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Abstract: The paper introduces the concept of a strict local
equilibrium of order k in the Gale economic model. We obtain
higher-order necessary and sufficient conditions for such equilibria
without assuming continuity of the utility functions. These con-
ditions are formulated in terms of generalized lower and upper di-
rectional derivatives, introduced by Studniarski (1986). A stability
theorem for strict local equilibria of order k is also included.
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1. Introduction

The aim of this paper is to obtain higher-order necessary and sufficient condi-
tions for local equilibria in a simplified version of the Gale economic model (see
Bula, 2003), in which the preferences of individual consumers and producers
(or, more generally, agents) are described by the possibly discontinuous utility
functions.

First of all, the paper presents a new definition of a strict local equilibrium
of order k for the Gale model (see Definition 4). It may be regarded as a
localized version of an equilibrium (Definition 3), which has some meaning by
itself as it describes the situation, in which the consumers want to have only a
little more of certain goods than they currently possess, but not infinitely more.
Moreover, this definition allows for a simple characterization, which follows
from the well-known characterization of strict local maximizers of order k for
the general optimization problems. This characterization is formulated in terms
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of generalized higher-order lower and upper directional derivatives of utility
functions. We also present a stability theorem for strict local equilibria of order
k.

It is important that we allow the utility functions to be discontinuous. Dis-
continuous economic models are discussed in many papers (see in particular,
Dasgupta and Maskin, 1986a,b; Bula, 2003; Nessah and Tian, 2016; Tian, 1992,
2015, 2016; and Tian and Zhou, 1992, and the references therein), where mainly
existence theorems for equilibria are proved. There are also results on first order
necessary conditions for various kinds of local Pareto-type optimal allocations in
some models of welfare economics without continuity assumptions (for example,
Mordukhovich, 2006, Theorems 8.5 and 8.8, and Bao and Mordukhovich, 2010,
Theorem 4.3).

In our previous paper, Michalak and Studniarski (2014), we have applied the
results of Rahmo and Studniarski (2012) to prove some higher-order necessary
and sufficient conditions for locally Pareto optimal allocations in the Gale model,
without assuming continuity of the utility functions. The optimality conditions
obtained in this paper are similar to those of Michalak and Studniarski (2014)
but not identical with them, because they involve a price vector, which is not
used in Michalak and Studniarski (2014). There is also a difference in methods
by which the respective optimality conditions are obtained. In Michalak and
Studniarski (2014) we apply vector optimization and Pareto optimality, while
in the present paper the problem of finding an equilibrium is reduced to a finite
number of simple scalar optimization problems.

One may ask why we are concerned with strict local equilibria of order
k if they do not have an evident economic interpretation (from the economic
viewpoint it is only important whether or not we have a local equilibrium). The
answer is that strict local equilibria of order k = 1, 2, ... have useful stability
properties: a sufficiently small change in the utility functions results in a model
which has an equilibrium at a point close to the equilibrium of the original model
(see Theorem 11). The number k controls the tolerance for possible changes of
values of utility functions (see inequality (28)).

The paper is organized as follows. In Section 2 we review the results of
Studniarski (1986), adapting them to the case of maximization problems. Sec-
tion 3 contains the definitions of the Gale model, a feasible allocation and two
kinds of equilibria. In Section 4 we apply the results of Studniarski (1986) to a
special optimization problem, appearing in the Gale model. Section 5 contains
our main results on characterization of strict local equilibria of order k for the
Gale model. Finally, in Section 6 we present a stability theorem for strict local
equilibria of order k.

2. Characterizations of strict local maximizers

In this section, we reformulate the main results of Studniarski (1986) so as
to obtain higher-order conditions for local maximizers, instead of minimizers.
These results can easily be obtained by substituting −f for f in the original
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theorems.
Let E be a closed subset of Rn, let x̄ ∈ E, and let f : Rn → R̄ be a function

such that |f(x̄)| < ∞. We consider the following general optimization problem:

max{f(x) : x ∈ E}. (1)

Throughout the paper, we denote by ‖·‖ the Euclidean norm and by B(x̄, ε)
the open ball with center x̄ and radius ε.

Definition 1 Let k be a positive integer. We say that x̄ is a strict local max-
imizer of order k for problem (1) if there exist ε > 0 and β > 0 such that

f(x) ≤ f(x̄) − β ‖x− x̄‖
k

for all x ∈ E ∩B(x̄, ε). (2)

Let us introduce the following notation (for each h ∈ R
n and k = 1, 2, ...):

dkf(x̄;h) := lim inf
(t,v)→(0+,h)

f(x̄ + tv) − f(x̄)

tk

= sup
δ>0






inf

t∈(0,δ)
v∈B(h,δ)

f(x̄ + tv) − f(x̄)

tk






, (3)

d
k
f(x̄;h) := lim sup

(t,v)→(0+,h)

f(x̄ + tv) − f(x̄)

tk

= inf
δ>0









sup
t∈(0,δ)

v∈B(h,δ)

f(x̄ + tv) − f(x̄)

tk









. (4)

We shall write df and df instead of d1f and d
1
f , respectively. We also denote

by K (E, x̄) the contingent cone to E at x̄, that is,

K(E, x̄) := {h ∈ R
n : ∃hν → h, xν → x̄, tν ∈ (0,+∞)

with xν ∈ E and hν = (xν − x̄)/tν , ν = 1, 2, ...}. (5)

Finally, we define

Kf(E, x̄) := K(E, x̄) ∩
{

h ∈ R
n : df(x̄;h) ≥ 0

}

, (6)

fE := f − δ(·|E) where δ(x|E) :=

{

0 if x ∈ E,
+∞ if x /∈ E.

(7)

Theorem 1 (see Studniarski, 1986, Theorem 2.1) (i) If k > 1, then the follow-
ing three conditions are equivalent:

(a) x̄ is a strict local maximizer of order k for problem (1);
(b) for all h ∈ R

n\{0}, we have

d
k
fE(x̄;h) < 0; (8)
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(c) inequality (8) holds for all h ∈ Kf (E, x̄)\{0}.
(ii) If k = 1, then analogous equivalences are true with condition (c) replaced

by the following one:
(c′) inequality (8) holds for all h ∈ K(E, x̄)\{0}.

Theorem 1 is difficult to apply in practice, because of the presence of the in-
dicator function δ in inequality (8). Therefore, we shall also formulate two other
results, providing necessary and sufficient conditions for strict local maximizers
of order k for problem (1) (but not characterizations of such maximizers).

Theorem 2 (see Studniarski, 1986, Theorem 2.2) If x̄ is a strict local maxi-
mizer of order k ≥ 1 for problem (1), then dkf(x̄;h) < 0 for all h ∈ K(E, x̄)\{0}.

Theorem 3 (see Studniarski, 1986, Corollary 2.1) (i) If k > 1 and d
k
f(x̄;h) <

0 for all h ∈ Kf (E, x̄)\{0}, then x̄ is a strict local maximizer of order k for
problem (1).

(ii) If df(x̄;h) < 0 for all h ∈ K(E, x̄)\{0}, then x̄ is a strict local maximizer
of order 1 for problem (1).

3. The Gale model and the definitions of equilibria

We now describe a simplified version of the Gale model (Bula, 2003). Suppose
we have n goods G1, ..., Gn and m economic agents A1, ..., Am. The set of goods
includes all types of labor and services, as well as material commodities. The
economic agents may be thought of as either consumers or producers.

The amount of goods G1, ..., Gn, supplied or consumed by an agent Ai in a
certain fixed time interval is given by a vector

xi = (xi,1, ..., xi,n) ∈ R
n. (9)

The j-th coordinate xi,j represents the amount of the good Gj and is positive
(respectively, negative) if Gj is supplied (respectively, consumed). Such a vector
is called a commodity bundle of Ai. The set Ci of all possible commodity bundles
(9) is called the commodity set or technology set of the agent Ai, i = 1, ...,m.

In the Gale model, it is assumed that the balance inequalities hold, i.e., the
total amount of each good consumed by all agents must not exceed the total
amount supplied:

m
∑

i=1

xi,j ≥ 0, j = 1, ..., n. (10)

Let us note that condition (10) may be written down in an equivalent vector
form:

∑m

i=1 xi ≥ 0.

Definition 2 A vector system {x1, ..., xm} is called
(i) a feasible allocation if xi ∈ Ci, i = 1, ...,m, and inequalities (10) hold;
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(ii) a strictly feasible allocation if it is a feasible allocation and all inequalities
(10) hold as strict inequalities:

m
∑

i=1

xi,j > 0, j = 1, ..., n. (11)

Remark 1 Condition (11) means that, for each good Gj, there exists some
excess of supply over demand.

We assume that, for each agent Ai, there exists a utility function

fi : Ci → R, (12)

i = 1, ...,m. Each agent tends to maximize his utility function.

Definition 3 (Bula, 2003, Definition 2.3) A price vector p∗ ∈ R
n and a feasible

allocation {x∗
1, ..., x

∗
m} are called an equilibrium if, for each i ∈ {1, ...,m}, x∗

i is
a solution of the following optimization problem:

max{fi(xi) : 〈p∗, xi〉 ≥ 0, xi ∈ Ci}. (13)

Clearly, for any equilibrium (p∗, {x∗
1, ..., x

∗
m}), the following inequality holds:

m
∑

i=1

x∗
i ≥ 0. (14)

Definition 4 Let k be a positive integer. A price vector p∗ ∈ R
n and a feasible

allocation {x∗
1, ..., x

∗
m} are called a strict local equilibrium of order k if (14)

holds and, for each i ∈ {1, ...,m}, x∗
i is a strict local maximizer of order k for

(13).

Remark 2 Obviously, every strict local equilibrium (p∗, {x∗
1, ..., x

∗
m}) of order

k is a local equilibrium in the sense that there exists ε > 0 such that fi(xi) ≤
fi(x

∗
i ) for all i ∈ {1, ...,m} and xi ∈ Ci ∩ B(x∗

i , ε) satisfying 〈p∗, xi〉 ≥ 0.
But it is not necessarily an equilibrium, unless some convexity assumptions are
imposed on fi and Ci. Nevertheless, finding local equilibria can be helpful as
they can be considered as possible “candidates” for equilibria.

4. Higher-order optimality conditions for a special opti-

mization problem

In this section, we derive optimality conditions for any of the problems (13).
For simplicity, we consider one problem of this kind with the lower index i
dropped. Let C be a nonempty closed convex subset of Rn, let f : C → R and
p∗ ∈ R

n\{0}. Our optimization problem is

max{f(x) : 〈p∗, x〉 ≥ 0, x ∈ C}. (15)
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We denote by S the feasible set for problem (15):

S := {x ∈ R
n : 〈p∗, x〉 ≥ 0, x ∈ C}. (16)

In order to apply Theorems 1–3 to problem (15), we must extend the function
f from C to the whole space R

n. We introduce the following notation:

f̄(x) :=

{

f(x) if x ∈ C,
−∞ if x /∈ C.

(17)

Then f̄ : Rn → R ∪ {−∞}. It is easy to see that problem (15) is equivalent to
the following one:

max{f̄(x) : x ∈ S}. (18)

Theorem 4 Let x̄ ∈ S. Define the following set of directions:

D(x̄) :=

{

{h ∈ R
n : 〈p∗, h〉 ≥ 0} if 〈p∗, x̄〉 = 0,

R
n if 〈p∗, x̄〉 > 0.

(19)

(i) If k > 1, then the following three conditions are equivalent:
(a) x̄ is a strict local maximizer of order k for problem (15);
(b) for all h ∈ R

n\{0}, we have

d
k
f̄S(x̄;h) < 0; (20)

(c) inequality (20) holds for all h ∈ K(C, x̄)∩D(x̄)\{0} such that df̄(x̄;h) ≥
0.

(ii) If k = 1, then analogous equivalences are true with condition (c) replaced
by the following one:

(c′) inequality (20) holds for all h ∈ K(C, x̄) ∩D(x̄)\{0}.

Proof. We will apply Theorem 1 with f and E replaced by f̄ and S, respec-
tively. Let G := {x ∈ R

n : 〈p∗, x〉 ≥ 0}. Suppose, first, that 〈p∗, x̄〉 = 0. Then
it is easy to verify that

K(S, x̄) = K(C ∩G, x̄) ⊂ K(C, x̄) ∩K(G, x̄) = K(C, x̄) ∩D(x̄). (21)

For k > 1, it follows from Theorem 1 that conditions (a) and (b) of Theorem 4
are equivalent, and they are both equivalent to the following condition:

(c1) inequality (20) holds for all h ∈ K(S, x̄)\{0} such that df̄(x̄;h) ≥ 0.
We see from relations (21) that the implications (b)⇒(c)⇒(c1) are true.

Therefore, (c) is equivalent to (a) and (b) as stated. The proof for k = 1 can
be copied from this by deleting the condition df̄(x̄;h) ≥ 0.

Now, suppose that 〈p∗, x̄〉 > 0. Then x̄ ∈ intG, and K(S, x̄) = K(C, x̄).
Since D(x̄) = R

n, the proof in this case is trivial.
The proofs of the following two theorems are analogous to that of Theorem

4. They follow from Theorems 2 and 3, respectively.
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Theorem 5 Suppose that (19) holds. If x̄ is a strict local maximizer of order
k ≥ 1 for problem (15), then dkf̄(x̄;h) < 0 for all h ∈ K(C, x̄) ∩D(x̄)\{0}.

Theorem 6 Suppose that (19) holds.

(i) If k > 1 and d
k
f̄(x̄;h) < 0 for all h ∈ K(C, x̄) ∩ D(x̄)\{0} such that

df̄(x̄;h) ≥ 0, then x̄ is a strict local maximizer of order k for problem (15).
(ii) If df̄(x̄;h) < 0 for all h ∈ K(C, x̄) ∩ D(x̄)\{0}, then x̄ is a strict local

maximizer of order 1 for problem (15).

5. Higher-order conditions for strict local equilibria

Below, we reformulate Theorems 4,5 and 6 so as to obtain higher-order necessary
and sufficient conditions for strict local equilibria in the Gale model. These
modifications are quite obvious. We denote by Si the set of feasible points for
problem (13):

Si := {xi ∈ R
n : 〈p∗, xi〉 ≥ 0, xi ∈ Ci}. (22)

Moreover, we denote by f̄i the extension of fi to the whole space Rn by a formula
analogous to (17).

Theorem 7 Suppose that Ci are nonempty, closed and convex.
(i) If k > 1, then the following three conditions are equivalent:

(a) (p∗, {x∗
1, ..., x

∗
m}) is a strict local equilibrium of order k;

(b) inequality (14) holds and, for all i ∈ {1, ...,m} and h ∈ R
n\{0},

we have

d
k
(f̄i)Si

(x∗
i ;h) < 0; (23)

(c) inequality (14) holds and, for all i ∈ {1, ...,m} and h ∈ K(Ci, x
∗
i )∩

D(x∗
i )\{0} such that df̄i(x

∗
i ;h) ≥ 0, we have (23) (here the set D(x∗

i ) is
defined by a formula analogous to (19)).

(ii) If k = 1, then analogous equivalences are true with condition
(c) replaced by the following one:
(c’) inequality (14) holds and, for all i ∈ {1, ...,m} and h ∈ K(Ci, x

∗
i )∩

D(x∗
i )\{0}, we have (23).

Theorem 8 Suppose that Ci are nonempty, closed and convex. If
(p∗, {x∗

1, ..., x
∗
m}) is a strict local equilibrium of order k ≥ 1, then inequality (14)

holds and we have dkf̄i(x
∗
i ;h) < 0 for all i ∈ {1, ...,m} and h ∈ K(Ci, x

∗
i ) ∩

D(x∗
i )\{0}.

Theorem 9 Suppose that Ci are nonempty, closed and convex.

(i) If k > 1, inequality (14) holds and we have d
k
f̄i(x

∗
i ;h) < 0 for all

i ∈ {1, ...,m} and h ∈ K(Ci, x
∗
i ) ∩ D(x∗

i )\{0} such that df̄i(x
∗
i ;h) ≥ 0, then

(p∗, {x∗
1, ..., x

∗
m}) is a strict local equilibrium of order k.

(ii) If inequality (14) holds and we have df̄i(x
∗
i ;h) < 0 for all i ∈ {1, ...,m}

and h ∈ K(Ci, x
∗
i ) ∩D(x∗

i )\{0}, then (p∗, {x∗
1, ..., x

∗
m}) is a strict local equilib-

rium of order 1.
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Example 1 Consider the case with one agent and two goods (m = 1, n = 2).
Let x = (x1, x2) be the amounts of the first and second good for the agent and
let x ∈ C = C1 × C2 = [−10, 10] × [−10, 10]. We shall assume that the utility
function of the agent has the form

f(x) =

{

x1 + x2 for x2
1 + x2

2 ≤ 25,
x1 + x2 − 1 for x2

1 + x2
2 > 25.

After exceeding a certain level of production, the agent loses some benefits, which
he had, so his utility suddenly decreases. This is the reason why the utility
function in our case is discontinuous.

Let p∗ =
(

3
2 , 1

)

be a given price vector. We shall prove that the point x∗ =

(x∗
1, x

∗
2) =

(

5
√
2

2 , 5
√
2

2

)

is a strict local maximizer of order one for the problem

max{f(x) : x ∈ S}, (24)

where

S := {x ∈ R
2 : x ∈ G ∩C}

and G := {x ∈ X : 〈p∗, x〉 ≥ 0} = {x ∈ X : 3
2x1 + x2 ≥ 0}. Now, take any

direction y 6= (0, 0). We compute (using (17) and the fact that x∗ ∈ intC)

d̄f̄(x∗; y) = lim sup
(t,v)→(0+,y)

f(x∗ + tv) − f(x∗) − δ(x̄ + tv|C)

t
= d̄f(x∗; y)

=















lim sup
(t,v)→(0+,y)

tv1+tv2−1
t

for y1 + y2 > 0,

lim sup
(t,v)→(0+,y)

tv1+tv2
t

for y1 + y2 ≤ 0,

=







−∞ for y1 + y2 > 0,

y1 + y2 for y1 + y2 ≤ 0.

This means that d̄f̄(x∗; y) < 0 for all y ∈ K(G, x∗)\{(0, 0)} (observe that
K(G, x∗) = G). Hence, it follows from Theorem 6(ii) that x̄ is a strict lo-
cal maximizer of order 1 for problem (24). Since we have only one agent and
x∗ ≥ 0, this means that the pair (p∗, x∗) is a strict local equilibrium of order 1.

6. A stability theorem

Hyers (1978) introduced the following notion of stability of minimum points: a
relative minimum point x̄ of a function f is called stable if all functions (of a
suitable class) which are sufficiently close to f have relative minimum points
within a prescribed distance from x̄. Based on this idea, we present below a
theorem on stability of strict local equilibria of order k (Theorem 11). This
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result shows, in particular, that our definition of a strict local equilibrium of
order k (Definition 4) can be useful for applications, because it guarantees the
stability of a local equilibrium in the sense of Hyers with respect to arbitrary
perturbations of the utility functions.

The following theorem is a finite-dimensional version of Hyers (1985, Theo-
rem 2.1 ), where minimization is replaced by maximization. Note that it does
not require continuity of the function being maximized, but assumes upper
semicontinuity of the perturbed function.

Theorem 10 Let ρ : [0,∞) → R be a strictly increasing function with ρ(0) = 0.
Let E be a closed subset of Rn, let x̄ ∈ E, and let f : E → R be a function such
that

f(x) ≤ f(x̄) − ρ(‖x− x̄‖) for all x ∈ E ∩ clB(x̄, ε). (25)

For a given ε > 0, let f̃ : E → R be any upper semicontinuous function satisfying
the inequality

∣

∣

∣f̃(x) − f(x)
∣

∣

∣ < ρ(ε)/2 for all x ∈ clB(x̄, ε). (26)

Then f̃ has a maximum value on the set E ∩ clB(x̄, ε) which is taken on at
some point x̃ ∈ B(x̄, ε).

Remark 3 The conclusion of Theorem 10 means that problem (1) with f re-
placed by f̃ has a local solution x̃ within the distance of ε from x̄.

We now consider the Gale model described in Section 3. Let us observe
that, to apply Theorem 10, we do not need to use the extensions f̄i of the
utility functions fi to the whole space R

n.

Theorem 11 Let (p∗, {x∗
1, ..., x

∗
m}) be a strict local equilibrium of order k, which

implies, in particular, that there exist numbers ε > 0 and β > 0 such that

fi(xi) ≤ fi(x
∗
i )−β ‖xi − x∗

i ‖
k

for all xi ∈ Si∩clB(x∗
i , ε), i ∈ {1, ...,m}, (27)

where the sets Si are defined by (22). We assume that the sets Ci, appearing
in (22), are closed, and fi : Ci → R, i = 1, ...,m, are arbitrary functions. Let
f̃i : Ci → R, i = 1, ...,m, be any upper semicontinuous functions satisfying the
inequalities

∣

∣

∣
f̃i(xi) − fi(xi)

∣

∣

∣
< βεk/2 for all xi ∈ Si ∩ clB(x∗

i , ε). (28)

Then each of the problems

max{f̃i(xi) : 〈p∗, xi〉 ≥ 0, xi ∈ Ci} (29)

has a local maximizer x̃i which belongs to B(x∗
i , ε). Moreover, if

m
∑

i=1

x̃i ≥ 0 (30)

holds, then (p∗, {x̃1, . . . , x̃m}) is a local equilibrium.
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Proof. The proof follows by applying Theorem 10 to each of the problems
(13), with ρ(t) := βtk and E := Si.

Remark 4 The order k of a strict local equilibrium plays an important role in
Theorem 11 as it determines the permitted distance between the values of fi and
f̃i in condition (28). In particular, if ε < 1, then εk

′

< εk for k′ > k, so the
larger values of k lead to tighter bounds for perturbations of the utility functions.

Remark 5 The additional assumption (30) is necessary because, for every local
equilibrium, the corresponding system of commodity bundles must be a feasible
allocation. Unfortunately, this condition is not in line with the general stability
principle of Hyers. One would prefer to have a local equilibrium for the perturbed
model with f̃i sufficiently close to fi without any extra requirement. The next
result describes some particular situation where this is possible.

Corollary 1 Let the assumptions of Theorem 11 be satisfied. Suppose, in
addition, that the allocation {x∗

1, ..., x
∗
m} is strictly feasible. Then, there exists

δ > 0 such that each of the problems (29) has a local maximizer x̃i which belongs
to B(x∗

i , δ). Moreover, (p∗, {x̃1, . . . , x̃m}) is a local equilibrium.

Proof. Since {x∗
1, ..., x

∗
m} is strictly feasible, one can find δ ∈ (0, ε) such

that inequalities (10) hold for all xi ∈ B(x∗
i , δ), i = 1, ...,m. Now, we can apply

Theorem 11 with ε replaced by δ. Then (30) follows from (10) and the inclusions
x̃i ∈ B(x∗

i , δ).
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