives of Sturm-Liouville type. We first prove existence and unique-
ness of solutions of STFPEs on an open bounded interval and study
their regularity. Then we show existence and uniqueness of solu-
tions to a quadratic distributed optimal control problem. We derive
an adjoint problem using the right-Caputo derivative in time and
provide optimality conditions for the control problem. Moreover,
we propose a finite difference scheme to find the approximate so-
lution of the considered optimal control problem. In the proposed
scheme, the well-known L1 method has been used to approximate
the time-fractional Caputo derivative, while the spatial derivative
is approximated using the Grünwald-Letnikov formula. Finally, we
demonstrate the accuracy and the performance of the proposed dif-
ference scheme via examples.

Keywords: space-time fractional parabolic equations, Caputo
fractional derivative, distributed control, L1 method, Grünwald-
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1. Introduction

This article presents the analysis and discretization for a quadratic distributed
optimal control problem, governed by space-time fractional parabolic equations.
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We consider the following optimal control problem

min J(y, u) =
1

2

∫ T

0

∫ b

a

|y(x, t)−zd(x, t)|
2dxdt+

ν

2

∫ T

0

∫ b

a

|u(x, t)|2dxdt, (1.1)

where the minimum is sought with respect to the state variable y and the control
u satisfying the following initial-boundary value space-time fractional parabolic
equations

CD
α
a,ty(x, t) + CD

β

x,b(γ(x)RLD
β
a,xy(x, t)) + q(x)y(x, t) = f(x, t) + u(x, t),

(x, t) ∈ (a, b)× (0, T ),

y(x, 0) = y
0(x), x ∈ (a, b),

D
−(1−β)
a,x y(a, t) = 0, t ∈ (0, T ),

γ(b)RLD
β
a,xy(b, t) = 0, t ∈ (0, T ).

(1.2)

In the above problem, zd ∈ L2((0, T );L2(a, b)) denotes a given target or an
observed value of the state y, ν > 0 is a real number, u is the distributed
control variable belonging to L2((0, T );L2(a, b)) and f is a source term. The real
number T > 0 denotes the final time, a, b ∈ R with a < b, CD

α
a,t denotes the left

Caputo fractional derivative of order α ∈ (0, 1) with respect to the time variable

t, CD
β
x,b and RLD

β
a,x represent the right Caputo, and the left Riemann-Liouville

fractional derivatives of same order β ∈ (0, 1), respectively, with respect to the
spatial variable x and D−β

a,x is the Riemann-Liouville fractional integral of order
β ∈ (0, 1). We refer to Section 2 for the definitions of the fractional derivatives
and fractional integral. The real valued functions γ ∈ C[a, b] and q ∈ L∞(a, b)
satisfy suitable conditions (see Theorem 3.1).

Fractional calculus has been of great interest to researchers during the past
decades. It has been widely used to describe various processes in different
fields of science and engineering (see Hilfer, 2000; Magin and Ovadia, 2008;
Patel and Mehra, 2020; Mehandiratta, Mehra and Leugering, 2020; Singh and
Mehra, 2021; Singh, Mehra and Gulyani, 2021). Fractional derivatives have
been proven to be more accurate in describing some physical phenomena than
the classical (integer order) derivatives, see, in particular, Almeida, Bastos and
Monteiro (2016), where experimental data have been used in a least square set-
ting to show that in a variety of applications fractional derivatives are better
suited than classical derivatives. Fractional derivatives of Sturm-Liouville type
give rise to fractional Sturm-Liouville problems (FSLPs), derived by replacing
the integer-order derivatives with fractional-order derivatives in the classical
Sturm-Liouville problems. Many researchers in recent years have focused their
attention on FSLPs. For instance, Klimek and Agrawal (2013) studied regu-
lar and singular fractional Sturm-Liouville eigenvalue problems involving two
types of fractional Sturm-Liouville operators. The first consists of the compo-
sition of left-sided Riemann-Liouville fractional derivative and right-sided Ca-
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puto fractional derivative, and the second consists of the composition of right-
sided Riemann-Liouville fractional derivative and left-sided Caputo fractional
derivative. The authors have proven that the eigenvalues for both the reg-
ular and singular FSLPs are real, and the eigenfunctions, corresponding to
different eigenvalues are orthogonal. Zayernouri and Kaniadakis (2013) con-
sidered fractional Sturm-Liouville eigenvalue problems involving the fractional
Sturm-Liouville operator, consisting of the composition of right-sided Riemann-
Liouville fractional derivative and left-sided Caputo fractional derivative. It has
been proven that the eigenfunctions are non-polynomial functions and are or-
thogonal with respect to the weight function, associated with the problem. The
authors in Klimek, Odzijewicz and Malinowska (2013) applied the fractional
variational analysis to show the existence of discrete spectrum for a fractional
Sturm-Liouville eigenvalue problem, involving left-sided and right-sided Caputo
fractional derivatives of the same order. The exact and numerical solutions of
the fractional Sturm-Liouville eigenvalue problem, involving right-sided Caputo
fractional derivative and left-sided Riemann-Liouville fractional derivative have
been studied in Klimek, Ciesielski and Błaszczyk (2018). Analytic and numer-
ical results were obtained by transforming the differential form of FSLPs into
an integral form. The abovementioned eigenvalue problems on an unbounded
domain were considered in Arab, Dehghan and Eslahchi (2015). We also refer
to the work of Idczak and Walczak (2013), where the authors introduced and
characterized fractional Sobolev spaces via Riemann-Liouville fractional deriva-
tives and exploited this to investigate the existence and uniqueness of the solu-
tion for a fractional boundary value problem associated with a Sturm-Liouville
type equation, involving left-sided and right-sided Riemann-Liouville fractional
derivatives of the same order.

On the other hand, fractional diffusion equations are of interest because of
the close link between the phenomenon of anomalous diffusion (Luchko, 2012;
Metzler and Klafter, 2000) and fractional derivatives. We refer to Sakamoto and
Yamamoto (2011), Kubica and Yamamoto (2017), and McLean et al. (2019)
and references therein for the well-posedness of some time-fractional parabolic
equations. Space-time fractional diffusion equations have also been investigated
by some authors. In Li and Xu (2010), the authors proved the existence and
uniqueness of weak solutions for space-time fractional diffusion equations. They
also developed an efficient spectral method for the approximate solutions of such
equations, based on the weak formulation. Chen, Meerschaert and Nane (2012)
obtained strong solutions of space-time fractional diffusion equations using the
method of separation of variables. The theory of a probabilistic representation of
these solutions, useful for particle tracking codes, was also developed. Klimek,
Malinowska and Odzijewicz (2016) considered space-time fractional diffusion
equations with fractional spatial derivatives of Sturm-Liouville type, consisting
of left-sided and right-sided Caputo derivatives. In their work, these authors
proved the existence of strong solutions for such equations by using the method
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of separation of variables and applying certain theorems that ensure the exis-
tence of solutions to the fractional Sturm-Liouville problem. We refer to Alvarez
et al. (2019) and Gal and Warma (2020) and references therein for more results
on space-time fractional parabolic equations.

Various results are also available in the area of fractional optimal control
problems (FOCPs) on bounded domains, initiated by O. P. Agrawal in Agrawal
(2002), where he formulated Euler-Lagrange equations for fractional variational
problems. Later, various authors studied theoretical and numerical aspects of
optimal control problems for fractional ordinary differential equations. We re-
fer to Guo (2013), Sayevand and Rostami (2018), Kumar and Mehra (2021a,b)
for some relevant articles regarding the underlying problems. For the control
problems, governed by time-fractional partial differential equations on bounded
domains, the work of Mophou and associates is worth mentioning. The au-
thors considered distributed and boundary optimal control problems for time-
fractional diffusion equations in Mophou (2011) and Dornville, Mophou and
Valmorin (2011), respectively, where the fractional derivative was considered in
Riemann-Liouville sense. The well-posedness of solutions to state equations has
been studied, and an optimality system for the corresponding control problem
was derived by the Lagrange method. For the sake of completeness, we also
refer to the work by Bahaa (2017, 2018) for the abovementioned problems.

Recently, Leugering et al. (2021) studied the optimal control problems as-
sociated with space fractional parabolic problems of Sturm–Liouville type in an
interval and on a star graph. The authors proved the existence and uniqueness
of solutions for the governing equations and the fractional optimal control prob-
lems. Moreover, the characterization of the optimal control via Euler-Lagrange
first-order optimality conditions was provided. However, the authors have not
provided any numerical evidence for the approximate solution of such problems.
Motivated by their work and the genuine interest in fractional Sturm-Liouville
problems, outlined above, in this paper, we consider optimal control problems
governed by space-time fractional parabolic equations of Sturm-Liouville type in
an interval. The analysis and discretization of such problems on metric graphs,
in the spirit of Mehandiratta, Mehra and Leugering (2019, 2021), Mehandiratta
and Mehra (2020) and Kumar and Leugering (2021) will be considered in a
forthcoming paper. To the authors’ best knowledge, even the well-posedness
and the numerical study of optimal control problems for STFPEs of Sturm-
Liouville type on intervals has not been investigated yet. Hence, in this paper,
we first prove the well-posedness for the weak solutions of the governing equa-
tions (STFPEs). For the corresponding control problem, we demonstrate that
there exists a unique optimal solution (see Theorem 4.1) and derive an op-
timality system in terms of the right-sided time-fractional Caputo derivative.
Finally, we propose a difference scheme based on the finite difference method
for the approximate solution of the considered optimal control problem.
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2. Notation and preliminaries

We now provide some notations, recall basic facts of fractional calculus and
define appropriate function spaces.

2.1. Notation

If X and Y are normed spaces, then X →֒ Y means that X is continuously

embedded in Y and X
c
→֒ Y means that X is compactly embedded in Y . The

dual of the normed space X is denoted by X ′ and ‖ · ‖X denotes the norm of
X. AC[0, T ] denotes the space of all absolutely continuous functions, defined
on [0, T ].

For 1 ≤ p ≤ ∞, Lp((0, T );X) denotes the space of X-valued functions, i.e.,

f : (0, T ) → X such that f(t) ∈ X, t ∈ (0, T ),

whose norm with respect to X belongs to Lp(0, T ). This space forms a Banach
space, endowed with the norm

‖f‖Lp((0,T );X) =

(

∫ T

0

‖f(t)‖pXdt

)
1
p

, 1 ≤ p <∞,

‖f‖L∞((0,T );X) = ess sup
t∈(0,T )

‖f(t)‖X .

For f, g ∈ L1(0, T ), we denote by f ∗g the convolution of f and g. Moreover,
in what follows, we also use the result that if f ∈ Lp(0, T ), g ∈ Lq(0, T ), then
f ∗ g ∈ Lr(0, T ) and

‖f ∗ g‖Lr(0,T ) ≤ ‖f‖Lp(0,T )‖g‖Lq(0,T ), (2.1)

where 1 ≤ p, q, r <∞ such that (1/p) + (1/q) = (1/r) + 1.

We denote by gα(t) = tα−1

Γ(α) , α > 0, t > 0, the kernel function. It is clear

that gα ∈ L1,loc(R+), is nonincreasing and satisfies the property gα ∗ g1−α = 1
in (0,∞).

2.2. Fractional integrals and derivatives

The left and right fractional integrals of order α > 0 for a function f ∈ L1(0, T )
are, respectively, defined by

D−α
0,t f(t) = (gα∗f)(t) =

∫ t

0

gα(t−τ)f(τ)dτ, D−α
t,T f(t) =

∫ T

t

gα(τ−t)f(τ)dτ.

(2.2)
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In view of (2.1), we have

‖D−α
0,t f‖L1(0,T ) ≤

Tα

Γ(α+ 1)
‖f‖L1(0,T ).

However, in general, we have the following result from Kilbas, Srivastava and
Trujillo (2006), Lemma 2.1.

Proposition 2.1 If α > 0 and 1 ≤ p ≤ ∞, then D−α
0,t and D−α

t,T are continuous
from Lp(0, T ) into itself and

‖D−α
0,t f‖Lp(0,T ) ≤

Tα

Γ(α+ 1)
‖f‖Lp(0,T ), ‖D−α

t,T f‖Lp(0,T ) ≤
Tα

Γ(α+ 1)
‖f‖Lp(0,T ),

for all f ∈ Lp(0, T ).

The left and right Caputo fractional derivatives of order α ∈ (0, 1) for a function
f on [0, T ] are, respectively, defined by

CD
α
0,tf(t) =

∫ t

0

g1−α(t−τ)f
′(τ)dτ, CD

α
t,T f(t) = −

∫ T

t

g1−α(τ− t)f
′(τ)dτ.

(2.3)

We also define the left and right Riemann-Liouville fractional derivatives of
order α ∈ (0, 1) for a function f on [0, T ], respectively, by

RLD
α
0,tf(t) =

d

dt

(

∫ t

0

g1−α(t− τ)f(τ)dτ

)

,

RLD
α
t,T f(t) = −

d

dt

(

∫ t

0

g1−α(τ − t)f(τ)dτ

)

. (2.4)

The next result (Samko, Kilbas and Marichev 1993, Lemma 2.2) provides a
sufficient condition for the existence of Riemann-Liouville fractional derivatives.

Lemma 2.1 Let α ∈ (0, 1) and f ∈ AC[0, T ], then the fractional derivatives

RLD
α
0,t and RLD

α
t,T exist almost everywhere on [0, T ] and can be, respectively,

expressed in the forms

RLD
α
0,tf(t) =

y(0)

Γ(1− α)
t−α +

∫ t

0

g1−α(t− τ)f ′(τ)dτ,

RLD
α
t,T f(t) =

y(T )

Γ(1− α)
(T − t)−α −

∫ T

t

g1−α(τ − t)f ′(τ)dτ.

(2.5)

Therefore, in view of (2.5), one can deduce that the Riemann-Liouville and the
Caputo fractional derivatives of order α ∈ (0, 1) are related as follows:

RLD
α
0,tf(t) = CD

α
0,tf(t) +

f(0)

Γ(1− α)
t−α,

RLD
α
t,T f(t) = CD

α
t,T f(t) +

f(T )

Γ(1− α)
(T − t)−α. (2.6)
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Remark 2.1 In view of Lemma 2.1 and the relation (2.2), it is clear that for f ∈
AC[0, T ], CD

α
0,t and CD

α
t,T exist almost everywhere on [0, T ]. However, using

the fact that if f ∈ W 1,1(0, T ), then f is absolutely continuous, we deduce that
the Caputo and Riemann-Liouville fractional derivatives exist almost everywhere
on [0, T ], even for f ∈W 1,1(0, T ).

Remark 2.2 In case of homogeneous boundary conditions, i.e., f(0) = f(T ) =
0, the Caputo and Riemann-Liouville fractional derivatives coincide.

Next, we recall the fractional integration-by-parts formulas (Agrawal, 2007) that
will be used later in order to obtain the optimality conditions for the optimal
control problem.

Lemma 2.2 Let f ∈ L
α := {f ∈ C[0, T ] : RLD

α
0,tf ∈ L2(0, T )} and g ∈ R

α :=
{g ∈ C[0, T ] : CD

α
t,T g ∈ L2(0, T )}, then the following holds:

∫ T

0
RLD

α
0,tf(t)g(t)dt =

∫ T

0

f(t)CD
α
t,T g(t)dt+

[

g(t)D
−(1−α)
0,t f(t)

]t=T

t=0
, (2.7)

∫ T

0
CD

α
t,T g(t)f(t)dt =

∫ T

0

g(t)RLD
α
0,tf(t)dt−

[

g(t)D
−(1−α)
0,t f(t)

]t=T

t=0
. (2.8)

Finally, we present the fractional Gronwall inequality (McLean et al., 2019) that
will play an essential role in proving the uniqueness of the state equation.

Lemma 2.3 Let α > 0 and T > 0. Assume that ξ and η are non-negative and
non-decreasing functions, defined on [0, T ]. If q : [0, T ] → R is an integrable
function satisfying

0 ≤ q(t) ≤ ξ(t) + η(t)

∫ t

0

gα(t− τ)q(τ)dτ, 0 ≤ t ≤ T,

then

q(t) ≤ ξ(t)Eα(η(t)t
α), 0 ≤ t ≤ T,

where Eα(·) is the Mittag-Leffler function, defined by Eα(z) =

∞
∑

j=0

zj

Γ(αj + 1)
.

The above definitions and results also hold for the spatial variable x ∈ (a, b),
a > 0, in place of temporal variable t.

2.3. Function spaces

Here, we shall define some function spaces and related known results correspond-
ing to the spatial fractional derivatives that are required to study the considered
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problem. Let 0 < β < 1 and c0, d0 ∈ R. We define ACβ,2
a = ACβ,2

a ([a, b],R) as
the set of all functions f : [a, b] → R that have the representation

f(x) =
c0

Γ(β)
(x− a)β−1 +D−β

a,xφ(x) for a.e. x ∈ [a, b],

with φ ∈ L2(a, b), and by ACβ,2
b = ACβ,2

b ([a, b],R) we mean the set of all
functions g : [a, b] → R that have the representation

g(x) =
d0

Γ(β)
(b− x)β−1 +D−β

x,bψ(x) for a.e. x ∈ [a, b],

with ψ ∈ L2(a, b).

Now, we have the following characterization from Idczak and Walczak (2013),
Remark 8:

RLD
β
a,xf ∈ L2(a, b) ⇐⇒ f ∈ ACβ,2

a ,

RLD
β
x,bf ∈ L2(a, b) ⇐⇒ f ∈ ACβ,2

b .

Next, we set

Hβ
a (a, b) = ACβ,2

a ∩ L2(a, b), (2.9)

Hβ
b (a, b) = ACβ,2

b ∩ L2(a, b). (2.10)

Evidently, one can find

f ∈ Hβ
a (a, b) ⇐⇒ f ∈ L2(a, b) and RLD

β
a,xf ∈ L2(a, b), (2.11)

f ∈ Hβ
b (a, b) ⇐⇒ f ∈ L2(a, b) and RLD

β
x,bf ∈ L2(a, b). (2.12)

Moreover, the space Hβ
a (a, b) forms a Hilbert space (see, e.g., Idczak and Wal-

czak, 2013) when equipped with the norm

‖ψ‖2
Hβ

a (a,b)
= ‖ψ‖2L2(a,b) + ‖RLD

β
a,x‖

2
L2(a,b). (2.13)

In order to obtain the well-posedness of the state equation (1.2), we introduce
the following space:

V = {y ∈ Hβ
a (a, b) : CD

β
x,b(γRLD

β
a,xy) ∈ H1−β

b (a, b)}, (2.14)

whereH1−β
b (a, b), defined as in (2.10). Clearly, V is a closed subspace ofHβ

a (a, b)
and thus, V equipped with the norm (2.13) is a Hilbert space. Moreover, we
introduce the space

V := {y ∈ V : γ(b)RLD
β
a,xy(b) = D−(1−β)

a,x y(a) = 0}, (2.15)
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which is closed in V. Consequently, the space V , equipped with the norm (2.13),
is also a Hilbert space.

In view of (2.9), (2.10), (2.14) and (2.15), we have the following continuous
embeddings:

V →֒ Hβ
a (a, b) →֒ L2(a, b) →֒ (Hβ

a (a, b))
′ →֒ V ′.

Moreover, we have, see Brezis (1983),

〈y, w〉L2(a,b) = 〈y, w〉V ′×V , y ∈ L2(a, b), w ∈ V, (2.16)

where 〈·, ·〉V ′×V denotes the duality pairing between V ′ and V .

Further, we give the following result, which ensures the existence of the traces

D
−(1−β)
a,x y(a, t),D

−(1−β)
a,x y(b, t), RLD

β
a,xy(a, t) and RLD

β
a,xy(b, t) for a.e. t ∈ (0, T ).

Lemma 2.4 Let β ∈ (0, 1), T > 0 and y ∈ L2((0, T );V). Then, the following
assertions hold.

1. For any x0 ∈ [a, b], the function D
−(1−β)
a,x y(x0, ·) exists and belongs to

L2(0, T ). Moreover, there exists a constant C > 0 such that

‖D−(1−β)
a,x y(x0, ·)‖

2
L2(0,T ) ≤ C

(

(b− a)1−β

Γ(2− β)
+ 1

)

‖y‖2
L2((0,T );Hβ

a (a,b))
.

2. For any x0 ∈ [a, b], the function [RLD
β
a,xy(x0, ·)] exists and belongs to

L2(0, T ). Moreover, there exists a constant C > 0 such that

‖RLD
β
a,xy(x0, ·)‖

2
L2(0,T ) ≤ C‖y‖2

L2((0,T );Hβ
a (a,b))

.

Proof The proof follows from the continuous embedding H1(a, b) →֒ C[a, b],
Proposition 2.1 and the arguments provided in Leugering et al. (2021), Lemma
2.7.

Finally, we present the fractional integration-by-parts formula for the com-
posite fractional derivatives, which directly follows from Lemma 2.2.

Lemma 2.5 Let β ∈ (0, 1), γ ∈ C[a, b] and y, w ∈ V. Then

∫ b

a
CD

β
x,b(γ(x)RLD

β
a,xy(x))w(x)dx

=

∫ b

a

γ(x)(RLD
β
a,xy(x))(RLD

β
a,xw(x))dx−

[

(γ(x)RLD
β
a,xy(x))D

−(1−β)
a,x w(x)

]x=b

x=a

=

∫ b

a

y(x)CD
β
x,b(γ(x)RLD

β
a,xw(x))dx+

[

D−(1−β)
a,x y(x)(γ(x)RLD

β
a,xw(x))

]x=b

x=a

−
[

(γ(x)RLD
β
a,xy(x))D

−(1−β)
a,x w(x)

]x=b

x=a
.

(2.17)
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Remark 2.3 In view of Lemma 2.4, one can deduce that the boundary terms
involved in (2.17) are real.

3. Well-posedness results for space-time fractional para-

bolic equation

In this section, we are going to prove the well-posedness for the space-time
fractional parabolic equation of the following type:



































CD
α
0,ty(x, t) + CD

β
x,b(γ(x)RLD

β
a,xy(x, t)) + q(x)y(x, t) = h(x, t),

(x, t) ∈ (a, b)× (0, T ),

y(x, 0) = y0(x), x ∈ (a, b),

D
−(1−β)
a,x y(a, t) = 0, t ∈ (0, T ),

γ(b)RLD
β
a,xy(b, t) = 0, t ∈ (0, T ),

(3.1)

where the functions h ∈ L2((0, T );L2(a, b)) and y0 ∈ L2(a, b) are the right hand
side and initial data, respectively. In what follows, the space L2((0, T );L2(a, b))
will be denoted by L2((a, b)× (0, T )).

We first derive the weak formulation of the problem (3.1). Hence, by multi-
plying (3.1)1 with a test function ψ ∈ V and integrating over Ω with Ω := (a, b),
we get

∫

Ω
CD

α
0,ty(x, t)ψ(x)dx+

∫

Ω

(

CD
β
x,b(γ(x)RLD

β
a,xy(x, t)) + q(x)y(x, t)

)

ψ(x)dx =

=

∫

Ω

h(x, t)ψ(x)dx.

Then, integration by parts, in view of Lemma 2.5, leads to

〈CD
α
0,ty(t), ψ〉L2(Ω) + a(t, y(t), ψ)−

[

(γ(x)RLD
β
a,xy(x))D

−(1−β)
a,x ψ(x)

]x=b

x=a
=

= 〈h(t), ψ〉L2(Ω), (3.2)

where a(t, ·, ·) is the bilinear form, given by

a(t, y(t), ψ) =

∫

Ω

γ(x)(RLD
β
a,xy(x, t))(RLD

β
a,xψ(x))dx+

∫

Ω

q(x)y(x, t)ψ(x)dx.

(3.3)

By choosing a more restrictive space for ψ ∈ V , we obtain from (3.2)

〈CD
α
0,ty(t), ψ〉L2(Ω) + a(t, y(t), ψ) = 〈h(t), ψ〉V ′×V , (3.4)
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where we have replaced the inner product in L2(a, b) by the duality pairing in
V to further reduce the regularity of h(t).

Now, we rewrite the Caputo fractional derivative in terms of fractional inte-
grals. Thus, from (2.2), (2.4) and (2.6), we get

CD
α
0,ty(x, t) = RLD

α
0,ty(x, t)−

t−α

Γ(1− α)
y(x, 0)

=
d

dt
[D

−(1−α)
0,t y(x, t)]−

t−α

Γ(1− α)
y(x, 0)

=
d

dt
D

−(1−α)
0,t [y(x, t)− y(x, 0)].

(3.5)

Therefore, we follow Zacher (2009) and seek a solution of (3.1) in the following
space

Wα(y0, V, L2(a, b)) :=
{

y ∈ L2((0, T );V ) : D
−(1−α)
0,t (y − y0) ∈ 0H

1((0, T );V ′)
}

,

where the subscript 0 of 0H
1 means vanishing of the trace at t = 0.

Therefore, by incorporating the initial conditions (3.1)2 in the form (3.5),
we obtain the weak form of (3.1) as follows:






















Find y ∈Wα(y0, V, L2(a, b)) such that ∀ψ ∈ V

d
dt

〈

[D
−(1−α)
0,t (y − y0)](t), ψ

〉

L2(a,b)
+ a(t, y(t), ψ) = 〈h(t), ψ〉V ′×V ,

holds a.e. t ∈ (0, T ).

(3.6)

We say that y is a weak solution of (3.1) if y solves (3.6). Finally, we note that
(3.6) is equivalent to the operator equation

d

dt
[D

−(1−α)
0,t (y − y0)](t) +A(t)y(t) = h(t), for a.e. t ∈ (0, T ), (3.7)

in V ′, where the operator A(t) : V → V ′ is given by

〈A(t)y(t), ψ〉V ′×V = a(t, y(t), ψ), a.e. t ∈ (0, T ). (3.8)

Theorem 3.1 Let α, β ∈ (0, 1), y0 ∈ L2(a, b) and h ∈ L2((0, T );V ′). Also,
assume that γ ∈ C[a, b], q ∈ L∞(a, b) and there exist two constants, γ0 > 0 and
q0 > 0, such that γ ≥ γ0 > 0 and q ≥ q0 > 0. Then, the problem (3.1) has
a unique weak solution y ∈ Wα(y0, V, L2(a, b)), i.e., (3.6) holds and y satisfies
the following estimate

‖D
−(1−α)
0,t (y−y0)‖H1((0,T );V ′)+‖y‖L2((0,T );V ) ≤ C(‖y0‖L2(a,b)+‖h‖L2((0,T );V ′)),

(3.9)

where C is a positive constant. Moreover, if α > 1
2 , then y ∈ C([0, T ];V ′) and

y|t=0 = y0.
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Before we embark on the proof of Theorem 3.1, we first recall a result from
Leugering et al. (2021) regarding the continuity and coercivity of the bilinear
form a(t, ·, ·). Then, we discuss a method to approximate the kernel g1−α of
the Caputo fractional derivative, followed by the basic identity (Lemma 3.2) for
kernels.

Lemma 3.1 Let γ and q satisfy the assumption of Theorem 3.1. Then, for any
y, w ∈ Hβ

a (a, b), the bilinear form a(·, ·) : Hβ
a (a, b)×Hβ

a (a, b) → R, given by

a(y, w) =

∫ b

a

γ(x)(RLD
β
a,xy(x))(RLD

β
a,xw(x))dx+

∫

ab

q(x)y(x)w(x)dx,

is continuous and coercive. That is, we have

Continuity: a(y, w) ≤ (‖q‖∞+‖γ‖∞)‖y‖Hβ
a (a,b)‖w‖Hβ

a (a,b), ∀y, w ∈ Hβ
a (a, b).

(3.10)

Coercivity: a(t, y, y) ≥ min(γ0, q0)‖y‖
2
Hβ

a (a,b)
∀y ∈ Hβ

a (a, b). (3.11)

Approximation of the kernel g1−α: Since g1−α ∈ L1,loc(R+) and satisfies
gα ∗ g1−α = 1, it belongs to a certain class of functions, see Zacher (2009),
Definition 2.1. The kernels of this class can be approximated using the sequence
of more regular kernel functions, which can be obtained from the approximation
of the operator T , defined by

T w =
d

dt
(g1−α∗w), D(T ) = {w ∈ L2((0, T );H) : g1−α∗w ∈ 0H

1((0, T );H)},

where H is a real Hilbert space. The Yosida approximation Tn of the operator
T is defined by

Tn = nT (n+ T )−1, n ∈ N,

satisfying the property that for every w ∈ D(T ), one has Tnw → T w in
L2((0, T );H) as n→ ∞. Furthermore, the operator Tn has the representation

Tnw =
d

dt
(kn,α ∗ w), w ∈ L2((0, T );H), n ∈ N,

where kn,α = nsn with sn solving the Volterra integral equation

sn(t) + n(gα ∗ sn)(t) = 1, t > 0, n ∈ N.

The kernels sn ∈ W 1,1(0, T ), n ∈ N, are nonnegative and nonincreasing in
(0,∞). Consequently, the kernel kn,α, n ∈ N, satisfies the same properties as
sn. Moreover, one has kn,α → g1−α in L1(0, T ) as n→ ∞. We refer to Vergara
and Zacher (2008) for broader explanation.

Finally, we provide the following result from Vergara and Zacher (2008),
which is of fundamental importance with respect to the existence and the priori
estimates of (3.6).



Distributed optimal control for fractional parabolic equations 203

Lemma 3.2 Let H be a real Hilbert space and T > 0. Then, for any k ∈
W 1,1(0, T ) and any w ∈ L2((0, T );H) there holds

〈

d

dt
(k ∗ w)(t), w(t)

〉

H

=
1

2

d

dt

(

k ∗ ‖w‖2H

)

(t) +
1

2
k(t)‖w(t)‖2H

+
1

2

∫ t

0

[−k̇(s)]‖w(t)− w(t− s)‖2Hds, a.e. t ∈ (0, T ).

(3.12)

Now, we give the proof of Theorem 3.1, which mainly consists of four steps.

Step 1: Galerkin approach
The space V is a separable Hilbert space as it is a closed subspace of a separable

Hilbert space Hβ
a . Indeed, the mapping

F : Hβ
a → L2 × L2

u→ (u,RLD
β
a,xu)

is an isometry and F (Hβ
a ) is the closed subspace of the separable space L2×L2.

Consequently, Hβ
a is the separable space with the norm ‖ · ‖Hβ

a
. Hence, there

exists a countable orthonormal basis of V , say (w1, w2, . . . , wm, . . . ). Now, we
introduce the Galerkin ansatz

ym(x, t) =

m
∑

i=1

di,m(t)wi(x). (3.13)

For the initial condition, we have

ym,0(x) =

m
∑

i=1

ci,mwi(x) with ci,m = 〈y0, wi〉L2(a,b) and

m
∑

i=1

ci,mwi → y0 in L2(a, b) as m→ ∞. (3.14)

Since {wm}m∈N are the orthonormal basis of V , upon replacing y, y0 and ψ in
the weak form (3.6) by ym, ym,0 and wi respectively, we obtain the system of
Galerkin equations

〈

d

dt
[D

−(1−α)
0,t (ym − ym,0)](t), wi

〉

L2(a,b)

+ a
(

t, ym(t), wi

)

=

〈h(t), wi〉V ′×V , i = 1, 2, . . . ,m. (3.15)

Using the fact that vectors w1, w2, . . . , wm are orthonormal in V , we can rewrite
the system (3) into an equivalent system of fractional ODEs as

d

dt
[D

−(1−α)
0,t (dm − cm)](t) +Am(t)dm(t) = Hm(t), (3.16)
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where the matrix Am ∈ L∞((0, T );Rm×m) is given by (Am(t))i,j := a(t, wi, wj),
and the vector Hm ∈ L2((0, T );Rm) is given by (Hm(t))i := 〈h(t), wi〉V . Now,
in order to solve (3.16), we apply D−α

0,t to both sides of it and then, using the
semigroup property for fractional integrals,

D−α
0,t (D

−β
0,t h(t)) = D

−(α+β)
0,t h(t), a.e. t ∈ (0, T ) for h ∈ Lp(0, T ), 1 ≤ p <∞,

we convert it into an equivalent system of integral equations as

dm(t) = cm −D−α
0,t (Amdm)(t) +D−α

0,t Hm(t),

which has a unique solution dm ∈ L2((0, T );Rm), see, e.g., Gripenberg, Londen
and Staffans (1990). But then dm ∈Wα(cm,R

m,Rm), which shows that (3.16)
holds for almost all t ∈ (0, T ) and therefore for each m ∈ N, the Galerkin equa-
tion (3) has a unique solution ym ∈Wα(ym,0, V, L

2(a, b)).

Step 2: Priori estimates for the Galerkin solutions

We begin with the Galerkin equation (3), multiply it with di,m(t) and sum over
i = 1, 2, . . . ,m. This leads to

〈

d

dt
[D

−(1−α)
0,t (ym − ym,0)](t), ym(t)

〉

L2(a,b)

+ a
(

t, ym(t), ym(t)
)

=

= 〈h(t), ym(t)〉V ′×V . (3.17)

Now, in order to employ the approximation technique for the kernel function
g1−α, we rewrite (3.17) in terms of the convolution as

〈

d

dt
[g1−α ∗ (ym − ym,0)](t), ym(t)

〉

L2(a,b)

+a
(

t, ym(t), ym(t)
)

= 〈h(t), ym(t)〉V ′×V .

(3.18)

Let kn,α ∈ W 1,1(0, T ), n ∈ N, be the kernel corresponding to the Yosida ap-
proximation Tn of the operator

T w =
d

dt
(g1−α∗w), D(T ) = {w ∈ L2((0, T );V ) : g1−α∗w ∈ 0H

1((0, T );V ′)}.

(3.19)

Then kn,α ∗ ym ∈ H1((0, T );V ′), and using (2.16), we get from (3.18)

〈

d

dt
(kn,α ∗ ym)(t), ym(t)

〉

L2(a,b)

+ a
(

t, ym(t), ym(t)
)

= kn,α(t)〈ym,0, ym(t)〉L2(a,b) + 〈h(t), ym(t)〉V ′×V + rm,n(t), a.e. t ∈ (0, T ),
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where

rm,n(t) =
〈

[kn,α ∗ (ym − ym,0)]
′(t)− [g1−α ∗ (ym − ym,0)]

′(t), ym(t)
〉

V ′×V
.

Further, using Lemma 3.2 and (3.11), one gets

1

2

d

dt

(

knα ∗ ‖ym‖2L2(a,b)

)

(t) +
1

2
kn,α(t)‖ym(t)‖2L2(a,b) +min(γ0, q0)‖ym(t)‖2V

≤ kn,α(t)〈ym,0, ym(t)〉L2(a,b) + 〈h(t), ym(t)〉V ′×V + rm,n(t),

which, by applying Young’s inequality, gives the estimate

1

2

d

dt

(

kn,α ∗ ‖ym‖2L2(a,b)

)

(t) + min(γ0, q0)‖ym(t)‖2V

≤
1

2
kn,α(t)‖ym,0‖

2
L2(a,b) + ǫ‖ym(t)‖2V +

1

4ǫ
‖h(t)‖2

V ′ + rm,n(t), ǫ > 0.

By taking ǫ = min(γ0,q0)
2 , we obtain

d

dt

(

kn,α ∗ ‖ym‖2L2(a,b)

)

(t) + min(γ0, q0)‖ym(t)‖2V

≤ kn,α(t)‖ym,0‖
2
L2(a,b) +

1

min(γ0, q0)
‖h(t)‖2V ′ + 2rm,n(t).

(3.20)

Since rm,n → 0 in L1(0, T ), we have from Proposition 2.1 that D−α
0,t rm,n(t) → 0

in L1(0, T ) as n→ ∞. Moreover, we have

D−α
0,t

[

d

dt

(

kn,α ∗ ‖ym‖2L2(a,b)

)

(t)

]

=

[

gα ∗
d

dt

(

kn,α ∗ ‖ym‖2L2(a,b)

)

]

(t)

=
d

dt

(

kn,α ∗ gα ∗ ‖ym‖2L2(a,b)

)

(t)

→
d

dt

(

g1−α ∗ gα ∗ ‖ym‖2L2(a,b)

)

(t) = ‖ym(t)‖2L2(a,b)

in L1(0, T ) as n → ∞. Therefore, by applying the fractional integral D−α
0,t in

(3.20) and letting n→ ∞, we obtain

‖ym(t)‖2L2(a,b) ≤ ‖ym,0‖
2
L2(a,b) +

1

min(γ0, q0)
D−α

0,t ‖h(t)‖
2
V ′ , (3.21)

∀m ∈ N, and for a.e. t ∈ (0, T ). Finally, using the positivity of the kernel gα
and the convolution identity (2.1), it follows from (3.21) that

‖ym‖L2((a,b)×(0,T )) ≤ C
(

‖ym,0‖L2(a,b) + ‖h‖L2((0,T );V ′ )

)

, (3.22)
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where C is a constant, which depends on α, min(γ0, q0) and T .

Now, we return to (3.20), and integrate it from 0 to T and then letting
n→ ∞. This results in

min(γ0, q0)‖ym(t)‖2V ≤ ‖g1−α‖L1(0,T )‖ym,0‖
2
L2(a,b) +

1

min(γ0, q0)
‖h‖2

L2((0,T );V ′ )
,

where we have used the fact that
(

kn,α ∗ ‖ym(t)‖2L2(a,b)

)

(0) = 0. Finally, using

(3.14) and (3.22), we obtain a priori bound

‖ym‖L2((0,T );V ) ≤ C1

(

‖y0‖L2(a,b) + ‖h‖L2((0,T );V ′ )

)

, m ∈ N, (3.23)

where C1 is a positive constant which is independent of m.

Step 3: Existence of solution and norm estimate

By (3.23), we see that ym is bounded in L2((0, T );V ). Thus, we may extract a
subsequence of {ym} (still denoted by {ym}) such that

ym
w
⇀ y in L2((0, T );V ) as m→ ∞, (3.24)

for some y ∈ L2((0, T );V ). Additionally, we have

‖y‖L2((0,T );V ) ≤ lim inf
m→∞

‖ym‖L2((0,T );V ). (3.25)

We shall prove that y ∈Wα(y0, V, L2(a, b)), and that y is a solution of (3.6).

Let φ ∈ C∞([0, T ];R) be some test function with φ(T ) = 0. Multiplying the
Galerkin equation (3.15) by φ and using integration by parts in time, we get

−

∫ T

0

〈

[D
−(1−α)
0,t (ym − ym,0)](t), wi

〉

L2(a,b)
φ′(t)dt+

∫ T

0

a(t, ym(t), wi)φ(t)dt =

=

∫ T

0

〈h(t), wi〉V ′×V φ(t)dt (3.26)

for all i = 1, 2, . . . ,m, since [D
−(1−α)
0,t (ym − ym,0)](0) = 0. Now, we apply the

weak limits (3.24) and the convergence of ym,0 to y0 in L2(a, b), given in (3.14),
to equation (3.26). This leads to

−

∫ T

0

〈

[D
−(1−α)
0,t (y − y0)](t), wi

〉

L2(a,b)
φ′(t)dt+

∫ T

0

a(t, y(t), wi)φ(t)dt =

=

∫ T

0

〈h(t), wi〉V ′×V φ(t)dt (3.27)

for all i ∈ N, where we have used the fact that the integrals in (3.26) are
continuous linear functionals with respect to ym.
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Since {wi}i∈N forms a basis of V , there exists a ψ ∈ V and a sequence ψn,
consisting of finite linear combinations of {wi}

n
i=1, such that limn→∞ ψn = ψ.

Moreover, all the terms in (3) are continuous linear functionals on the space V
with respect to wi. Therefore, replacing wi by ψ and using (2.16), one gets from
(3.27)

−

∫ T

0

〈

[D
−(1−α)
0,t (y − y0)](t), ψ

〉

V ′×V
φ′(t)dt+

∫ T

0

a(t, y(t), ψ)φ(t)dt =

=

∫ T

0

〈h(t), ψ〉V ′×V φ(t)dt, ∀ψ ∈ V. (3.28)

Since (3.28) holds, in particular, for all φ ∈ C∞
c (0, T ), thus, we deduce that

D
−(1−α)
0,t (y − y0) has a generalized weak derivative on (0, T ) with

d

dt
[D

−(1−α)
0,t (y − y0)](t) = h(t)−A(t)y(t), (3.29)

where the operator A(t) : V → V ′ is defined as in (3.8). From y ∈ L2((0, T );V0)
and (3.10), we have

‖A(t)y(t)‖V ′ ≤ (‖q‖∞ + ‖γ‖∞)‖y(t)‖V for a.e. t ∈ (0, T ).

Therefore, we find that Ay ∈ L2((0, T );V ′). Since h ∈ L2((0, T );V
′

), it follows

from (3.29) that [D
−(1−α)
0,t (y − y0)]

′

∈ L2((0, T );V
′

).

It remains to show that [D
−(1−α)
0,t (y−y0)](0) = 0. Let us set z := D

−(1−α)
0,t (y−

y0). Then, z ∈ H1((0, T );V
′

) →֒ C([0, T ];V
′

), and from (3.28) and (3.29), it
holds that

−

∫ T

0

〈z(t), ψ〉V ′
×V φ

′(t)dt =

∫ T

0

〈z′(t), ψ〉V ′
×V φ(t)dt (3.30)

for all ψ ∈ V and φ ∈ C∞([0, T ];R) with φ(T ) = 0.

In particular, by choosing φ such that φ(0) = 1, approximating z by a
sequence of functions zn ∈ C∞([0, T ];V

′

) and using integration by parts, it
follows from (3.30) that 〈z(0), ψ〉V ′

×V = 0 for all ψ ∈ V . Hence, z(0) = 0.

Thus, we have y ∈ Wα(y0, V, L2(a, b)) that solves (3.6), due to the equiv-
alence of the equation (3.7). For the norm estimate, we have from (3.23) and
(3.25) that

‖y‖L2((0,T );V ) ≤ C1

(

‖y0‖L2(a,b) + ‖h‖L2((0,T );V ′ )

)

. (3.31)

Moreover, using (3.29) along with the estimate

‖A(t)y(t)‖V ′ ≤ (‖q‖∞ + ‖γ‖∞)‖y(t)‖V



208 V. Mehandiratta, M. Mehra and G. Leugering

and integrating in time, we obtain

‖[D
−(1−α)
0,t (y − y0)](t)‖H1((0,T )V ′ ) ≤ ‖h‖L2((0,T );V ′ ) +

∫ T

0

‖A(t)y(t)‖2
V ′dt

≤ C
[

‖h‖L2((0,T );V ′ ) + ‖y‖L2((0,T );V )

]

.

(3.32)

By combining (3.32) with (3.31), we get (3.9).

Step 4: Uniqueness of solution

Let y1 and y2 be two different solutions of (3.6), and w = y1 − y2. Then,
w ∈Wα(0, V, L2(a, b)) and satisfies the equation

〈

d

dt
[D

−(1−α)
0,t w(t)], ψ

〉

V ′
×V

+ a(t, w(t), ψ) = 0, ψ ∈ V, a.e. t ∈ (0, T ).

By taking ψ = w(t), we get
〈

d

dt
[D

−(1−α)
0,t w(t)], w(t)

〉

V ′
×V

+a(t, w(t), w(t)) = 0, a.e. t ∈ (0, T ). (3.33)

Let kn,α, n ∈ N be the kernel as in the existence part above (Step 2). Then
(3.33) can be equivalently written as
〈

d

dt
(kn,α ∗ w)(t), w(t)

〉

L2(a,b)

+a
(

t, w(t), w(t)
)

= rn(t), a.e. t ∈ (0, T ), (3.34)

for all n ∈ N, where

rn(t) = 〈(kn,α ∗ w)′(t)− (g1−α ∗ w)′(t), w(t)〉, a.e. t ∈ (0, T ).

Now, using Lemma 3.2 and (3.11), we obtain from (3.34)

d

dt

(

knα ∗ ‖w‖2L2(G)

)

(t)+2min(γ0, q0)‖w(t)‖
2
V ≤ 2rn(t), a.e. t ∈ (0, T ). (3.35)

Similarly, as in the existence part, we find that D
−(1−α)
0,t rn(t) → 0 and

D−α
0,t

[

d

dt

(

kn,α ∗ ‖w‖2L2(a,b)

)

(t)

]

→ ‖w(t)‖2L2(a,b)

in L1(0, T ) as n → ∞. Therefore, on applying the fractional integral D−α
0,t in

(3.35) and letting n→ ∞, we get

‖w(t)‖2L2(a,b) + 2min(γ0, q0)D
−α
0,t ‖w(t)‖

2
L2(a,b) ≤ 0, a.e. t ∈ (0, T ). (3.36)

Finally, in view of Lemma 2.3 (the fractional Gronwall lemma), inequality (3.36)
implies that ‖w(t)‖2L2(a,b) = 0, i.e., w = 0. Therefore, y1 = y2. �

Remark 3.1 The assertion y ∈ C([0, T ];V ′) with y|t=0 = y0 for α > 1
2 in

Theorem 3.1 follows from Kubica and Yamamoto (2017), Proposition 6.7.
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4. Fractional control problem

This section is devoted to finding the existence of optimal solution, which min-
imizes the cost functional (1.1), and to deriving the optimality conditions.

Let u ∈ L2((a, b)× (0, T )) →֒ L2((0, T );V
′

). Then, in view of Theorem 3.1,
the solution y(u) of (1.1)-(1.2) belongs to Wα(y0, V, L2(a, b)). Moreover, since
Wα(y0, V, L2(a, b)) →֒ L2((a, b)× (0, T )), the functional

J(y, u) =
1

2

∫ T

0

∫ b

a

|y(x, t)− zd(x, t)|
2dxdt+

ν

2

∫ T

0

∫ b

a

|u(x, t)|2dxdt

=
1

2
‖y − zd‖

2
L2((a,b)×(0,T )) +

ν

2
‖u‖2L2((a,b)×(0,T )),

(4.1)

is well defined, where zd ∈ L2((a, b) × (0, T )) and µ > 0. Now, we define with
u ∈ Uad := L2((a, b)× (0, T )),

Aad :=

{

(y, u) : y is a unique weak solution to (1.2) with control u ∈ Uad

}

,

(4.2)

and then the optimal control problem (1.1)-(1.2) can be interpreted as follows:

min
(y,u)∈Aad

J(y, u)

subject to (1.2).
(4.3)

A solution to the problem (4.3) is called an optimal solution, denoted by (ȳ, ū),
and the corresponding control is called an optimal control. The following theo-
rem states the existence of an optimal pair.

Theorem 4.1 Let y0 ∈ L2(a, b). Then there exists a unique optimal pair
(ȳ, ū) ∈ Aad such that (4.3) holds.

Proof Let us first define

M := inf
u∈Uad

J(y, u).

As J(y, u) ≥ 0, there exists a minimizing sequence {un} ∈ Uad such that

J(yn, un) →M, as n→ ∞, (4.4)

where yn = y(un) is a solution of (1.2), i.e., yn satisfies:

CD
α
0,tyn(x, t) + CD

β
x,b(γ(x)RLD

β
a,xyn(x, t)) + q(x)yn(x, t) = f(x, t) + un(x, t),

(x, t) ∈ (a, b)× (0, T ),

yn(x, 0) = y0(x), x ∈ (a, b),

D−(1−β)
a,x yn(a, t) = 0 t ∈ (0, T ),

γ(b)RLD
β
a,xyn(b, t) = 0, t ∈ (0, T ).

(4.5)
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In view of the weak formulation (3.6) and its equivalence with the operator
equation (3.7), we find that the pair (yn, un) satisfies

d

dt
[D

−(1−α)
0,t (yn − y0)](t) +A(t)yn(t) = f(t) + un(t), a.e. t ∈ (0, T ), (4.6)

where the operator A(t) : V → V
′

is given by

〈A(t)yn(t), ψ〉V ′
×V = a(t, yn(t), ψ), a.e. t ∈ (0, T ).

Since 0 ∈ Uad, we may assume that J(yn, un) ≤ J(y, 0) < ∞, where (y, 0) ∈
Aad. In particular, there exists a C > 0, such that

∫ T

0

‖un(t)‖
2
L2(a,b) = ‖un‖

2
L2((a,b)×(0,T )) ≤ C.

Moreover, from (3.31), we have

‖yn‖L2((0,T );Hβ
a (a,b)) ≤ C.

Therefore, there exist subsequences of {un} and {yn} (still denoted by {un} and
{yn}), such that

un
w
⇀ ū in L2((a, b)× (0, T )), (4.7)

yn
w
⇀ ȳ in L2((0, T );H

β
a (a, b)), (4.8)

yn
w
⇀ ȳ in L2((a, b)× (0, T )), (4.9)

RLD
β
a,xyn

w
⇀ RLD

β
a,xȳ in L2((a, b)× (0, T )). (4.10)

Since {yn} ⊆ L2((0, T );V ) is bounded, then {Ayn} is bounded in L2((0, T );V
′

).
Indeed,

∫ T

0

‖Ayn(t)‖
2
V ′dt ≤ (‖q‖∞ + ‖γ‖∞)

∫ T

0

‖yn(t)‖
2
V dt.

Hence, in view of (4.9) and (4.10), by choosing another subsequence, one can
get

Ayn
w
⇀ Aȳ in L2((0, T );V

′

). (4.11)

Let ψ ∈ V . Taking the scalar product of (4.6) with ψ and multiplying the
resulting equation by the test function φ ∈ C∞([0, T ];R) with φ(T ) = 0, we
obtain
∫ T

0

〈

d

dt
[D

−(1−α)
0,t (yn − y0)](t), ψ

〉

V ′
×V

φ(t)dt+

∫ T

0

〈A(t)yn(t), ψ〉V ′
×V φ(t)dt =

=

∫ T

0

〈hn(t), ψ〉L2(a,b)φ(t)dt,
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where hn(x, t) = un(x, t) + f(x, t). The integration by parts leads to

−

∫ T

0

〈

[D
−(1−α)
0,t (yn − y0)](t), ψ

〉

V ′
×V

φ′(t)dt+

∫ T

0

〈A(t)yn(t), ψ〉V ′
×V φ(t)dt =

=

∫ T

0

〈hn(t), ψ〉L2(a,b)φ(t)dt, (4.12)

because [D
−(1−α)
0,t (yn − y0)](0) = 0. By means of (3.10), and Young’s and

Hölder’s inequality, it is easy to see that the integrals in (4.12) are continu-
ous linear functional on the space V and L2(a, b) with respect to yn and un,
respectively. Therefore, on applying the weak limits (4.7)-(4.11), we get from
(4.12)

−

∫ T

0

〈

[D
−(1−α)
0,t (ȳ − y0)](t), ψ

〉

V ′×V
φ′(t)dt+

∫ T

0

〈A(t)ȳ(t), ψ〉V ′
×V φ(t)dt =

=

∫ T

0

〈h(t), ψ〉V ′×V φ(t)dt. (4.13)

Finally, using a similar argument to that of Step 3 in Theorem 3.1, we have
from (4.13) that

d

dt
[D

−(1−α)
0,t (ȳ − y0)](t) +A(t)ȳ(t) = f(t) + ū(t), a.e. t ∈ (0, T ).

Since (ȳ, ū) satisfies (4.6), we conclude that ȳ is a weak solution of (1.2), corre-
sponding to the control ū. Therefore, (ȳ, ū) ∈ Aad.

Next, we show that (ȳ, ū) is a minimizer, i.e., M = J(ȳ, ū). Since the cost
function J(·, ·) is continuous and convex on L2((a, b)×(0, T ))×L2((a, b)×(0, T )),
it follows that J(·, ·) is weakly lower semi-continuous. Therefore, we obtain

J(ȳ, ū) ≤ lim inf
n→∞

J(yn, un).

Hence, in view of (4.4), we deduce that

M ≤ J(ȳ, ū) ≤ lim inf
n→∞

J(yn, un) = lim
n→∞

J(yn, un) =M,

and thus (ȳ, ū) is a minimizer of the problem (4.3). The uniqueness follows from
the strict convexity of the cost functional J(·, ·). �

Now, we derive the optimality system for the considered optimal control
problem (1.1)-(1.2). Before stating the result, we define the following space:

Wα(V, L2(a, b)) :=
{

p ∈ L2((0, T );V ) : D
−(1−α)
0,t p ∈ H1((0, T );V ′)

}

.
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Theorem 4.2 Let (ȳ, ū) be an optimal solution for the problem (1.1)-(1.2), i.e.,
(ȳ, ū) satisfies (4.3). Then there exists a unique p ∈ Wα(V, L2(a, b)) such that
(ȳ, ū, p) satisfies the following optimality system:



































CD
α
0,tȳ(x, t) + CD

β
x,b(γ(x)RLD

β
a,xȳ(x, t)) + q(x)ȳ(x, t) = f(x, t) + ū(x, t),

(x, t) ∈ (a, b)× (0, T ),

ȳ(x, 0) = y0(x), x ∈ (a, b),

D
−(1−β)
a,x ȳ(a, t) = 0, t ∈ (0, T ),

γ(b)RLD
β
a,xȳ(b, t) = 0, t ∈ (0, T ),

(4.14)



































CD
α
t,T p(x, t) + CD

β
x,b(γ(x)RLD

β
a,xp(x, t)) + q(x)p(x, t) = ȳ(x, t)− zd(x, t),

(x, t) ∈ (a, b)× (0, T ),

p(x, T ) = 0, x ∈ (a, b),

D
−(1−β)
a,x p(a, t) = 0, t ∈ (0, T ),

γ(b)RLD
β
a,xp(b, t) = 0, t ∈ (0, T ),

(4.15)

and

ū(x, t) = −
p(x, t)

ν
, (x, t) ∈ (a, b)× (0, T ). (4.16)

Proof Theorem 4.1 implies that ȳ is a unique solution of (1.2), corresponding
to the control ū. Consequently, (4.14) follows. In order to prove (4.15) and
(4.16), we proceed via the formal Lagrange method. To this end, we define the
Lagrangian function as

L (y, u, p)

= J(y, u)−

[

∫ T

0

∫ b

a

(

CD
α
0,ty + CD

β
x,b(γRLD

β
a,xy) + qy − f − u

)

p dxdt

]

where p is the Lagrange multiplier function, defined on (a, b)× (0, T ).

Since (ȳ, ū) is an optimal solution, it follows that

DyL (ȳ, ū, p)(ŷ) = 0, (4.17)

DuL (ȳ, ū, p)(û) = 0, ∀ û ∈ L2((a, b)× (0, T )), (4.18)
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where the state ŷ, associated to control û, is a solution to STFPE

CD
α
0,tŷ(x, t) + CD

β
x,b(γ(x)RLD

β
a,xŷ(x, t)) + q(x)ŷ(x, t) = f(x, t) + û(x, t),

(x, t) ∈ (a, b)× (0, T ),

ŷ(x, 0) = 0, x ∈ (a, b),

D−(1−β)
a,x ŷ(a, t) = 0, t ∈ (0, T ),

γ(b)RLD
β
a,xŷ(b, t) = 0, t ∈ (0, T ).

(4.19)

Now, using (4.17) and the fact that the derivative of a linear and continuous
mapping is the mapping itself, we get

DyL (ȳ, ū, p)(ŷ) =

[ ∫ T

0

∫ b

a

(ȳ(x, t)− zd(x, t))ŷ(x, t)dxdt

−

∫ T

0

∫ b

a

(

CD
α
0,tŷ(x, t) + CD

β
x,b(γ(x)RLD

β
a,xŷ(x, t)) + q(x)ŷ(x, t)

)

p(x, t)dxdt

]

= 0. (4.20)

Using the fractional integration by parts formula for left Caputo fractional
derivative, given in Antil, Otarola and Salgado (2016), Lemma 3 and Lemma
2.17, it follows that

−

∫ T

0

∫ b

a

(

CD
α
0,tŷ(x, t) + CD

β
x,b(γ(x)RLD

β
a,xŷ(x, t)) + q(x)ŷ(x, t)

)

p(x, t)dxdt

= −

∫ T

0

∫ b

a

(

CD
α
t,T p(x, t) + CD

β
x,b(γ(x)RLD

β
a,xp(x, t)) + q(x)p(x, t)

)

ŷ(x, t)dxdt

−

∫ b

a

p(x, T )D
−(1−α)
0,t ŷ(x, T )dx−

∫ T

0

D
−(1−β)
0,t ŷ(b, t)(γ(b)RLD

β
a,xp(b, t))dt

−

∫ T

0

γ(a)RLD
β
a,xŷ(a, t)D

−(1−β)
0,t p(a, t) = 0, ∀ŷ ∈Wα(V, L2(a, b)).

(4.21)

In view of (4.21) and previous computations, one can rewrite (4) as follows:

DyL (ȳ, ū, p)(ŷ)

= 〈ȳ − zd, ŷ〉L2((a,b)×(0,T )) −
〈

CD
α
t,T p+ CD

β

x,b(γ(x)RLD
β
a,xp) + qp, ŷ

〉

L2((a,b)×(0,T ))

−
〈

p(T ), (D
−(1−α)
0,t ŷ)(T )

〉

L2(a,b)
−

∫ T

0

D
−(1−β)
0,t ŷ(b, t)(γ(b)RLD

β
a,xp(b, t))dt

−

∫ T

0

γ(a)RLD
β
a,xŷ(a, t)D

−(1−β)
0,t p(a, t) = 0.

(4.22)
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Now, for p(t) ∈ V and choosing, in particular, ŷ ∈ C∞
c

(

(a, b)× (0, T )
)

with

ŷ(x, t) = ϕ(x)φ(t), where φ(t) solves the equation D
−(1−α)
0,t φ(t) = η(t) with

η ∈ C∞
c (0, T ), we obtain from (4.22)

∫ T

0

〈

CD
α
t,T p+ CD

α
t,T p+ CD

β
x,b(γ(x)RLD

β
a,xp) + qp− (ȳ − zd), ϕ

〉

L2(a,b)
φ(t)dt

= 0.

Then, according to Samko, Kilbas and Marichev (1993), Theorems 13.2 and
13.5, the above relation must hold for all φ ∈ C∞

c (0, T ) and, thus, it follows
from the density arguments that

CD
α
t,T p(x, t) + CD

β
x,b(γ(x)RLD

β
a,xp(x, t)) + q(x)p(x, t) = ȳ(x, t)− zd(x, t),

in (a, b)× (0, T ). (4.23)

It remains to show that p(x, T ) = 0. To do so, we notice that we are left with
〈

p(T ), (D
−(1−α)
0,t ŷ)(T )

〉

L2(a,b)
= 0. (4.24)

If we now consider ŷ as a function, which is constant in time, then from (4.24)
we have p(T ) = 0. However, since ŷ(x, 0) = 0, the only acceptable constant-
in-time function would be ŷ ≡ 0. To avoid this, we take ŷ = lǫ(t)ζ(x), where
ζ ∈ C∞

c (a, b) is arbitrary, and lǫ(t) is given by

lǫ(t) =

{

ǫ−αT−αtα, 0 < t ≤ ǫT,

1, ǫT < t ≤ T
.

In view of this particular ŷ, (4.24) becomes
[

∫ b

a

p(x, T )ζ(x)dx

]

(D
−(1−α)
0,t lǫ)(T ) = 0. (4.25)

Since limǫ→0(D
−(1−α)
0,t lǫ)(T ) = limǫ→0(D

−(1−α)
0,t 1)(T ) > 0, it follows from (4.25)

that

p(x, T ) = 0, x ∈ (a, b). (4.26)

Moreover, using (4.18), one gets

∫ T

0

∫ b

a

[

µū(x, t) + p(x, t)
]

û(x, t)dxdt = 0 ∀ û ∈ L2((a, b)× (0, T )),

which implies

ū(x, t) = −
p(x, t)

ν
, in (a, b)× (0, T ),
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which, in turn, is the required optimality condition (4.16).

Finally, we prove the well-posedness of the adjoint system (4.15) by con-
verting the backward in time problem with the right Caputo derivative into a
forward in time problem with left Caputo derivative. Indeed, by making the
change of variable t→ T − t in (4.15) with setting TT p(t) = p(T − t), t ∈ [0, T ],
one could obtain, see Mophou (2011), Proposition 3.6,







































CD
α
0,tTT p(x, t) + CD

β
x,b(γ(x)RLD

β
a,xTT p(x, t)) + q(x)TT p(x, t)

= TT (ȳ(x, t)− zd(x, t)), x ∈ (a, b), T − t ∈ (0, T ),

TT p(x, 0) = 0, x ∈ (a, b),

D
−(1−β)
a,x TT p(a, t) = 0, T − t ∈ (0, T ),

γ(b)RLD
β
a,xTT p(b, t) = 0, T − t ∈ (0, T ).

(4.27)

Hence, by letting T−t = τ ∈ [0, T ] in (4.27), we deduce that solution of (4.15) is
equivalent to solution of (3.1) with homogeneous initial condition and the right
hand side

ȳ − zd ∈ L2((a, b)× (0, T )) →֒ L2((0, T );V
′

).

Thus, in view of Theorem 3.1, we infer that (4.15) has a unique solution p ∈
Wα(V, L2(a, b)). �

Remark 4.1 Since the cost functional J(·, ·) is convex, the converse of Theorem
4.2 is also true, i.e., any pair (ȳ, ū) and the solution p of (4.15), which satisfies
(4.16), is an optimal solution. Therefore, a control u, along with the optimal
state y and the adjoint state p is optimal for (1.1)-(1.2) if and only if the triplet
(u, y, p) satisfies the following optimality system:

CD
α
0,ty + CD

β

x,b(γ(x)RLD
β
a,xy) + qy = f + u = f −

p

ν

CD
α
t,T p+ CD

β

x,b(γ(x)RLD
β
a,xp) + qp = y − zd

in (a, b)× (0, T )

y(x, 0) = y
0(x) p(x, T ) = 0, x ∈ (a, b),

D
−(1−β)
a,x y(a, t) = 0 D

−(1−β)
a,x p(a, t) = 0, t ∈ (0, T ),

γ(b)RLD
β
a,xy(b, t) = 0 γ(b)RLD

β
a,xp(b, t) = 0, t ∈ (0, T ).

. (4.28)

Remark 4.2 For the sake of completeness, we add that control constraints can
be handled in this context with little extra work. Let us, therefore, introduce the
set of constraints Ud := {u : a(x, t) ≤ u(x, t) ≤ b(x, t), (x, t) ∈ (a, b)×(0, T ), i =
1, 2, . . . , k}, where both the function a and b belongs [????] to L2((a, b)×(0, T )).
Indeed, instead of equality in (4.18), using standard variational theory, we obtain
the following variational inequality

DuL(ȳ, ū, p)(u− ū) ≥ 0 ∀ u ∈ Ud,
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which gives

∫ T

0

∫ b

a

[

νū(x, t) + p(x, t)
]

(u(x, t)− ū(x, t))dxdt ≥ 0, ∀u ∈ Ud.

Equivalently, we have

〈νū+ p, u− ū〉L2((a,b)×(0,T )) ≥ 0, ∀u ∈ Ud. (4.29)

5. Finite difference approximation

In this section, we propose a finite difference scheme for the approximation of
the considered FOCP (1.1)-(1.2) while assuming the sufficient regularity of the
solution in both the space and time variables. In view of Remark 4.1, it follows
that the solution of the optimal control problem (1.1)-(1.2) requires the solv-
ability of the optimality system (4.28). Therefore, we first develop a difference
scheme for the STFPE (3.1), which then leads to the approximation of the op-
timality system.

We begin with the time discretization of the problem. Let N ∈ N be the
number of time steps. Define the uniform time step ∆t = T

N > 0, and set
tn = n∆t for 0 ≤ n ≤ N with t0 = 0 and tN = T . Moreover, we denote
yn := y(tn) for y ∈ C[0, T ]. We recall the well-known L1 method for the
discrete approximation of left Caputo fractional derivative (see Lin and Xu,
2007; Alikhanov, Beshtokov and Mehra, 2021),

CD
α
0,ty(tn+1) =

1

Γ(1− α)

∫ tn+1

0

(tn+1 − τ)−αy′(τ)dτ

=
1

Γ(1− α)

n
∑

s=0

(

∫ ts+1

ts

(tn+1 − τ)−αy′(τ)dτ

)

≈
1

Γ(1− α)

n
∑

s=0

ys+1 − ys

∆t

(

∫ ts+1

ts

(tn+1 − τ)−αdτ

)

=
∆t−α

Γ(2− α)

n
∑

s=0

bs,α

[

yn+1−s − yn−s
]

,

where bs,α = (s + 1)1−α − s1−α, 0 ≤ s ≤ n, 0 < α < 1 and 1 ≤ i ≤ k, and
provided the sum for n = 0 is defined to be zero. Furthermore, if we define the
discrete fractional differential operator as

Lα
t y(tn+1) :=

∆t−α

Γ(2− α)

n
∑

s=0

bs,α

[

yn+1−s − yn−s
]

, (5.1)

then we have the following result:
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Lemma 5.1 (Lin and Xu, 2007) Suppose 0 < α < 1 and y ∈ C2[0, tn], then

CD
α
0,ty(tn) = Lα

t y(tn) +O
(

∆t2−α
)

.

Remark 5.1 Before the spatial discretization of the problem, we first ana-
lyze the fractional boundary conditions (3.1)3 and (3.1)4 for sufficiently smooth
functions. For any function d ∈ C[a, b] and β ∈ (0, 1), we can find that

D
−(1−β)
a,x d(a) = 0. Indeed,

|D−(1−β)
a,x d(x)| ≤

1

Γ(1− β)

∫ x

a

(x− τ)−β |d(τ)|dτ

≤
1

Γ(1− β)
‖d‖∞

∫ x

a

(x− τ)−βdτ

=
1

Γ2− β)
‖d‖∞(x− a)1−β ,

which gives D
−(1−β)
a,x d(a) = 0. Therefore, one does not require the discrete

approximation for (3.1)3. Moreover, using (2.2), one can observe that

CD
β
x,b(γ(x)RLD

β
a,xy(x, t))

= RLD
β
x,b(γ(x)RLD

β
a,xy(x, t))− γ(b)

RLD
β
a,xy(b, t)

Γ(1− β)
(b− x)−β , β ∈ (0, 1),

which, on applying boundary condition (3.1)4, gives

CD
β
x,b(γ(x)RLD

β
a,xy(x, t)) = RLD

β
x,b(γ(x)RLD

β
a,xy(x, t)), (x, t) ∈ (a, b)× (0, T ).

(5.2)

Now, in order to do the space discretization, we discretize the interval (a, b)
as xm = m∆x, where ∆x denotes the spatial discretization step, given by
∆x = (b − a)/M , m = 0, 1, . . . ,M , x0 = a and xM = b. The approximation of
the exact solution y at a mesh point (xm, tn+1) is denoted by Y n+1

m .

We employ the standard Grünwald-Letnikov formula for the approximation
of Riemann-Liouville fractional derivatives, given as

[RLD
β
a,xd(x)]x=xm

=
1

∆xβ

m
∑

k=0

w
(β)
k d(xm−k) +O(∆x),

[RLD
β
x,bd(x)]x=xm

=
1

∆xβ

M−m
∑

k=0

w
(β)
k d(xm+k) +O(∆x),

where w
(β)
k = (−1)k

(

β

k

)

.
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Hence, based on above formula, the spatial fractional derivative in the con-
sidered problem can be approximated as

[CD
β
x,b(γ(x)RLD

β
a,xy(x, t))](xm,tn+1)

= [RLD
β
x,b(γ(x)RLD

β
a,xy(x, t))](xm,tn+1)

≈
1

∆xβ

M−m
∑

k=0

w
(β)
k γm+k





1

∆xβ

m+k
∑

ℓ=0

w
(β)
ℓ Y n+1

m+k−ℓ





=
1

∆x2β

M−m
∑

k=0

w
(β)
k γm+k

m+k
∑

ℓ=0

w
(β)
ℓ Y n+1

m+k−ℓ.

(5.3)

Therefore, using (5.1) and (5.3), we obtain the following difference scheme for
(3.1):

Lα
t Y

n+1
m +

1

∆x2β

M−m
∑

k=0

w
(β)
k γm+k

m+k
∑

ℓ=0

w
(β)
ℓ Y n+1

m+k−ℓ + qmY
n+1
m = hn+1

m ,

m = 0, 1, . . . ,M, n = 0, 1, 2, . . . , N − 1,

(5.4)

which further can be expressed as follows:

Y 1
m+r

M−m
∑

k=0

w
(β)
k γm+k

m+k
∑

ℓ=0

w
(β)
ℓ Y 1

m+k−ℓ+
[

∆tαΓ(2− α)
]

qmY
1
m = ∆tαΓ(2− α)h1m,

(5.5)

Y n+1
m + r

M−m
∑

k=0

w
(β)
k γm+k

m+k
∑

ℓ=0

w
(β)
ℓ Y n+1

m+k−ℓ +
[

∆tαΓ(2− α)
]

qmY
n+1
m

= (1− b1,α)Y
n
m +

n−1
∑

s=1

(bs,α − bs+1,α)Y
n−s
m + bn,αY

0
m +∆tαΓ(2− α)hn+1

m ,

(5.6)

m = 0, 1, . . . ,M, n = 1, 2, . . . , N − 1,

where

r =
∆tαΓ(2− α)

∆x2β
.

We note that the inclusion of m = 0 and m = M is necessary in the difference
scheme since we need to compute the approximate value of the functions at the
boundary as well.
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Further, if we denote the column vectors in the following manner:

Yn = (Y n
0 , Y

n
1 , . . . , Y

n
M )

T
,

Qn−1 =
(

Y n−1
0 , Y n−1

1 , . . . , Y n−1
M

)

,

Hn =
(

∆tαΓ(2− α)hn1 ,∆t
αΓ(2− α)hn2 , . . . ,∆t

αΓ(2− α)hnM
)

,

for m = 0, 1, . . . ,M , then the difference scheme (5.5)-(5.6) can be rewritten in
the matrix form as follows

AY1 = Q0 + H1,

AYn+1 = (1− b1,α)Q
n +

n−1
∑

s=1

(bs,α − bs+1,α)Q
n−s + bn,αQ

0 + Hn+1,

where n = 1, 2, . . . , N − 1 and the coefficient matrix A = (ai,j)
M+1
i,j=1 is a sym-

metric matrix with the entries

ai,j =



























1 + r
M−i+1
∑

k=0

(

w
(α)
k

)2

γk+i−1 +∆tαΓ(2− α)qi−1 if i = j,

r
M−i+1
∑

k=0

w
(α)
k w

(α)
k+i−jγk+i−1 if i < j.

Now, to obtain the difference scheme for the optimality system, we first discretize
the right Caputo fractional derivative, present in the adjoint equation (4.15).
The discrete approximation of the right Caputo fractional derivative by the L1
method is given by

Lα
T p

n =
∆t−α

Γ(2− α)

N−1
∑

s=n

bs−n,α

[

ps − ps+1
]

=
∆t−α

Γ(2− α)

N−n−1
∑

s=0

bs,α

[

ps+n − ps+n+1
]

,

(5.7)

where Lα
T denotes the discrete right fractional differential operator.

Hence, in view of (5.4) and (5.7), we obtain the discrete version of the
optimality system, given as






































Lα
t Y

n+1
m + 1

∆x2β

M−m
∑

k=0

w
(β)
k γm+k

m+k
∑

ℓ=0

w
(β)
ℓ Y n+1

m+k−ℓ + qmY
n+1
m = fn+1

m −
Pn+1
m

ν
,

Lα
TP

n
m + 1

∆x2β

M−m
∑

k=0

w
(β)
k γm+k

m+k
∑

ℓ=0

w
(β)
ℓ Pn

m+k−ℓ + qmP
n
m = Y n

m − znd,m,

Y 0
m = y0(xm), PN

m = 0, m = 0, 1, . . . ,M, n = 0, 1, 2, . . . , N − 1,

(5.8)
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where Pn
m denotes the approximation of p(xm, tn).

Equation (5.8) represents a linear system of 2N(M+1) equations in 2N(M+
1) unknowns (Y n+1

m and Pn
m, m = 0, 1, . . . ,M , n = 0, 1, . . . , N−1). The solution

of the linear system gives the value of Y and P at all the grid points. Once
the value of Pn

m is known, the approximated control values Un
m can be obtained

using Un
m = −

Pn
m

ν .

6. Numerical results

In this section, we shall demonstrate the accuracy and performance of the dif-
ference scheme, proposed in the previous section, via examples. The maximum
absolute error between the exact and the approximate solution for the STFPE
(3.1) is given by

Ey(M,N) := max
(xm,tn)∈Ω̄

|y(xm, tn)− Y n
m|,

where Ω̄ = [0, 1] × [0, T ]. Moreover, we define the maximum spatial error at a
fixed time t = tn between the exact solution and the approximated solution for
the state variable and control variable as

Ey,∞(M, tn) = max
0≤m≤M

|y(xm, tn)− Y n
m| and Eu,∞(M, tn)

:= max
0≤m≤M

|u(xm, tn)− Un
m|,

respectively.

Example 1 In the first example, we only consider the governing equations, i.e.,
STFPEs (3.1), with the following data:

γ(x) = x2 + ex, q(x) =
1

4
sin(πx), y0(x) = x2(1− x)2,

h(x, t) =

[

Γ(3 + α)

2
t2 +

1

4
sin(πx)(t2+α + 1)

]

x2(1− x)2

−(t2+α + 1)
[

(x2 + ex)(12x2 − 12x+ 2) + (2x+ ex)(2x+ 4x3 − 6x2)
]

,

and T = 1 . It can be checked that y(x, t) = (t2+α + 1)x2(1 − x)2 is the exact
solution of the problem in case of fractional order β = 1.

We investigate the maximum absolute error for the above example when
β = 1. The error for different values of α is shown in Table 1. It can be
observed that as the number of subintervals is increased (increment in the value
of M and N), a reduction in the error occurs, which ensures the convergence of
the method.
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Table 1. The maximum absolute error for Example 1 for different values of α

α = 0.2, β = 1 α = 0.5, β = 1 α = 0.8, β = 1
N =M Ey(M,N) Ey(M,N) Ey(M,N)

64 5.352e− 2 5.256e− 2 5.14e− 2
128 2.652e− 2 2.608e− 2 2.55e− 2
256 1.320e− 2 1.299e− 2 1.272e− 2
512 6.586e− 3 6.484e− 3 6.35e− 3
1024 3.289e− 3 3.239e− 3 3.173e− 3
2048 1.643e− 3 1.618e− 3 1.586e− 3
4096 8.216e− 4 8.092e− 4 7.931e− 4

Example 2 In this example, we consider the fractional optimal control problem
(1.1)-(1.2) with the same data as those considered in Example 1, i.e.,

γ(x) = x2 + ex, q(x) =
1

4
sin(πx), y0(x) = x2(1− x)2,

f(x, t) = h(x, t) =

[

Γ(3 + α)

2
t2 +

1

4
sin(πx)(t2+α + 1)

]

x2(1− x)2

−(t2+α + 1)
[

(x2 + ex)(12x2 − 12x+ 2) + (2x+ ex)(2x+ 4x3 − 6x2)
]

,

T = 1 and ν = 1. The observed value zd(x, t) is chosen equal to the exact
solution of the Example 1 (for β = 1), i.e., we take

zd(x, t) = (t2+α + 1)x2(1− x)2.

It can be easily seen that (y(x, t), u(x, t)) = ((t2+α+1)x2(1−x)2, 0) is the exact
solution of the problem in the case of the fractional order β = 1.

The discrete optimality system (5.8) has been solved for the data considered
in Example 2 for different values of M with ∆t = 0.02 and α = 0.5. We
examine the maximum spatial error at t = 0.5, in the case of β = 1, for the
state variable and the control variable as this is shown in Table 2. It can be
observed that as the number of subintervals is increased (increment in the value
of M), a reduction in the error occurs for both variables, which ensures the
convergence of the method. Moreover, we have plotted the numerical solution
for both variables in Fig. 1. And so, Fig. 1 (a) depicts the approximate solution
of the state variable, while Figure 1 (b) shows the approximate solution for the
control variable for different values of M at α = 1/2, β = 1/2 and t = 0.4. From
the figures, one can observe that if the approximation of the state variable and
the control variable at M = 128 is considered to be the reference solution, then
the approximate solution for both the variables is converging to the reference
solution as the value of M increases.
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Table 2. The maximum spatial error for Example 2 at t = 0.5 for α = 0.5 and
β = 1.

M Ey,∞(M, tN/2) Eu,∞(M, tN/2)

32 6.32e− 2 1.23e− 2
64 3.07e− 2 5.60e− 3
128 1.51e− 2 2.54e− 3
256 7.54e− 3 1.09e− 3
512 3.79e− 3 3.91e− 4
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