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Abstract: Abstract controlled evolution inclusions are revisited
in the Banach spaces setting. The existence of solution is established
for each selected control. Then, the input–output (or, control-states)
multimap is examined and the Lipschitz continuous well posedness
is derived. The optimal control of such inclusions handled in terms
of a Bolza problem is investigated by means of the so-called PF
format of optimization. A strong duality is provided, the existence
of an optimal pair is given and the system of optimalty is derived.
A Fenchel duality is built and applied to optimal control of convex
process of evolution. Finally, it will be shown how the general theory
we provided can be applied to a wide class of controled integro-
differental inclusions.
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1. Introduction

A vast literature has been devoted in these last decades to evolution inclusions
with a rich variational analysis in control theory and optimization, along with
applications in various areas. The set-valuedness arises naturally in the mod-
eling of systems not entirely identified, subject, for instance, to a shortage of
information associated with unknown physical constraints or involving random
inputs. To cite but a few exemplary studies, see Bressan and Zhang (2012),
Fiacca, Papageorgiou and Papalini (1998), Oppezzi and Rossi (1995), Papa-
georgiou (1987), Peypouquet and Sorin (2009), Vilches and Nguiven (2020), or
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Zagurovsky, Mel’nik and Kasyanov (2011). The renewal of interest in abstract
inclusions has been motivated by numerous concrete problems in quasistatic
mechanics for the modeling of contact boundary and/or friction problems; see
Denkowski, Migórski and Papageorgiu (2003), Han and Sofonea (2003), Kuttler
(2019), Kuttler and Shillor (1999), Kuttler and Li (2015), or Migórski, Ochal and
Sofonea (2013), where the studies have focused on abstract elliptic ω-parametric
inclusions

0 ∈ A(y(ω), ω) + u(ω), (1)

covering variational inequalities, and on evolution inclusions under the mold

{
d
dt
(Bt (y(ω))) ∈ A(y(ω), ω) + u(ω),

B0 (y(0)) := B0y0.
(2)

Here, ω ∈ Ω and Ω is endowed with a σ-algebra Σ.

In applications, the set-valued operator A(., ω) supposed to be pseudomono-
tone (see Kuttler and Shillor, 1999), may arise, for instance, as the subgradient
map of nonconvex locally Lipschitz functionals, the parameter u as an input
datum and B(t) := Bt as a linear operator that may vanish, so that inclusion
(2) covers problems of mixed type.

The continuous time evolution inclusions represent the overwhelming pro-
portion of dynamical systems and abound in various fields of mathematics and
in many applications. Indeed, the case Ω := [0, T ] with Σ being the sigma-
algebra of Lebesgue subsets of Ω covers a wide range of applications in many
areas; see, e.g., Bian and Weeb (1999), Han and Sofonea (2003), Kuttler and Li
(2015), Kuttler and Shillor (1999), Motreanu and Radulescu (2003), Zagurovsky,
Mel’nik and Kasyanov (2011). But, abstract time-evolution inclusions with a
parameter ω ∈ Ω dealt mainly with existence of t-measurable solutions; see,
Andrews et al. (2019), Kuttler and Shillor(2000, 2019), Kutller, Li and Shillor
(2016), Kuttler and Shillor (1999), and, more recently, in Andrews, Kuttler and
Li (2020), where Ω is a sample space equipped with a σ-algebra and the studies
quoted focused on product measurability or (t, ω)-measurable solution.

For our part, we deal here with control and optimization of abstract evolution
inclusions without random character and framed as follows.

(xt, ut,
d

dt
xt)

a.e
∈ E(t) ; xτ ∈ Ω. (3)

Throughout, the notations
a.e
∈ ,

a.e
=,

a.e

≥ ,
a.e
→ mean that the indicated relations hold

a.e. t ∈ J := [t0, T ] ⊂ [0,+∞[ for the usual Lebesgue measure dt on J.

For X and U being reflexive Banach spaces, the multimap E from J to
X × U × X is measurable with closed values and, to keep formulas compact
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and readable, xt and ut stand for the state x(t) ∈ X and the control u(t) ∈ U .
Finally, (τ, xτ ) is fixed in J × Ω and the subset Ω ⊂ X is convex and closed.

The implicit mold (3) is more adequate for the study of evolution inclusion
since, for many situations, the set-valuedness can be due also to the ignorance
of the laws relating the state and the eventual parameters and/or controls. In
addition, the mold (3) covers (1) and (2) by setting

E(t) := gh(A(., t)),

where gh denotes the graph (see definition in (9)). Indeed, (1) and (2) amount
to

ut ∈ E(t)

and

(
d

dt
zt − ut, yt) ∈ E(t) ; z := By

reducing thus the second inclusion to the control of the observation z.

The mold (3) is said to be convex (respectivelyconvex process; linear) if
the values of the multimap E are convex (respectively convex cones; linear
subspaces). It will be called convex-like if the multimap F : J ×X × U ⇒ X :

F (t, a, b) :
a.e
= {c ∈ X : (a, b, c) ∈ E(t)} (4)

is convex valued and onto in the sense that

rg(F (t, ., .))
a.e
= X, (5)

where rg denotes the range (see the definition later on in (9)).

However, having that inclusion (3) is equivalent to

d

dt
xt

a.e
∈ F (t, xt, ut) ; xτ ∈ Ω,

it is well known that condition (5) holds if F (t, ., .) is monotone maximal and
coercitive (see, e.g., Kuttler, 2019). In this way, the convex-like mold covers
almost all of the parabolic inclusions.

This case will be considered in another work, because here, this would in-
crease too much the length of the paper. Nevertheless, let us point out the
unified approach, achieved in Mokhtar-Kharroubi (2017) for the control of dis-
crete time systems framed by convex-like inclusions and without assuming any
monotonicity condition.

Let us now provide a brief summary of basic facts on Bochner integral of
functionals for later use. Denote

∫ t
τ
ωsds by

∫ t
τ
ωs and

∫
J
ωsds by

∫
ωs. The
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Lebesgue–Bochner space LpX of functionals x from J to a reflexive Banach space
(X, ‖.‖) is endowed with the norm

‖x‖Lp =

(∫
‖xt‖

p

) 1

p

if p ∈ [1,+∞[ ,

‖x‖L∞ = ess .supt∈J ‖xt‖ .

Then, the dual (LpX)
∗
for p ∈ [1,+∞[ is identified with Lp

∗

X∗ : 1
p
+ 1

p∗
= 1.

By ω ∈ L
p
+ we mean that ωt

a.e

≥ 0 and
∫
ω
p
t < +∞.

The linear space Mp
X := X ⊕ L

p
X , equipped with the norm

‖(c, v)‖p := (‖c‖
p
+ ‖v‖

p
Lp)

1

p if p ∈ [1,+∞[ ,

‖(c, v)‖∞ := max {‖c‖ , ‖v‖L∞} ,

is a Banach space, whose dual for p ∈ [1,+∞[ is Mp∗

X∗ under the pairing

〈(c, v), (d,w)〉 := 〈c, d〉+

∫
〈vt, wt〉.

Let ApX be the space of absolutely continuous functions x : J → X, whose
derivative d

dt
xt (in the sense of distributions) lies in LpX (we denote dx

dt
∈ L

p
X).

The norm in ApX is

‖x‖Ap : =

(
‖xτ‖

p
+

∥∥∥∥
dx

dt

∥∥∥∥
p

Lp

) 1

p

if p ∈ [1,+∞[ ,

‖x‖A∞ : = max

{
‖xτ‖ ,

∥∥∥∥
dx

dt

∥∥∥∥
L∞

}
.

Because x→ (xτ ,
dx
dt
) is a linear isometry of ApX ontoMp

X , then ApX is a Banach

space, whose dual for p ∈ [1,+∞[ is identified withMp∗

X∗ , with the pairing given
by

〈x, (d,w)〉 := 〈xτ , d〉+

∫
〈
d

dt
xt, wt〉.

Let CX(J) be the Banach space of continuous functions x : J → X equipped
with the maximum norm ‖x‖C . Then, the continuous embedding

A
p
X →֒ CX(J)

holds. See, e.g, Barbu and Precupanu (1978) for more materials on absolutely
continuous vector-valued functions.
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2. Main assumptions and results

The study is conducted without random character under the following condi-
tions.

The multimap E has convex values satisfying the openness property:

int (E(t)) 6= ∅ for all t ∈ J (6)

and the growth estimation :

∃ω ∈ L∞
+ , ∃δ > 0, ∃r ≥ 1

s.t

‖c‖X
a.e

≤ ωt(1 + ‖a‖X) + δ ‖b‖
r
U for all (a, b, c) ∈ E(t). (7)

The paper is organized in three parts with the following progress.

(I). In the first part some multimap-results with frequent uses are outlined.

(II). The second part focuses on the inclusion. No monotonicity condition
is placed on the multimap. For each control u ∈ Lr

Rm(J) (r > 1) there exists
a state x in A1

X s.t (x, u) satisfies the inclusion (Theorem 2). The solution-
map (control-states) is examined and the Lipschitz continuous well posedness is
derived (Theorem 3 and Proposition 2).

(III). The third part is devoted to a Bolza problem of control over the in-
clusion. A strong duality and an optimal pair are provided (Theorem 4 and
Theorem 5). The system of optimalty is de:rived (Theorem 5). A Fenchel
duality is built and applied to optimal control of convex-process of evolution
(Proposition 5 and Proposition 6).

Finally, it will be shown briefly how the general theory we provided can
handle a wide class of controlled integro-differental inclusions.

3. The preliminaries

Let us fix the notations and basic facts on functions and multimaps. Through-
out, ϑa is a generic neighborhood (of a) and the abreviations ”s.t” and ”iff”
stand for ”such that” and ”if and only if”.

All the neutral elements are denoted by 0, while ‖.‖ and 〈.〉 stand for the
norm and the dual pairing. Let Z be a normed vector space (n.v.s in short),
whose topological dual is Z∗, then Zw means that Z is endowed with the weak
topology. As usual, BZ and SZ are the unit ball and the unit sphere of Z and
for a subset C ⊂ Z the closure and the convex hull of C are denoted by cl(C)
and conv(C). The dual cone C+ and the polar cone C− are given by

C+ := {c∗ ∈ Z∗ : 〈c∗, c〉 ≥ 0 ∀c ∈ C} := −C−.
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The upper support function of C is σC : Z∗ → R ∪ {+∞} :

σC(p) := sup {〈p, v〉 : v ∈ C}

and the barrier cone of C is the domain of σC , or,

b(C) := {p ∈ Z∗ : σC(p) < +∞} . (8)

The convex normal cone at c ∈ C is given by

NC(c) := {p ∈ Z∗ : 〈p, c〉 = σC(p)} .

Let Y be a n.v.s and F (denote F : Z ⇒ Y ) whose domain, range and graph
are respectively:





dom(F) := {z ∈ Z : F(z) 6= ∅} ,
rg (F) := ∪{F(z) : z ∈ Z} ,
gh (F) := {(z, y) : y ∈ F(z)} .

(9)

Then, F is said to be :

· Proper if dom(F) 6= ∅ and gh(F) 6= Z × Y.

· Strict if dom(F) = Z

· Closed (respectively convex) on a closed (respectively convex) subset D ⊂
dom(F), if

gh(F)
⋂

(D × Y ) is a closed (respectively convex) subset of Z × Y .

· Upper semi-continuous (u.s.c in short) at a ∈ int(dom(F)), if for every
open subset θ ⊃ F(a), there exists ϑa s.t F(ϑa) := ∪{F(z) : z ∈ ϑa} ⊂ θ.

· Lower-semi-continuous (l.s.c) at a ∈ int(dom(F)), if for every open subset

θ ⊂ Z, θ ∩ F(a) 6= ∅, there exists ϑa s.t F(v) ∩ θ 6= ∅ for each v ∈ ϑa.

· Lipschitz on D ⊂ dom(F), if for some ρ > 0 there holds

F(v1) ⊂ cl [F(v2) + ρ ‖v1 − v2‖BY ] for all v1, v2 ∈ D. (10)

A selector of F on D ⊂ dom(F) is a function

f : D → Y : f(z) ∈ F(z) ∀z ∈ D.

The conjugate F∗ : Y ∗
⇒ Z∗ is defined by the barrier cone as

z∗ ∈ F∗(p) iff (z∗,−p) ∈ b(gh (F)). (11)

Define the modulus

‖F(z)‖ := sup {‖y‖ : y ∈ F(z)} . (12)



Control and optimization of time evolution inclusions 11

Finally, recall that ϕ : Z → R ∪ {+∞}, whose domain and epigraph are

dom(ϕ) := {z ∈ Z : |ϕ(z)| < +∞} ,
epi(ϕ) := {(z, λ) ∈ Z × R : ϕ(z) ≤ λ} ,

is proper if dom(ϕ) 6= ∅ and closed (respectively convex) if epi(ϕ) is closed

(respectively convex).

The Fenchel conjugate of ϕ is the function

ϕ∗ : Z∗ → R ∪ {+∞} : ϕ∗(z∗) = sup {〈z∗, z〉 − ϕ(z) : z ∈ Z} .

The convex subdifferential of ϕ is the set-valued map ∂ϕ : Z ⇒ Z∗ :

∂ϕ(z) = {z∗ ∈ Z∗ : ϕ(z) + ϕ∗(z∗) ≤ 〈z∗, z〉} .

4. The support function of a multimap

Let F : Z ⇒ Y be proper with closed and convex values. Under the convention
that M +∅ = ∅ for all M ⊂ Y , the support function of F is the function

sF : Z × Y ∗ → R ∪ {+∞}

given by

sF (z, p) := inf {〈p, y〉 : y ∈ F(z)} if z ∈ dom(F) and +∞ otherwise. (13)

Denote by sF (., p) the function z → sF (z, p). Then,

dom(sF (., p)) = dom(F) ∀p ∈ Y ∗.

But the domain of sF is considered in the sense of saddle function; or,

dom(sF ) := domz(sF )× domp(sF )

where

domz(sF ) := {z ∈ Z : sF (z, p) > −∞, ∀p ∈ Y ∗} ,
domp(sF ) := {p ∈ Y ∗ : sF (z, p) < +∞, ∀z ∈ Z}

and sF is said to be proper if dom(sF ) 6= ∅. For a complete study of this tool
with some applications, see Mokhtar-Kharroubi (1987, 2017). But some facts
therefrom have later uses and so we bring them in here.
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Proposition 1 Denote by ∂zsF (., p) the convex subdifferential of sF (., p). Then,

(i). Without assuming that gh(F) is convex there hold

(z∗,−p ) ∈ Ngh(F)(ẑ, ŷ) iff − p ∈ NF(ẑ) (ŷ) and z∗ ∈ ∂zsF (ẑ, p) (14)

(ii). F is convex iff sF (., p) is convex for all p ∈ Y ∗

(iii). F is Lipschitz on D ⊂ dom(F) iff

{sF (., p) : p ∈ SY ∗} is equi-Lipschitz.

(or of the same rank) on D

(iv). Let Y be complete. Then, sF is proper iff F is proper and bounded
valued.

Proof The result (i) can be checked in a straightforward manner, while results
(ii) and (iii) hold by usual Hahn-Banach separation arguments. Let us prove

(iv).

When F is proper and bounded valued, then, for every v ∈ dom(F), there
exists λv > 0 s.t F (v) ⊂ λvBY . Hence,

sF (v, p) ≥ −λv ‖p‖ > −∞.

Conversely, if for some a ∈ Z there exists an unbounded sequence (wl)l∈N
⊂

F(a), then, by the uniform boundedness principle (Y is complete), liml→∞〈p, wl〉 =
−∞ for some p ∈ Y ∗, in contradiction with the fact that

−∞ < sF (a, p) ≤ 〈p, wl〉 for all l ∈ N.

A result established in Mokhtar-Kharroubi (1987) (in terms of sF ) with a
frequent use in the present paper is:

Theorem 1 Mokhtar-Kharroubi (1987) assume that Z and Y are complete,
F : Z ⇒ Y is closed and convex on an open, convex subset D ⊂ int(dom(F)).
Then, F is locally Lipschitz on D whenever it is bounded valued (on D).

See also Mokhtar-Kharroubi (2022) for Lipschitz property of multimap under
weakened conditions.

5. The control of continuous-time evolution inclusions

5.1. Introduction

We start with a brief summary of basic facts on Lebesgue-Bochner-Aumann
integral of multimaps.
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Let Φ be a multimap from a complete, σ-finite measure space (Ω,MΩ, µ) to
a separable Banach space W . Then, Φ is said to be measurable if the following
real valued function is measurable.

Ω×W ∋ (s, w) → d(w,Φ(s)) := inf {‖w − v‖ : v ∈ Φ(s)} .

This is equivalent to graph measurability; or,

gh(Φ) ∈MΩ ⊗ Σ(W ),

where Σ(W ) is the Borel sigma-algebra of W and MΩ ⊗ Σ(W ) is the smallest
σ-algebra which contains the product MΩ × Σ(W ). But, this amounts to the
existence of measurable selectors ϕn (n ∈ N) s.t the Castaing representation
(Castaing and Valadier, 1977) holds; or,

∀n ∈ N ϕn(s)
a.e
∈ Φ(s) and Φ(s)

a.e
= cl {ϕn(s) : n ∈ N} . (15)

Let S1
Φ be the set of all Bochner integrable selectors of Φ, i.e.,

S1
Φ :=

{
ϕ ∈ L1

X : ϕ(s)
a.e
∈ Φ(s)

}
.

The set S1
Φ may be empty, but it will be nonempty if the function

s→ inf {‖v‖ : v ∈ Φ(s)}

lies in

L1
+(Ω).

In particular, S1
Φ is nonempty and L1-bounded if the function

s→ sup {‖v‖ : v ∈ Φ(s)}

lies in

L1
+(Ω).

When S1
Φ 6= ∅, the Lebesgue-Bochner-Aumann integral of Φ is taken to be

∫
Φ(s)dµ :=

{∫
ϕ(s)dµ : ϕ ∈ S1

Φ

}
.

5.2. Existence of controlled solutions

The investigation of the inclusion (3) is conducted through a reduction. Define

U := LrU , X := A1
X , Y := L1

X ×X and F : X×U ⇒ Y
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s.t

F(x, u) :=

{
Γ(x, u)−

dx

dt

}
× {Ω− xτ} , (16)

where Γ : L1
X × LrU ⇒ L1

X is given by

Γ(x, u) :=
{
v : (xt, ut, vt)

a.e
∈ E(t)

}
, (17)

so that the inclusion (3) is reduced to the so-called F -inclusion

0 ∈ F(x, u).

Next is the main existence result.

Theorem 2 Let F : J ×X × U ⇒ X be given by

F (t, a, b) :
a.e
= {c ∈ X : (a, b, c) ∈ E(t)} (18)

and assume that E satisfies the conditions (6)-(7). Then:

(i). For every (x, u) ∈ L1
X ×LrU the set S1(x, u) of integrable selectors of the

superposition

J ∋ t⇒ F (t, xt, ut) ⊂ X (19)

is nonempty, convex and weakly compact in L1
X .

(ii). For every u ∈ LrU there exists x ∈ A1
X such that

0 ∈ F(x, u). (20)

Proof The proof is given by means of integrable selectors (Papageorgiou, 1987,
Theorem 2.3, p. 308). Clearly, gh(F (t, .)) = E(t) is convex and closed and by
the estimation (7) F (t, .) is bounded valued. We claim that

int(dom(F (t, .)) 6= ∅ for all t ∈ J.

Indeed, let Q be the projector

Q : X × U ×X → X × U : Q(a, b, c) := (a, b).

Then, dom(F (t, .)) = Q(E(t)) and by the openness condition (6) the open
mapping Theorem proves the claim. Thus (by Theorem 1), F (t, .) is locally
Lipschitz; hence, continuous (i.e., u.s.c and l.s.c) on intdom(F (t, .)). In this way,
F is Caratheodory, or F is t-measurable and F (t, .) is convex continuous. Then,
the superposition (19) has a measurable graph. So, by Aumann’s Theorem
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(Wagner, 1977, Theorem 5.101) there exists a measurable selector. On the
other hand, since Ω is bounded, then, by condition (7), for some ρ > 0 there
holds

‖xt‖
a.e

≤ µt +

∫ t

τ

ωs ‖xs‖ with, µt :
a.e
= ρ+ δ ‖u‖

r
Lr +

∫ t

τ

ωs

and by Gronwall’s lemma we get

‖xt‖ ≤ µt +

∫ t

τ

µse
(t−s) for all t ∈ J. (21)

Again, condition (7) leads to

‖F (t, xt, ut)‖
a.e

≤ ωt(1 + ‖xt‖) + δ ‖ut‖ ,

or,

‖F (t, xt, ut)‖
a.e

≤ ωt

[
1 + µt +

∫ t

τ

µse
(t−s)

]
+ δ ‖ut‖

r
. (22)

Then, the superposition J ∋ t⇒ F (t, xt, ut) is integrably bounded by

ψ ∈ L1
+ : ψt :

a.e
= ωt

[
1 + µt +

∫ t

τ

µse
(t−s)

]
+ δ ‖ut‖

r
(23)

and by Papageorgiou’s Theorem (Papageorgiou, 1987, Theorem 2.1, p. 307)
the subset S1(x, u) of the integrable selectors is nonempty, convex and weakly
compact in L1

X .

(ii). For each fixed u ∈ LrU , define

Fu : J ×X ⇒ X : Fu(t, a) :
a.e
= F (t, a, ut).

Then, the same arguments invoked for F (t, .) work for Fu(t, .). Indeed, Fu(t, .)
is convex, closed and bounded valued. Thus, Fu(t, .) is locally Lipschitz on
int(dom(Fu(t, .))). Hence, Fu is Caratheodory or Fu is t-measurable and
Fu(t, .) is convex continuous. Then, for every x ∈ L1

X , the superposition

J ∋ t⇒ Fu(t, xt) is measurable.

In addition, Fu is u.s.c fromXw toXw and integrably bounded (by (23)). Again
(by Papageorgiou, 1987, Theorem 2.1, p. 307) there exists x ∈ A1

X s.t xτ ∈ Ω
and

d

dt
xt

a.e
∈ Fu(t, xt) ;

i.e.

(xt, ut,
d

dt
xt)

a.e
∈ E(t).
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5.3. Stability and well-posedness of the inclusion

Theorem 3 Under the conditions (6)-(7) for the multimap E, the following
holds:

(i). The multimaps F and Γ, given by (16) and (17), are strict, closed,
convex, bounded valued and locally Lipschitz.

(ii). For each d ∈ Ω, u ∈ LrU and v ∈ L1
X there exists x ∈ A1

X such that

(xt, ut, vt +
d

dt
xt)

a.e
∈ E(t) ; xτ = d.

In this way, the controllability condition

0 ∈ int(rg(F))

holds true.

(iii). The input-output, or solution map Ψ : LrU ⇒ A1
X , given by

x ∈ Ψ(u) iff (xt, ut,
d

dt
xt)

a.e
∈ E(t) and xτ ∈ Ω, (24)

is strict and locally Lipschitz.

Proof (i). Since E is convex valued then Γ and F have convex graph with
bounded values in view of estimation (7). We claim that Γ is closed. Indeed,
let a sequence (xl, ul, vl)l∈N ⊂ gh(Γ) be convergent to some (x, u, v). Thus, for

some N ⊂ N one has (xl, ul, vl)l∈N
a.e
7→ (x, u, v) and then (xt, ut, vt)

a.e
∈ E(t),

since E(t) is closed.

For the closedness of F let a sequence (yl, xl, ul, al)l∈N ⊂ gh(F) be strongly
convergent to some (y, x, u, a). Then,

(ul)l∈N → u (strongly) in LrU and (
d

dt
xl)l∈N → ̟ (strongly) in L1

X .

Having (xl) → x in A1
X we obtain ̟ = dx

dt
, and since A1

X →֒ CX(J), we get

(xl)l∈N → x in CX(J) and (xlτ )l∈N 7−→ xτ in X.

On the other hand, for every l ∈ N there exists ηl ∈ Γ(xl, ul) and al ∈ Ω s.t

yl = (ηl −
dxl

dt
, al − xlτ )

and since
(
yl
)
l∈N

and (dx
l

dt
)l∈N converge strongly, then

(
ηl, al

)
l∈N

converges as

well to some (η, a) ∈ L1
X × Ω and

(yl)l∈N → y := (η −
dx

dt
, a− xτ ) ∈ F(x, u).
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Let F be the multimap given by (18), i.e.

F (t, a, b) := {c ∈ X : (a, b, c) ∈ E(t)} .

Then (by Theorem 3), for every (v, u) ∈ L1
X ×LrU , the set S1(v, u) of selectors

of

J ∋ t⇒ F (t, vt, ut) ⊂ X

is nonempty in L1
X . Hence, (v, u) ∈ dom(Γ) and Γ is strict.

(ii). Let d ∈ Ω, u ∈ LrU and v ∈ L1
X . Define

F v : J ×X ⇒ X : F v(t, a) := F (t, a, ut) + vt.

Again, F v is t-measurable, F v(t, .) is u.s.c from Xw to Xw, and integrably
bounded in view of (23). Then (by Papageorgiou, 1987, Theorem 2.3), the
inclusion

d

dt
xt

a.e
∈ F v(t, xt) ; xτ = d, (25)

admits a solution. In this way, for every (v, u, d) ∈ Y := L1
X × LrU × X there

exist (x, u) ∈ X×U such that (v, u, d) ∈ F(x, u). Hence,

0 ∈ int(rg(F))

holds true.

In addition, for v = 0 we get F(x, u) 6= ∅ and then, F is strict.

(iii). We check easily that Ψ, given by (24), is convex, closed and bounded
valued and dom(Ψ) = LrU (by the result (ii)). Then, by Theorem 1, Ψ is locally
Lipschitz.

Proposition 2 The underlying evolution inclusion is Lipschitz-continuous well-
posed. Namely, the solution map Ψ given by (24) is s.t

∀v ∈ LrU , ∃lv > 0, ∃δv > 0

and

Haus(Ψ(u1),Ψ(u2)) ≤ lv(‖u1 − u2‖Lr
U
) ∀u1, u2 ∈ v + δvBLr

U
, (26)

where BLr
U
is the unit ball (of LrU ) and Haus stands for the Hausdorff distance.

Further, Ψ admits a continuous selector, or a continuous functional

ψ : LrU → A1
X s.t 0 ∈ F(ψ(u), u) ∀u ∈ LrU .
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Proof Ψ is locally Lipschitz; then, (26) holds and Lipschitz-continuous well-
posedness follows. By Michael’s Theorem (Aubin and Cellina, 1984, Theorem
1, p. 82), there exists a continuous selector of Ψ, or a continuous functional
ψ : LrU → A1

X s.t

0 ∈ F(ψ(u), u) for all u ∈ LrU .

6. The optimal control problem

Throughout, lim and lim denote the upper and the lower limit, while sol(Q)
and val(Q) stand for the set of optimal solutions and the value of the problem
indicated by (Q). We deal here with a Bolza problem of control, written as

(PE) :





inf
[
g(xτ , xT ) +

∫
f(t, xt, ut)

]

(x, u) ∈ A1
X × LrU s.t

(xt, ut,
d
dt
xt)

a.e
∈ E(t) ; xτ ∈ Ω.

(27)

We assume that

g : X ×X → R ∪ {+∞} is proper, convex and l.s.c,

f : J ×X × U → R ∪ {+∞} is convex-Caratheodory

and, additionally, the following conditions hold.

Condition (g). (See V. Barbu, 1994).

g(a1, a2) ≥ g1(a1) + g2(a2) for all (a1, a2) ∈ X ×X, where

g1, g2 : X → R ∪ {+∞} are convex, proper, l.s.c and satisfy

lim‖a1‖→+∞

(
g1(a1)
‖a1‖

)
= +∞,

lim inf‖a2‖→+∞

(
g2(a2)
‖a2‖

)
> −∞.

(28)

Condition (f). (See Aubin and Clarke, 1979).

f(., 0) ∈ L1
R
and there exist γ > 0, ρ > 0, r > 1 and ω̂ ∈ L1

+ s.t

ρ ‖b‖
r
− ω̂t

a.e

≤ |f(t, a, b)|
a.e

≤ |f(t, 0)|+ γ(‖a‖+ ‖b‖
r
) ∀(a, b) ∈ X ×U. (29)

Observe that condition (29) holds for the usual tracking objective, given by
∫
f(t, xt, ut) := ‖x− x̃‖L1 + ‖u− ũ‖

r
Lr

m
.
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6.1. Existence of an optimal pair

Theorem 4 The optimal control problem (PE) : (27) admits a solution pair
(x̂, û) ∈ L1

X ×LrU whenever conditions (6)-(7) hold for the multimap E and the
objective satisfies the conditions (28)-(29).

Proof The condition (29), combined with the fact that t → f(t, xt, ut) is
measurable, ensure that the functional

ψ : L1
X × LrU → R : ψ(x, u) :=

∫
f(t, xt, ut)

is everywhere finite, or

−∞ < ψ(x, u) < +∞ for all (x, u) ∈ L1
X × LrU

and clearly, by condition (29), ψ is u-coercitive on LrU in the sense that

for every fixed x ∈ L1
X , lim

‖u‖
Lr→+∞

ψ(x, u) = +∞.

But, arguing by contradiction, we check easily by (28) that val(PE) is finite.

Because the controlled inclusion admits a solution (Theorem 3), then we
may consider a minimizing sequence (xl, ul)l∈N ; i.e., s.t

{
(xlt, u

l
t,

d
dt
xlt)

a.e
∈ E(t) : xlτ ∈ Ω, ∀l ∈ N and

liml→+∞

(
ϕ(xl, ul)

)
= val(PE).

(30)

Thus, for ǫ > 0 sufficiently small, there exist lǫ ∈ N such that

ϕ(xl, ul) ≤ val(PE) + ǫ ∀l ≥ lǫ. (31)

Clearly, LrU is reflexive (U is reflexive and r > 1). Then, (ul)l∈N is weakly
compact, hence bounded and by condition (7) there exist δ > 0, r > 1, ω ∈ L1

+,
satisfying

∥∥∥∥
d

dt
xlt

∥∥∥∥
a.e

≤ ωt(1 +
∥∥xlt
∥∥) + δ

∥∥ult
∥∥r .

By Gronwall’s lemma (xl)l∈N is bounded in CX(J) and then, for some β > 0,

∥∥∥∥
dxl

dt

∥∥∥∥ ≤ βωt for all l. (32)

Thus, (xl)l∈N is equicontinuous, hence relatively compact in CX(J).
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By the bound (32), the sequence (dx
l

dt
)l∈N is equi-integrable on every open

subset J0 ⊂ J , and then relatively compact for the topology σ(L1, L∞) (by
Denford-Pettis Theorem). Thus, there exist N ⊂ N, η̂ ∈ L1

X , x̂ ∈ CX(J) and û
such that

(ul)l∈N → û (weakly) in LrU and (
dxl

dt
)l∈N → η̂ (weakly) in L1

X ,

(xl)l∈N → x̂ in CX(J) and then g(x̂τ , x̂T ) ≤ liml∈N g(xlτ , x
l
T ). (33)

Further, by the identity x̂t
a.e
= c+

∫
[0,t]

η̂s (for some c ∈ Ω) we get

d

dt
x̂t

a.e
= η̂(t). (34)

Mazur’s theorem applies then to the sequence (xl, ul, dx
l

dt
)l∈N and there exists

a sequence (vn, wn, ηn)n∈N such that

(vn, wn, ηn) ∈ conv

{
(xl, ul,

dxl

dt
) : l ∈ N

}
∀n ∈ N (35)

and

(vn, wn, ηn)n∈N → (x̂, û, η̂) strongly in L1
X × LrZ × L1

X .

Recall (Ahmed and Teo, 1981, Theorem 1.1.5, p.7) that for each n ∈ N, (vn, wn, ηn)

is a finite convex combination of (xl, ul, dx
l

dt
)l∈N ; i.e., for some l1, l2, .., ln ∈ N,

∃λl1 , .., λln ≥ 0 s.t λl1 + ..+ λln = 1 and

(vn, wn, ηn) =
∑

1≤i≤n

λli(x
li , uli ,

dxli

dt
).

Because gh(F (t, ., .)) = E(t) is convex, then

(vnt , w
n
t , η

n
t )

a.e
∈ E(t) for all n ∈ N (36)

and without loss of generality we may suppose that for some J1 ⊂ J one has

(vnt , w
n
t , η

n
t )n∈N → (x̂t, ût, η̂t) for all t ∈ J − J1 and measure(J1) = 0.

Thus, (x̂t, ût, η̂t)
a.e
∈ E(t), since E(t) is closed, and with (34) we obtain

(x̂t, ût,
d

dt
x̂t)

a.e
∈ E(t). (37)

Having that for all n ∈ N, (vn, wn) ∈ conv
{
(xl, ul) : l ∈ N

}
, and because

f(t, ., .) and g(.) are convex, then with (31) we get
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val(PE) ≤ ϕ(vn, wn) ≤
∑

1≤i≤n

λli(val(PE) + ǫ) = val(PE) + ǫ.

Passing to the limit for n→ ∞ leads to

val(PE) ≤ ϕ(x̂, û) ≤ lim (ϕ(vn, wn)) ≤ val(PE) + ǫ

and with (33)-(37) the proof is complete, since ǫ is selected arbitrarily.

6.2. PF -format, duality and system of optimality

The optimal control of the inclusion is handled by the alternative mold of opti-
mization, the so-called PF -format

(PF ) : inf {ϕ (z) : 0 ∈ F(z)} , (38)

which is a unified approach for a large field of optimization problems; see
Mokhtar-Kharroubi (1987, 2017).

Let the data F and ϕ be proper. Then,

sup
p∈Y ∗

(ϕ (z) + sF (z, p)) = ϕ (z) if 0 ∈ F(z) and +∞ otherwise.

In this way, the Lagrangian

L : Z × Y ∗ → R : L (z, p) := ϕ (z) + sF (z, p) , (39)

allows for rewriting the primal problem (PF ) with a dual one (DF ) as

(PF ) : inf
z∈Z

sup
p∈Y ∗

L(z, p)

(DF ) : sup
p∈Y ∗

inf
z∈Z

L (z, p) .

Then, weak duality val (DF ) ≤ val(PF ) always holds. But strong duality occurs
if

−∞ < val (PF ) = val (DF ) and sol(DF ) 6= ∅;

or,

inf
z∈Z

sup
p∈Y ∗

L(z, p) = max
p∈Y ∗

inf
z∈Z

L (z, p) . (40)

The main results to be used later are summarized in
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Theorem 5 (Mokhtar-Kharroubi, 1987, 2017). Assume that the following as-
sumptions are fulfilled.

(I). ϕ̂ := val(PF ) is finite.

(II). ϕ is convex, closed and u.s.c at some z̃ ∈ int(dom(F)).

(III). gh(F) is convex, closed and

0 ∈ int(rg(F)). (41)

Then, strong duality (40) holds and for each optimal solution ẑ there exists a
dual solution p̂ and (ẑ, p̂) is a saddle point for the Lagrangian (39) on Z × Y ∗.
In addition, the system of optimality is

{
0 ∈ ∂ϕ(ẑ) + ∂zsF (ẑ, p̂),

−p̂ ∈ NF(ẑ)(ẑ) and sF (ẑ, p̂) = 0.
(42)

Proof Let us sketch the proof for reader’s convenience.
Define in R× Y the subsets

A0 := {(α,w) : w = 0 , α < 0} ,

A := {(α,w) : ∃z ∈ Z, α+ ϕ̂ ≥ ϕ (z) and w ∈ F (z)} .

Clearly, A0 is convex,A∩A0 = ∅, and it is easy to show that A is convex, since
F and ϕ are convex, too. Because ϕ is continuous at some z̃, then for λ < ϕ (z̃),
there exists ρ > 0 such that ϕ (z) < λ for all z in the ball BZ (z̃, ρ) := z̃ + ρBZ .

By Robinson-Ursescu’s Theorem (Robinson, 1976; Ursescu, 1975) F is l.s.c
on int(dom( F)), and then

int (F (BZ (z̃; ρ))) 6= ∅.

Thus, for ε > 0 and β such that λ < β+ ϕ̂− ε, there holds

∅ 6= ]β − ε, β + ε[× int(F (BZ (z̃; ρ))) ⊂ A.

Hence, A and A0 can be separated by a nondegenerated hyperplane, or, there
exists (λ, p) ∈ R+ × Y ∗ s.t (λ, p) 6= 0 and

λϕ (z) + sF (z, p) ≥ λϕ̂ for all z ∈ Z.

We claim that λ > 0. For otherwise, having sF (z, p) ≥ 0 for all z ∈ Z, then
p = 0 by condition (41). In this way, with p̂ = λ−1p, we get

ϕ (z) + sF (z, p̂) ≥ ϕ̂ for all z ∈ Z

and strong duality holds; or,

inf
z∈Z

sup
p∈Y ∗

L(z, p) = max
p∈Y ∗

inf
z∈Z

L (z, p) = inf
z∈Z

L (z, p̂) .
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Having p̂ ∈ sol (DF ), the system of optimality (42) follows from the saddle
point relations of the Lagrangian and the condition (II) which amounts to

int(dom(F)) ∩ dom(ϕ) 6= ∅. (43)

Proposition 3 Under the same conditions, the Fenchel dual is given by

max
p∈Y∗

max
z∗ ∈Z∗

[
sgh(F)(−z

∗, p)− ϕ∗(z∗)
]

and when F is a convex process, the Fenchel dual of a PF–format is a PF∗-
format

(PF∗) : max {−ϕ∗(z∗) : 0 ∈ F∗(p) + z∗ } . (44)

Proof Having that sF (., p) is convex and ϕ is convex and continuous at some
z̃ ∈ dom(sF (., p)), we get that the Fenchel’s Theorem (see Bot and Csetnek,
2012) applies with ϕ and −sF (., p), and leads to

inf
z∈Z

[ϕ(z) + sF (z, p)] = max
z∗∈Z∗

[
sgh(F)(−z

∗, p)− ϕ∗(z∗)
]
,

and so, the dual problem (DF ) is reduced to

sup
p∈Y∗

max
z∗ ∈Z∗

[
sgh(F)(−z

∗, p)− ϕ∗(z∗)
]
.

But by strong duality the p-supremum is a maximum, and the Fenchel dual is

max
p∈Y∗

max
z∗ ∈Z∗

[
sgh(F)(−z

∗, p)− ϕ∗(z∗)
]
. (45)

If, in addition, F is a convex process, and then gh(F) is a cone, we check easily
that

0 ∈ F∗(p) + z∗ iff sgh(F)(−z
∗, p) = 0.

This ends the proof.

A useful selection result is provided in the following proposition.

Proposition 4 Let r ≥ 1 and Γ : L1
X × L r

U ⇒ L1
X be given by

Γ(x, u) :=
{
v : (xt, ut, vt)

a.e
∈ E(t)

}
. (46)

Then, the following equivalence holds true:

(x∗, u∗, v∗) ∈ Ngh(Γ)(x̂, û, v̂) iff (x∗t , u
∗
t , v

∗
t )

a.e
∈ NE(t)(x̂t, ût, v̂t). (47)
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Proof Let (x, u, v) ∈ L1
X × LrU × L1

X . Define

̟(xt, ut, vt) := 〈x∗t , xt〉+ 〈u∗t , ut〉+ 〈v∗t , vt〉.

If (x∗t , u
∗
t , v

∗
t )

a.e
∈ NE(t)(x̂t, ût, v̂t), then

̟(x̂t, ût, v̂t)
a.e
= σE(t)(x

∗
t , u

∗
t , v

∗
t ) (48)

where σE(t) is the upper support function of E(t), and since

̟(xt, ut, vt)
a.e

≤ ̟(x̂t, ût, v̂t) for all (x, u, v) ∈ gh(Γ),

by summing up on J we get

(x∗, u∗, v∗) ∈ Ngh(Γ)(x̂, û, v̂). (49)

Conversely, if (49) holds, then

∫
̟(x̂t, ût, v̂t) = sup

(x,u,v)∈gh(Γ)

(∫
̟(xt, ut, vt)

)

and by the usual consequence of the Measurable Selection Theorem,

sup
(x,u,v)∈gh(Γ)

(∫
̟(xt, ut, vt)

)
=

∫ (
sup

(a,b,c)∈E(t)

(̟(a, b, c))

)
,

i.e.
∫
̟(x̂t, ût, v̂t) =

∫
σE(t)(x

∗
t , u

∗
t , v

∗
t ). (50)

Thus, if (48) does not hold, then there will exist J1 ( J : measure (J1) > 0
and

̟(x̂t, ût, v̂t) = σE(t)(x
∗
t , u

∗
t , v

∗
t ) if t ∈ J − J1,

̟(x̂t, ût, v̂t) < σE(t)(x
∗
t , u

∗
t , v

∗
t ) if t ∈ J1.

By summing up on J, the contradiction with (50) ends the proof.

Next we provide more explicit conditions of optimality.

Theorem 6 Assume for the optimal control problem (27) that:

(I). Conditions (6 )-(7 ) hold for the multimap E.

(II).The objective satisfies the conditions (28)-(29).
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Then, there exist an optimal pair (x̂, û) and an adjoint state p̂ ∈ A∞
X∗ satisfying





( d
dt
p̂t , 0,−p̂t)

a.e
∈ NE(t)(x̂t, ût,

d
dt
x̂t) +

{
∂(a,b)f(t, x̂t, ût)× {0}

}

and
(−p̂τ , p̂T ) ∈ ∂g(x̂τ , x̂T ) + {NΩ (x̂τ )× {0}}

(51)

Proof Let Γ : L1
X × LrU ⇒ L1

X be given by

Γ(x, u) :=
{
v : (xt, ut, vt)

a.e
∈ E(t)

}
.

The Lagrangien L : A1
X × LrU × L∞

X∗ ×X∗ → R is then

L(x, u, p, α) = ϕ(x, u) + sΓ(x, u, p)− 〈dx
dt
, p〉+ sΩ(α)− 〈xτ , α〉

where

sΓ(x, u, p) = inf
{∫

〈yt, pt〉 : y ∈ Γ(x, u)
}
. (52)

The condition 0 ∈ int (rg(F)) holds true (by Theorem 3) then, a dual solu-
tion (p̂, α̂) exists (by Theorem 5). Because a primal solusion (x̂, û) exists (by
Theorem 4), then

((x̂, û), (p̂, α̂)) is a saddle point of the Lagrangian;

or, for all (x, u) ∈ A1
X × LrU and all (p, α) ∈ L∞

X∗ ×X∗ there holds

L(x̂, û, p, α) ≤ L(x̂, û, p̂, α̂) ≤ L(x, u, p̂, α̂). (53)

The first inequality of (53) ensures that for all (p, α) ∈ L∞
X∗ ×X∗

sΓ(x̂, û, p)− 〈dx̂
dt
, p〉+ sΩ(α)− 〈x̂τ , α〉 ≤

sΓ(x̂, û, p̂)− 〈dx̂
dt
, p̂〉+ sΩ(α̂)− 〈x̂τ , α̂〉.

Hence,

−p̂ ∈ NΓ(x̂,û)(
dx̂

dt
) and − α̂ ∈ NΩ (x̂τ ) . (54)

From the second inequality of (53), for all (x, u) ∈ A1
X × LrU and λ > 0,

λ−1 (L(x̂+ λx, û+ λu , p̂, α̂)− L(x̂, û, p̂, α̂)) ≥ 0. (55)

Let z := (x, u) and ẑ := (x̂, û) . Upon writing ω(z) in place of sΓ(z, p) and
passing to the limit in (55) for λ→ 0+, we obtain

[
ωo(ẑ; z) + go((x̂τ , x̂T ) ; (xτ , xT ))+
+ψo(ẑ; z)− 〈dx

dt
, p̂〉 − 〈α̂, xτ 〉

]
≥ 0 (56)
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where ωo (ẑ; .), go ((x̂τ , x̂T ) ; .) and ψo (ẑ ; .) are the directional derivatives of
the convex functions ω(.), g(., .) and ψ(.).

Because these derivatives are the upper support functions of the subdiffer-
entials, which are convex and weak∗ compact, then (56) amounts to

inf
x∈A1

X

u∈ Lr
U

max
(η,ξ)∈∂ψ(x̂,û)

(η̂,ξ̂)∈∂ω(x̂,û)
(ξτ ,ξT )∈∂g(x̂τ ,x̂T )

[
〈η + η̂, x〉+ 〈ξ + ξ̂, u〉 − 〈 d

dt
x, p̂〉+

+ 〈ξτ − α̂, xτ 〉+ 〈ξT , xT )〉

]
≥ 0. (57)

In this way, by the so-called lop-sided minmax theorem of Aubin (Aubin, 1972,
Theorem 7, p. 319)

∃(wτ , wT ) ∈ ∂g (x̂τ , x̂T ) ⊂ X∗ ×X∗,

∃(x̃∗, ũ∗) ∈ ∂ψ (x̂, û) ⊂ L∞
X∗ × Lr

∗

U∗ , ( 1r +
1
r∗

= 1)
and

∃(ỹ∗, ṽ∗) ∈ ∂ω (x̂, û) = ∂(x,u)sΓ(x̂, û, p̂) ⊂ L∞
X∗ × Lr

∗

U∗ ,

such that for all (x, u) ∈ A1
X × LrU there holds

〈x̃∗ + ỹ∗, x〉+ 〈ũ∗ + ṽ∗, u〉 − 〈
d

dt
x, p̂〉+ 〈wτ − α̂, xτ )〉+ 〈wT , xT 〉 ≥ 0.

Clearly, the inequality is actually an equality for all (x, u) ∈ A1
X × LrU

〈x̃∗ + ỹ∗, x〉+ 〈ũ∗ + ṽ∗, u〉 − 〈
d

dt
x, p̂〉+ 〈wτ − α̂, xτ )〉+ 〈wT , xT 〉 = 0. (58)

On the other hand, it is well known (see Aubin and Clarke, 1979, Theorem 2)
that for every

(x̃∗, ũ∗) ∈ ∂ψ(x̂, û) and (ỹ∗, ṽ∗) ∈ ∂ω (x̂, û) ,

there exist (x∗, u∗) and (y∗, v∗) in L∞
X∗ ×Lr

∗

U∗ selectors respectively, of ∂ψ(x̂, û)
and ∂ω (x̂, û), satisfying for all (x, u) ∈ L1

X × LrU the equalities

〈x̃∗, x〉+ 〈ũ∗, u〉 =
∫
(〈x∗t , xt〉+ 〈u∗t , ut〉) ,

〈y∗, x〉+ 〈v∗, u〉 :=
∫
(〈y∗t , xt〉+ 〈v∗t , ut〉) .

By the routine abuse of notation, let the subgradients be denoted by their
corresponding selectors. Then, (58) amounts to

〈x∗ + y∗, x〉+ 〈u∗ + v∗, u〉 − 〈
d

dt
x, p̂〉+ 〈wτ − α̂, xτ )〉+ 〈wT , xT 〉 = 0. (59)

Thus, (x, u) := (0, u), with u selected arbitrarily in LrU , leads to

u∗t + v∗t
a.e
= 0. (60)
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Define θt :=
∫
[t,T ]

(x∗s + y∗s ); then, θ ∈ A∞
X∗ and for all x ∈ A1

X

〈x∗ + y∗, x〉 = 〈θ,
dx

dt
〉+ 〈θτ , xτ 〉.

By the identity xT = xτ +
∫

d
dt
xt we get

〈θ − p̂+ wT ,
d

dt
x〉+ 〈wτ − α̂+ θτ + wT , xτ 〉 = 0.

Hence,

p̂ = θ + wT ∈ A∞
X∗ and (p̂τ , p̂T ) = (α̂− wτ , wT ).

In this way,

d

dt
p̂t + x∗t + y∗t

a.e
= 0 (61)

and

(p̂τ , p̂T ) ∈ ∂g(x̂τ , x̂T ) + {NΩ (x̂τ )× {0}} . (62)

But, in view of (60), one disposes of

−p̂ ∈ NΓ(x̂,û)(
dx̂

dt
) and (y∗,−v∗) ∈ ∂sΓ(x̂, û, p̂), (63)

which amounts (by Proposition 1 (i)) to

(y∗, −v∗,− p̂) ∈ Ngh(Γ)(x̂, û,
dx̂

dt
)

and, then, is equivalent (by Proposition 4) to

(y∗t , −v
∗
t ,− p̂t)

a.e
∈ NE(t)(x̂t, ût,

d

dt
x̂t). (64)

Finally, since (x∗,−v∗) = (x∗, u∗) ∈ ∂ψ(x̂, û) defines a selector

(x∗t ,−v
∗
t )

a.e
∈ ∂f(a,b)(t, x̂t, ût)

then, with (61)-(62), the conditions (51) follow. The proof is complete.
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6.3. Convex process of evolution and the respective Fenchel dual

Assume that the state xτ is fixed. Then, define

X := A1
X × LrU ,U := LrU , Y := L1

X

and

F : X×U ⇒ Y : F(x, u) := Γ(x, u)−

{
dx

dt

}

where

Γ : L1
X × LrU ⇒ L1:

X : Γ(x, u) :=
{
v : (xt, ut, vt)

a.e
∈ E(t)

}
.

Proposition 5 Assume that E is cone valued, u.s.c satisfying (6); or,

int(E(t)) 6= ∅ for all t ∈ J.

Let (E(t))+ be the polar cone of E(t). Then, the conjugate(s)

(i). Γ∗ is a strict convex process from L∞
X∗ to L∞

X∗ × Lr
∗

U∗ ( 1
r
+ 1

r∗
= 1) :

Γ∗(p) =
{
(x∗, u∗) : (pt ,−x

∗
t ,−u

∗
t )

a.e
∈ (E(t)+

}
.

(ii). F∗ is a convex process from A∞
X∗ to L∞

X∗ × Lr
∗

U∗ , given by

dom(F∗ ) = {p ∈ A∞
X∗ : pT = 0} and

F∗(p) =
{
(x∗, u∗) : (pt,

d
dt
pt − x∗t ,−u

∗
t )

a.e
∈ (E(t))+

}
.

Proof (i). Let (x∗, u∗) ∈ L∞
X∗ × Lr

∗

U∗ and p ∈ L∞
X∗ be such that

(pt ,−x
∗
t ,−u

∗
t )

a.e
∈ (E(t))+.

Having (xt, ut, vt)
a.e
∈ E(t) for all (x, u, v) ∈ gh(Γ) we obtain that

−〈x∗t , xt〉 − 〈u∗t , ut〉+ 〈pt, vt〉 ≥ 0 for all t ∈ J (65)

and by summing up on J in (65), we get

−〈, x∗x〉 − 〈u∗, u〉+ 〈p, v〉 ≥ 0;

hence,

(x∗, u∗) ∈ Γ∗(p).

Conversely, let (p,−x∗,−u∗) ∈ gh(Γ∗); then, for every
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(x, u, v) ∈ L1
X × LsX × L1

X s.t (xt, ut, vt)
a.e
∈ E(t)

one has
∫

(〈pt, vt)〉 − 〈x∗t , xt〉 − 〈u∗t , ut〉) ≥ 0. (66)

Let η : R → R be defined as

ηt = 〈pt, vt〉 − 〈x∗t , xt〉 − 〈u∗t , ut〉.

Let t ∈ ]t0, T [ be a Lebesgue point of η such that int(E(t)) 6= ∅. Such a
point exists, since int(E(t)) 6= ∅ for all t ∈ J and the set of Lebesgue points is
of full measure.

Let (a, b, c) ∈ int(E(t)) and ρ > 0 be such that (a, b, c) + ρB̃ ⊂ E(t), where

B̃ is the open unit ball of X × U ×X. Then, ]t− η, t+ η[ ⊂ J0 for some η > 0
and, since E is u.s.c., the subset

J0 := E−1((a, b, c) + ρB)

is open.

For 0 < h ≤ η define (x̂, û, v̂) ∈ L1
X × LrZ × L1

X as

(x̂s, ûs, v̂s) := (−a,−b, c) if s ∈ ]t− h, t+ h[ and 0 otherwise.

Clearly, (x̂, û, v̂) ∈ gh (Γ), since (−a,−b, c) + ρB̃ ⊂ E(t). Thus,

lim
h→0

1

2h

t+h∫

t−h

(〈ps, v̂s〉 − 〈x∗s, x̂s〉 − 〈u∗s, ûs〉) ≥ 0.

That is,

〈pt, c〉 − 〈x∗t , a〉 − 〈u∗t , b〉 ≥ 0.

Because E(t) = cl(int(E(t))) and (a, b, c) is selected arbitrarily, then

(pt,−x
∗
t ,−u

∗
t ) ∈ (E(t))+,

which ends the proof of (i).

(ii). Observe that for Λ : A1
X → L1

X , given by

dom(Λ) :=
{
x ∈ A1

X : xτ = 0
}

and Λx =
dx

dt
,
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and then, Λ∗ is from A∞
X∗ to L∞

X∗ such that

dom(Λ∗) = {p ∈ A∞
X∗ : pT = 0} and Λ∗p = −

dp

dt
.

Let F1 := Γ and F2 := (−Λ, 0). Then, F = F1 + F2 and (by Proposition 5)

dom(F1)− dom(F2) = A1
X × LrX .

Thus, in view of Aubin and Ekeland (1984, Corollary 16, p. 141), we get

F∗ = F ∗
1 + F ∗

2 = Γ∗ − (Λ∗, 0)

and then,

(−x∗,−u∗) ∈ F∗(p) iff (−x∗,−u∗) ∈ Γ∗(p)− (Λ∗, 0)(p),

or,

(−x∗ + Λ∗p,−u∗) ∈ Γ∗(p).

In this way, dom(F∗ ) = {p ∈ A∞
X∗ : pT = 0} and

(−x∗,−u∗) ∈ F∗(p) iff (pt, −x
∗
t +

d

dt
pt, −u

∗
t ) ∈ (E(t))+.

Proposition 6 Assume that E is cone-valued, u.s.c satisfying (6); or,

int(E(t)) 6= ∅ for all t ∈ J.

Then, the Fenchel dual of the optimal control problem is given by





max (−ϕ∗(x∗, u∗))

(x∗, u∗, p) ∈ L∞
X∗ × Lr

∗

U∗ ×A∞
X∗ s.t

(pt,−x
∗
t +

d
dt
pt,−u

∗
t )

a.e
∈ (E(t))+ and pT = 0.

Proof Theorem 5 and Proposition 5 yield the result.

7. On a class of controlled integro-differential inclusions

The controlled integro-differential inclusions, given by

(xt +

∫ t

0

k(s, t)xs , ut,
d

dt
xt)

a.e
∈ Ê(t) ; x0 ∈ Ω, (67)
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can be handled by the theory presented here. Indeed, let the integral operator

T : L1
X → A1

X be s.t.,

(Tx)t := xt +
∫ t
0
k(s, t)xs where

k : J × J → L1
L(X).

(68)

Then, T is bounded and T ∗ is from A∞
X∗ to L∞

X∗ ; s.t.,

(T ∗p)t = pt +

∫ T

t

k∗(t, s)ps where

k∗ : J × J → L∞
L(X∗).

Clearly, the inclusion (67) reduces to

((Tx)t , ut, vt)
a.e
∈ E(t).

Under the same conditions (on the multimap E) one may define

Γ : L1
X × LrU ⇒ L1

X , as Γ(x, u) := {v : ((Tx)t, ut, vt) ∈ E(t)} , (69)

then, we get the reduction

0 ∈ F(x, u) :=

{
Γ(x, u)−

dx

dt

}
× {Ω− xτ} .

In this way, the presented theory here applies and the main results hold true
for the inclusions (67). Namely,

(i). The results of existence of solution and the well posedness, or, Theorems
3 and 4 and Proposition 5 remain valid.

(2i). The existence of the optimal pair, or, Theorem 6 holds true.

However, some facts must be reworked carefully. To avoid overloading the
paper we omit the details. But, we point out the main fact that the adjoint
T ∗ of the operator (68) will appear in Proposition 9 for the normal cone of E(t)
at ((Tx)t, ut, vt) and in Theorem 10 for the selector of ∂xsΓ(Tx, u).
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