
Control and Cybernetics

vol. 49 (2020) No. 3

Bayesian multidimensional-matrix polynomial empirical

regression∗

by

Vladimir S. Mukha

Belarusian State University of Informatics and Radioelectronics
P. Brovki str. 6, Minsk, 220013, Republic of Belarus

mukha@bsuir.by

Abstract: The problem of parameter estimation for the poly-
nomial in the input variables regression function is formulated and
solved. The input and output variables of the regression function are
multidimensional matrices. The parameters of the regression func-
tion are assumed to be random independent multidimensional matri-
ces with Gaussian distribution and known mean value and variance
matrices. The solution to this problem is a multidimensional-matrix
system of the linear algebraic equations in multidimensional-matrix
unknown regression function parameters. We consider the partic-
ular cases of constant, affine and quadratic regression function, for
which we have obtained formulas for parameter calculation. Com-
puter simulation of the quadratic regression function is performed
for the two-dimensional matrix input and output variables.
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1. Introduction

To date, the most popular methods of estimating the parameters of the regres-
sion function are the maximum likelihood method and the least squares method,
see, e.g. Ermakov and Zhiglyavskii (1987) and Klepikov and Sokolov (1961).
The estimations, obtained with the use of these methods have good asymptotic
properties and this is the justification of their application. But the use of these
methods becomes problematic in the case of small sizes of the samples. In this
case the Bayesian approach to the estimation of the parameters of the regres-
sion function is more attractive. The case of a small size of the sample is very
important for the problem of dual control of regression objects when the re-
gression object is being studied and controlled simultaneously starting from the
initial moment in time (Feldbaum, 1966; Mukha and Sergeev, 1974, 1976). The
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interest in Bayesian inference appears also in econometrics, see Zellner (1971),
as well as in other areas, see Fahrmeir and Kneib (2011), or Wakefield (2013).

The existing investigations of the Bayesian approach to date relate mainly
to the regression functions that are linear in the parameters and in the input
variables. Such regression functions can be represented in terms of usual matri-
ces. The regression functions nonlinear in the input variables can be represented
as a scalar product of the vector of the parameters and the vector of the basis
functions, see Mukha and Sergeev (1974). However, this approach is poorly for-
malized and does not feature the algorithmic generality; i.e. the mathematical
expression for the vector of the basis functions is not determined and the soft-
ware implementation is inapplicable for any number of variables and any degree
of the polynomial. It is a manual approach that is suitable for objects with a
small number of variables. This disadvantage is overcome in the present paper
within the framework of multidimensional-matrix mathematical approach. The
multidimensional-matrix approach uses the concept of a multidimensional ma-
trix and it is the approach that places the respective technique in the context
of “big data”.

The introduction to the theory of multidimensional matrices was developed
in the work of Sokolov (1972). This theory has its roots in the works of A. Cayley
(1842), R.F. Scott (1879/80), and other scientists. An extensive list of literature
in English is available in the work of Sokolov (1960). The multidimensional-
matrix approach has found effective application in many areas of research (see
Mukha, 2005, 2006, 2007a,b, 2008, 2011, 2012, 2017). We present in the Ap-
pendix the main definitions of this theory for a better understanding of the
content of the article.

2. Problem statement

Let us consider some object with q-dimensional-matrix input variable x̄ =
(xj), j = (j1, j2, ..., jq), p-dimensional-matrix output variable η̄ = (ηi), i =
(i1, i2, ..., ip), see Sokolov (1972), Mukha (2004), and (A.1), and suppose that
the output variable η̄ is stochastically dependent on the input variable x̄, so
that there is a conditional probability density f(η̄/x̄). We denote by ȳ = φ(x̄)
the regression function η̄ with respect to x̄ and assume that the dependence of
η̄ on x̄ can be represented in the form η̄ = φ(x̄) + ε̄, where ε̄ is a p-dimensional
random matrix. Assume that for some values x̄1, x̄2, ..., x̄n of the input variable
x̄ we obtained the values ȳ1, ȳ2, ..., ȳn of the output variable η̄ (observations,
measurements) as follows:

ȳµ = φ(x̄µ) + z̄µ, µ = 1, ..., n, (1)

where z̄µ is a realization of the random matrix ε̄, which we will refer to as errors
of the measurements, and µ is the sequential number of the observation. We
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will consider the Gaussian distribution of the matrix ε̄ with zero mean value
and variance matrix Rε, see Mukha (2004), and (A.7).

Hereinafter we will use the following notations for indices of multidimen-
sional matrices: i1, i2, ..., are separate indices, ī(p) = (i1, i2, ..., ip) is the set of

p indices (p-multi-index), ¯̄i(p,k) = (̄i(p),1, ī(p),2, ..., ī(p),k) is the set of k p-multi-
indices.

Let the hypothetic regression function be the polynomial of m-th degree,
Mukha (2004):

φ(x̄) =

m
∑

k=0

0,kq(C(p,kq)x̄
k) =

m
∑

k=0

0,kq(x̄kC(kq,p)), m = 0, 1, 2, ..., (2)

where C(p,kq) and C(kq,p) are multidimensional-matrix parameters of the regres-
sion function, C(p,kq) is (p+ kq)-multidimensional matrix:

C(p,kq) = (cī(p),¯̄j(q,k)
), ī(p) = (i1, i2, ..., ip),

¯̄j(q,k) = (j̄(q)1, j̄(q)2, ..., j̄(q)k).

It is symmetric relative to p-multi-indices j̄(q)1, j̄(q)2, ..., j̄(q)k. The matrix C(kq,p)

is the transpose of the matrix C(p,kq), i.e.

C(p,kq) = (C(kq,p))
Hp+kq,kq , C(kq,p) = (C(p,kq))

Bp+kq,kq ,

where Hp+kq,kq and Bp+kq,kq are transpose substitutions of the types ‘back’ and
‘onward’, respectively (Mukha, 2004, (A.4), (A.5), (A.6)). We also denote by
0,kq(C(p,kq)x

k) the (0, kq)-folded product of matrices C(p,kq), and x̄k, x̄k = 0,0x̄k

is the (0, 0)-folded degree of the matrix x̄ (Sokolov, 1972; Mukha, 2004; (A.2)).

In these conditions the measurement ȳµ, (1), has the probability density

f(ȳµ/x̄µ, C(p,0), C(p,q), ..., C(p,mq)) =

= Cy exp

(

− 1

2
0,2p(R−1

ε (ȳµ −
m
∑

k=0

0,kq(C(p,kq)x̄
k
µ))

2)

)

, µ = 1, ..., n, (3)

where Cy is a normalizing constant, R−1
ε is (0, p)-inverse to Rε matrix (Sokolov,

1972; Mukha, 2004; (A.3)).

The problem consists in finding the estimations of parametersC(p,kq) (C(kq,p))
of the regression function (2) by using the given measurements (x̄1, ȳ1), (x̄2, ȳ2)
, ..., (x̄n, ȳn).
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3. Maximum likelihood multidimensional-matrix polyno-

mial empirical regression

In this section we will find the maximum likelihood estimations (ML-estimations)
of the parameters of the polynomial multidimensional-matrix regression func-
tion. We formulate the main result in the form of the following theorem.

Theorem 1 Let φ(x̄) be a multidimensional-matrix regression under condi-
tions (1)–(3). Then, the ML-estimations Ĉ(p,0), Ĉ(p,q), ..., Ĉ(p,mq) of its pa-
rameters C(p,0), C(p,q), ..., C(p,mq) are defined as the solution of the following
multidinensional-matrix linear system of equations:

m
∑

k=0

0,kq(C(p,kq)Sxkxλ) = Syxλ , λ = 0, 1, ...,m, (4)

where

Syxλ =

n
∑

µ=1

0,0(yµx
λ
µ), Sxkxλ =

n
∑

µ=1

0,0(xk
µx

λ
µ). (5)

Proof. The logarithmic likelihood function is defined as follows:

ln fn(C(p,0), ..., C(p,mq)) =

n
∑

µ=1

ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)).

The necessary conditions of the maximum of the logarithmic likelihood function
are defined by the following system of equations:

d

dC(p,λq)

n
∑

µ=1

ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)) = 0, λ = 0, 1, ...,m.

We will obtain this system of equation for our case. The likelihood function, as
it follows from the distribution (3), is defined by the expression

ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)) ∼ −1

2
0,2p



R−1
ε

(

ȳµ −
m
∑

k=0

0,kq(C(p,kq)x̄
k
µ)

)2


 ,

where symbol ∼ means equivalence for the maximization. Now we find the
derivatives of this function on the parameters C(p,λq). For this, we denote

W (λ)
µ =0,λq (C(p,λq)x̄

λ
µ) = (wī(p)

).

By the rules of the multidimensional-matrix differentiation, see Mukha (2004),
we have

W
(λ)
µ

dC(p,λq)
= U (λ)

µ = (
dwī(p)

dcj̄(p),¯̄t(q,λ)

) = (uī(p),j̄(p),
¯̄t(q,λ)

) =
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=0,λq (E(0, p+ λq)xλ
µ)

T = (Z(λ)
µ )T ,

where Z
(λ)
µ = 0,λq(E(0, p+λq)xλ

µ), E(0, p+λq) is the (0, p+λq)-identity matrix
(Sokolov, 1972; Mukha, 2004), T denotes transpose substitution of the ‘back’
type on the 2p+ λq indices Hp+λq+p,p+λq (Mukha, 2004), i. e.

T = H2p+λq,p+λq =

(

ī(p), j̄(p), ¯̄t(q,λ)
j̄(p), ¯̄t(q,λ), ī(p)

)

.

We convert the matrix Z
(λ)
µ considering the properties of the identity matrix

E(0, p+ λq):

Z(λ)
µ =0,λq (E(0, p+ λq)x̄λ

µ) =

= (
∑

¯̄r(q,λ)

eī(p),¯̄t(q,λ),j̄(p),¯̄r(q,λ)
x¯̄rλ) = (zī(p),¯̄tλ,j̄) = (

∑

¯̄rλ

eī(p),j̄(p)e¯̄t(q,λ),¯̄r(q,λ)
x¯̄r(q,λ)

) =

= (eī(p),j̄(p)x¯̄t(q,λ)
) = 0,0(E(0, p)x̄λ

µ).

From the transpose relationship

(Z(λ)
µ )T = (Z(λ)

µ )





ī(p), j̄(p), ¯̄t(q,λ)
j̄(p),

¯̄t(q,λ), ī(p)





= U (λ)
µ

it follows that uī(p),j̄(p),
¯̄t(q,λ)

= zī(p),¯̄t(q,λ),j̄(p)
= eī(p),j̄(p)x¯̄t(q,λ)

, so that

U (λ)
µ = 0,0(E(0, p)x̄λ

µ). (6)

Further, considering the previous results, we have

d

dC(p,λq)

0,2p



R−1
ε

(

ȳµ −
m
∑

k=0

0,kq(C(p,kq)x̄
k
µ)

)2


 =

= 0,p

(

0,p

(

R−1
ε

(

ȳµ −
m
∑

k=0

0,kq(C(p,kq)x̄
k
µ)

))

Uλ
µ

)

=

= 0,p
(

0,p
(

R−1
ε ȳµ

)

Uλ
µ

)

− 0,p

(

0,p

(

R−1
ε

m
∑

k=0

0,kq(C(p,kq)x̄
k
µ)

)

Uλ
µ

)

.

If we take into account the equation (6), we obtain

d

dC(p,λq)
ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)) =

= 0,p
(

0,p
(

R−1
ε ȳµ

)

0,0(E(0, p)x̄λ
µ)
)

−
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−0,p

(

0,p

(

R−1
ε

m
∑

k=0

0,kq(C(p,kq)x̄
k
µ)

)

0,0(E(0, p)x̄λ
µ)

)

=

= 0,0
(

0,p
(

R−1
ε ȳµ

)

x̄λ
µ)
)

− 0,0

(

0,p

(

R−1
ε

m
∑

k=0

0,kq(C(p,kq)x̄
k
µ)

)

x̄λ
µ)

)

=

= 0,p
(

R−1
ε

0,0(ȳµx̄
λ
µ)
)

− 0,p

(

R−1
ε

m
∑

k=0

0,0(0,kq(C(p,kq)x̄
k
µ)x̄

λ
µ)

)

=

= 0,p
(

R−1
ε

0,0(ȳµx̄
λ
µ)
)

− 0,p

(

R−1
ε

m
∑

k=0

0,kq(C(p,kq)
0,0(x̄k

µx̄
λ
µ))

)

.

Now, by summing over µ = 1, ..., n and denoting

n
∑

µ=1

0,0(ȳµx̄
λ
µ) = Syxλ ,

n
∑

µ=1

0,0(x̄k
µx̄

λ
µ) = Sxkxλ ,

n
∑

µ=1

0,0(x̄0
µx̄

0
µ) = Sx0x0 = n

we obtain the derivative

d

dC(p,λq)

n
∑

µ=1

ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)) =

= 0,p(R−1
ε Syxλ)− 0,p(R−1

ε

m
∑

k=0

0,kq(C(p,kq)Sxkxλ) ) (7)

and the system of equations for the parameters of the maximum likelihood
regression

0,p(R−1
ε

m
∑

k=0

0,kq(C(p,kq)Sxkxλ) ) = 0,p(R−1
ε Syxλ), λ = 0, 1, ...,m.

If we multiply both sides of these equations from the left by Rε in the sense
of (0, p)-folded multiplication, we obtain the system of equations (4). Thus, we
have proven Theorem 1. ✷

We notice that this system of equations coincides with the one obtained by
the least squares method in Mukha (2007b) and also with the one obtained on
the basis of the best theoretical multidimensional-matrix polynomial regression
(Mukha, 2007a, 2011).
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4. Bayesian multidimensional-matrix polynomial empiri-

cal regression

Let us consider multidimensional-matrix polynomial regression (2) in the form

φ(x̄) =

m
∑

k=0

0,kq(C̃(p,kq)x̄
k) =

m
∑

k=0

0,kq(x̄kC̃(kq,p)), m = 0, 1, 2, ... . (8)

In addition to the assumptions (1)–(3) we will consider the parameter C̃(p,kq)

of the multidimensional-matrix polynomial regression (8) as a random matrix
with Gaussian a priori probability density

fa(C(p,kq)) = K(p,kq) exp(−
1

2
(0,2(p+kq)(R−1

a,(p,kq)(C(p,kq) − Ca,(p,kq))
2), (9)

k = 0, 1, 2, ...,m, m = 0, 1, 2, ... ,

where K(p,kq) is a normalizing constant,

Ca,(p,kq) = (Ca,(kq,p))
Hp+kq,kq , Ca,(kq,p) = (Ca,(p,kq))

Bp+kq,kq is a priori mean
value ((p+ kq)-dimensional matrix),

Ra,(p,kq) = (Ra,(kq,p))
(Hp+kq,kq ,Hp+kq,kq), Ra,(kq,p) = (Ra,(p,kq))

(Bp+kq,kq ,Bp+kq,kq)

is a priori variance matrix (2(p+ kq)-dimensional matrix),

R−1
a,(p,kq) = (R−1

a,(kq,p))
(Hp+kq,kq ,Hp+kq,kq), R−1

a,(kq,p) = (R−1
a,(p,kq))

(Bp+kq,kq ,Bp+kq,kq)

are (0, p+ kq)-inverses to the Ra,(p,kq), Ra,(kq,p) matrices, respectively.

We will assume that the parameters C̃(p,0), C̃(p,q),. . . , C̃(p,mq) are indepen-
dent, i.e.

fa(C(p,0), ..., C(p,mq)) =

m
∏

k=0

fa(C(p,kq)). (10)

With these assumptions, on the basis of measurements (x̄1, ȳ1), (x̄2, ȳ2), ...,
(x̄n, ȳn) we will find the Bayesian estimations Ĉ(p,0), Ĉ(p,q), . . . , Ĉ(p,mq) of the

unknown values C(p,0), C(p,q),. . . , C(p,mq) of the parameters C̃(p,0), C̃(p,q),. . . ,

C̃(p,mq), i.e. the estimations minimizing the average risk:

r = E(W (C̃(p,0q), ..., C̃(p,mq), Ĉ(p,0q), ...,
⌢

C(p,mq))),

whereW (C̃(p,0q), ..., C̃(p,mq), Ĉ(p,0q), ..., Ĉ(p,mq)) is the loss function, and E is the
symbol of mathematical expectation.
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Theorem 2 Under conditions (1)–(3), (9), (10) relative to the multidimensional-
matrix polynomial regression (8) and quadratic loss function, the Bayesian es-
timations Ĉ(p,0), Ĉ(p,q), ..., Ĉ(p,mq) of the parameters C̃(p,0), C̃(p,q), ..., Ĉ(p,mq) sa-
tisfy the following system of linear multidimensional-matrix equations:

0,(p+λq)(R−1
a,(p,λq)C(p,λq)) +

m
∑

k=0

0,(p+kq)(V
Tk,λ

k,λ C(p,kq)) =

= 0,p(R−1
ε Syxλ) + 0,(p+λq)(R−1

a,(p,λq)Ca,(p,λq)), λ = 0, 1, ...,m, (11)

where Syxλ and Sxkxλ are defined by expressions (5), Vk,λ is (2p + kq + λq)-
dimensional matrix,

Vk,λ = 0,0(R−1
ε Sxkxλ),

R−1
ε is (0, p)-inverse to the Rε matrix, V

Tk,λ

k,λ is transposed in accordance with
substitution Tk,λ matrix Vk,λ, and

Tk,λ =

(

ī(p), ¯̄v(q,λ), j̄(p), ¯̄t(q,k)
ī(p), j̄(p),

¯̄t(q,k), ¯̄v(q,λ)

)

.

Proof. The posterior probability density of the parameters, considering the
independence of the parameters, (10), is defined as follows

fn(C(p,0), ..., C(p,mq)) =

m
∏

k=0

fa(C(p,kq))
n
∏

µ=1
f(ȳµ/x̄µ, C(p,0), ..., C(p,mq))

∫

C̄(ω)

m
∏

k=0

fa(C(p,kq))
n
∏

µ=1
f(ȳµ/x̄µ, C(p,0), ..., C(p,mq))dω

.

(12)

As it is known, Bayesian estimations are defined as a posteriori mean value
when the loss function is quadratic. The posterior probability density will be
Gaussian due to the linearity of the regression function in the parameters, and
the estimations may be obtained as maximizing the a posteriori probability
density, i.e. by maximizing the numerator in the formula (12). The numerator
in the formula (12) will be referred to as the joint likelihood function and we
will use the logarithmic joint likelihood function:

ln fn(C(p,0), ..., C(p,mq)) =

m
∑

k=0

ln fa(C(p,kq))+

n
∑

µ=1

ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)).

(13)
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The necessary conditions of the maximum of the logarithmic joint likelihood
function (13) are presented as the following system of equations:

d

dC(p,λq)

m
∑

k=0

ln fa(C(p,kq)) +
d

dC(p,λq)

n
∑

µ=1

ln f(ȳµ/x̄µ, C(p,0), ..., C(p,mq)) = 0,

λ = 0, 1, ...,m. (14)

This system of equations defines the parameters of the Bayesian multidimensional-
matrix polynomial empirical regression. It differs from the system (4) in the first
summand. In the light of the a priori probability density (9) we will have for
the first summand:

ln fa(C(p,λq)) ∼ −1

2
(0,2(p+λq)(R−1

a,(p,λq)(C(p,λq) − Ca,(p,λq))
2),

d

dC(p,λq)
ln fa(C(p,λq)) = −0,(p+λq)(R−1

a,(p,λq)(C(p,λq) − Ca,(p,λq))) =

= −0,(p+λq)(R−1
a,(p,λq)C(p,λq)) +

0,(p+λq)(R−1
a,(p,λq)Ca,(p,λq)). (15)

Taking into account the expressions (15), (7), we obtain the following system of
equations instead of (4):

0,(p+λq)(R−1
a,(p,λq)C(p,λq)) +

0,p(R−1
ε

m
∑

k=0

0,kq(C(p,kq)Sxkxλ) ) =

= 0,p(R−1
ε Syxλ) + 0,(p+λq)(R−1

a,(p,λq)Ca,(p,λq)), λ = 0, 1, ...,m. (16)

Now we transform the second summand on the left-hand side of the system (16)
to look like the first one. For this, we perform the following transformations for
the second summand on the left-hand side of the system (16):

Zk = 0,p(R−1
ε

0,kq(C(p,kq)Sxkxλ)) =

= (
∑

j̄(p)

rī(p),j̄(p)

∑

¯̄t(q,k)

cj̄(p),¯̄t(q,k)
s¯̄t(q,k) ,¯̄v(q,λ)

) = (zī(p),¯̄v(q,λ)
)

= (
∑

j̄(p)

∑

¯̄t(q,k)

rī(p),j̄s¯̄t(q,k),¯̄v(q,λ)
cj̄(p),¯̄t(q,k)

) = 0,(p+kq)(V
Tk,λ

k,λ C(p,kq)), (17)

where

Vk,λ = 0,0(R−1
ε Sxkxλ), k, λ = 0, 1, ...,m, (18)

R−1
ε is (0, p)-inverse to the Rε matrix, V

Tk,λ

k,λ is transposed, in accordance with
substitution Tk,λ, matrix Vk,λ. We find the substitution Tk,λ. Since, in ac-
cordance with the formula (18), Vk,λ = (vī(p),j̄(p),¯̄t(q,k),¯̄v(q,λ)

) and, in accordance
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with the formula (18), V
Tk,λ

k,λ = (v
Tk,λ

ī(p),¯̄v(q,λ),j̄(p),
¯̄t(q,k),

), then we have the equality

(Sokolov, 1960) v
Tk,λ

ī(p),¯̄v(q,λ),j̄(p),
¯̄t(q,k)

= vī(p),j̄(p),¯̄t(q,k),¯̄v(q,λ)
. It means that

Tk,λ =

(

ī(p), ¯̄v(q,λ), j̄(p), ¯̄t(q,k)
ī(p), j̄(p),

¯̄t(q,k), ¯̄v(q,λ)

)

.

In the light of the performed transformations the system of equations (16) takes
the form (11). This completes the proof of Theorem 2. ✷

5. Bayesian multidimensional-matrix quadratic empirical

regression

Assumption of m = 2 in the expression (8) gives us the quadratic regression
function:

ȳ = C̃(p,0q) +
0,p(C̃(p,1q)x̄) +

0,2p(C̃(p,2q)x̄
2). (19)

We obtain the Bayesian estimations of the parameters for the regression func-
tion (19).

The system of equations (11) for these parameters contains three equations:

0,(p+0q)(R−1
a,(p,0q)C(p,0q)) +

0,(p+0q)(V
T0,0

0,0 C(p,0q)) +
0,(p+1q)(V

T1,0

1,0 C(p,1q))+

+0,(p+2q)(V
T2,0

2,0 C(p,2q)) =

= 0,p(R−1
ε Syx0) + 0,(p+0q)(R−1

a,(p,0q)Ca,(p,0q)),

0,(p+1q)(R−1
a,(p,1q)C(p,1q)) +

0,(p+0q)(V
T0,1

0,1 C(p,0q)) +
0,(p+1q)(V

T1,1

1,1 C(p,1q))+

+0,(p+2q)(V
T2,1

2,1 C(p,2q)) =

= 0,p(R−1
ε Syx1) + 0,(p+1q)(R−1

a,(p,1q)Ca,(p,1q)),

0,(p+2q)(R−1
a,(p,2q)C(p,2q)) +

0,(p+0q)(V
T0,2

0,2 C(p,0q)) +
0,(p+1q)(V

T1,2

1,2 C(p,1q))+

+0,(p+2q)(V
T2,2

2,2 C(p,2q)) =

= 0,p(R−1
ε Syx2) + 0,(p+2q)(R−1

a,(p,2q)Ca,(p,2q)).

Upon collecting similar terms we obtain the following system of equations:

0,p((R−1
a,(p,0q)+V

T0,0

0,0 )C(p,0q))+
0,(p+q)(V

T1,0

1,0 C(p,1q))+
0,(p+2q)(V

T2,0

2,0 C(p,2q)) =

= 0,p(R−1
ε Syx0) + 0,p(R−1

a,(p,0q)Ca,(p,0q)),
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0,p(V
T0,1

0,1 C(p,0q))+
0,(p+q)((R−1

a,(p,1q)+V
T1,1

1,1 )C(p,1q))+
0,(p+2q)(V

T2,1

2,1 C(p,2q)) =

= 0,p(R−1
ε Syx1) + 0,(p+q)(R−1

a,(p,1q)Ca,(p,1q)),

0,p(V
T0,2

0,2 C(p,0q))+
0,(p+q)(V

T1,2

1,2 C(p,1q))+
0,(p+2q)((R−1

a,(p,2q)+V
T2,2

2,2 )C(p,2q)) =

= 0,p(R−1
ε Syx2) + 0,(p+2q)(R−1

a,(p,2q)Ca,(p,2q)).

With notations

R(p,0q) = (R−1
a,(p,0q) + V

T0,0

0,0 ),

R(p,1q) = (R−1
a,(p,1q) + V

T1,1

1,1 ),

R(p,2q) = (R−1
a,(p,2q) + V

T2,2

2,2 ),

B(p) =
0,p(R−1

ε Syx0) + 0,p(R−1
a,(p,0q)Ca,(p,0q)),

B(p+q) =
0,p(R−1

ε Syx1) + 0,(p+q)(R−1
a,(p,1q)Ca,(p,1q)),

B(p+2q) =
0,p(R−1

ε Syx2) + 0,(p+2q)(R−1
a,(p,2q)Ca,(p,2q)),

we rewrite this system in the form:











0,p(R(p,0q)C(p,0q)) +
0,(p+q)(V

T1,0

1,0 C(p,1q)) +
0,(p+2q)(V

T2,0

2,0 C(p,2q)) = B(p),
0,p(V

T0,1

0,1 C(p,0q)) +
0,(p+q)(R(p,1q)C(p,1q)) +

0,(p+2q)(V
T2,1

2,1 C(p,2q)) = B(p+q),
0,p(V

T0,2

0,2 C(p,0q)) +
0,(p+q)(V

T1,2

1,2 C(p,1q)) +
0,(p+2q)(R(p,2q)C(p,2q)) = B(p+2q).

(20)

This system of equations can be solved by the elimination method.

Let us eliminate the variable C(p,0q) from the second equation of the system

(20). Multiplying the first equation on the left by 0,pR−1
(p,0q) in the sense of

(0, p)-folded product, and then by V
T0,1

0,1 in the sense of (0, p)-folded product
gives us the equation

0,p(V
T0,1

0,1 C(p,0q)) +
0,p(V

T0,1

0,1
0,p(0,pR−1

(p,0q)
0,(p+q)(V

T1,0

1,0 C(p,1q))))+

+0,p(V
T0,1

0,1
0,p(0,pR−1

(p,0q)
0,(p+2q)(V

T2,0

2,0 C(p,2q)))) =
0,p(V

T0,1

0,1
0,p(0,pR−1

(p,0q)B(p))),

which is transformed to the equation

0,p(V
T0,1

0,1 C(p,0q)) +
0,(p+q)(0,p(0,p(V

T0,1

0,1
0,pR−1

(p,0q))V
T1,0

1,0 )C(p,1q))+

+0,(p+2q)(0,p(0,p(V
T0,1

0,1
0,pR−1

(p,0q))V
T2,0

2,0 )C(p,2q)) =
0,p(V

T0,1

0,1
0,p(0,pR−1

(p,0q)B(p))).
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By subtracting this equation from the second equation of the system (20), in-
stead of the second equation of the system (20) we will have the following
equation:

0,(p+q)(A2,2C(p,1q)) +
0,(p+2q)(A2,3C(p,2q)) = D2,

where

A2,2 = R(p,1q) − 0,p(0,p(V
T0,1

0,1
0,pR−1

(p,0q))V
T1,0

1,0 ),

A2,3 = V
T2,1

2,1 − 0,p(0,p(V
T0,1

0,1
0,pR−1

(p,0q))V
T2,0

2,0 ),

D2 = B(p+q) − 0,p(0,p(V
T0,1

0,1
0,pR−1

(p,0q))B(p)).

Now we shall eliminate the variable C(p,0q) from the third equation of the system

(20). Multiplying the first equation on the left by 0,pR−1
(p,0q) in the sense of (0, p)-

folded product, and then by V
T0,2

0,2 in the sense of (0, p)-folded product gives us
the equation

0,p(V
T0,2

0,2 C(p,0q)) +
0,p(V

T0,2

0,2
0,p(0,pR−1

(p,0q)
0,(p+q)(V

T1,0

1,0 C(p,1q))))+

+0,p(V
T0,2

0,2
0,p(0,pR−1

(p,0q)
0,(p+2q)(V

T2,0

2,0 C(p,2q)))) =
0,p(V

T0,2

0,2
0,p(0,pR−1

(p,0q)B(p))),

which is transformed to the equation

0,p(V
T0,2

0,2 C(p,0q)) +
0,(p+q)(0,p(0,p(V

T0,2

0,2
0,pR−1

(p,0q))V
T1,0

1,0 )C(p,1q))+

+0,(p+2q)(0,p(0,p(V
T0,2

0,2
0,pR−1

(p,0q))V
T2,0

2,0 )C(p,2q)) =
0,p(V

T0,2

0,2
0,p(0,pR−1

(p,0q)B(p))).

By subtracting this equation from the third equation of the system (20), instead
of the third equation of the system (20) we will have the following equation:

0,(p+q)(A3,2C(p,1q)) +
0,(p+2q)(A3,3C(p,2q)) = D3,

where

A3,2 = V
T1,2

1,2 − 0,p(0,p(V
T0,2

0,2
0,pR−1

(p,0q))V
T1,0

1,0 ),

A3,3 = R(p,2q) − 0,p(0,p(V
T0,2

0,2
0,pR−1

(p,0q))V
T2,0

2,0 ),

D3 = B(p+2q) − 0,p(0,p(V
T0,2

0,2
0,pR−1

(p,0q))B(p)).



Bayesian multidimensional-matrix polynomial empirical regression 303

As a result, instead of (20), we obtain the following system:























0,p(R(p,0q)C(p,0q)) +
0,(p+q)(V

T1,0

1,0 C(p,1q)) +
0,(p+2q)(V

T2,0

2,0 C(p,2q)) = B(p),

0,(p+q)(A2,2C(p,1q)) +
0,(p+2q)(A2,3C(p,2q)) = D2,

0,(p+q)(A3,2C(p,1q)) +
0,(p+2q)(A3,3C(p,2q)) = D3.

(21)

Further, we will eliminate the variable C(p,1q) from the third equation of the

system (21). We multiply the second equation on the left by 0,(p+q)A−1
2,2 in the

sense of (0, p+q)-folded product, and then by A3,2 in the sense of (0, p+q)-folded
product and obtain the equation

0,(p+q)(A3,2C(p,1q)) +
0,(p+q)(A3,2

0,(p+q)(0,(p+q)A−1
2,2

0,(p+2q)(A2,3C(p,2q)))) =

= 0,(p+q)(A3,2
0,(p+q)(0,(p+q)A−1

2,2D2)),

which is transformed to the form

0,(p+q)(A3,2C(p,1q)) +
0,(p+2q)(0,(p+q)(A3,2

0,(p+q)A−1
2,2)A2,3)C(p,2q)) =

= 0,(p+q)(A3,2
0,(p+q)(0,(p+q)A−1

2,2D2)).

By subtracting this equation from the third equation of the system (21), instead
of third equation of the system (21) we will have the following equation:

0,(p+2q)(F3,3C(p,2q)) = G3,

where

F3,3 = A3,3 − 0,(p+q)(0,(p+q)(A3,2
0,(p+q)A−1

2,2)A2,3),

G3 = D3 − 0,(p+q)(0,(p+q)(A3,2
0,(p+q)A−1

2,2)D2).

This completes the process of elimination. We have transformed our system of
equations (20) to the following form























0,p(R(p,0q)C(p,0q)) +
0,(p+q)(V

T1,0

1,0 C(p,1q)) +
0,(p+2q)(V

T2,0

2,0 C(p,2q)) = B(p),

0,(p+q)(A2,2C(p,1q)) +
0,(p+2q)(A2,3C(p,2q)) = D2,

0,(p+2q)(F3,3C(p,2q)) = G3.

(22)
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Now we find the solution of the system of equations. From the third equation
of the system (22) we obtain the estimation Ĉ(p,2q) of the parameter C(p,2q) of
the quadratic regression function (19):

Ĉ(p,2q) =
0,(p+2q)(0,(p+2q)F−1

3,3G3). (23)

Then we obtain the estimation Ĉ(p,1q) of the parameter C(p,1q) from the second
equation of the system (22):

Ĉ(p,1q) = 0,(p+q)(0,(p+q)A−1
2,2(D2 − 0,(p+2q)(A2,3Ĉ(p,2q))). (24)

Finally, we obtain the estimation Ĉ(p,0q) of the parameter C(p,0q) from the first
equation of the system (22):

Ĉ(p,0q) =
0,p(0,pR−1

(p,0q)(B(p)−0,(p+q)(V
T1,0

1,0 Ĉ(p,1q))−0,(p+2q)(V
T2,0

2,0 Ĉ(p,2q)))). (25)

It should be noted that the solution to the system of equations (20) always exists
due to the positive definiteness of the matrices R(p,0q), R(p,1q), R(p,2q). This
statement also applies to the system of equations (11). This is the advantage of
the Bayesian approach, which provides the ability to use the samples of small
sizes.

6. Numerical simulation of the Bayesian quadratic em-

pirical regression

We perform the numerical simulation of the Bayesian quadratic empirical re-
gression function (19) with two-dimensional input and output variables x̄ and
ȳ, i.e. we assume that in (19) p = q = 2. In this case the regression function
(19) has the following form

ȳ = φ(x̄) = C̃(p,0q) +
0,2(C̃(p,1q)x̄) +

0,4(C̃(p,2q)x̄
2), (26)

where C̃(p,0q) is a two-dimensional matrix, C̃(p,1q) is a four-dimensional matrix
and C(p,2q) is a six-dimensional matrix. We present the results of the simula-

tion for the matrices x̄, ȳ, C̃(p,0q), C̃(p,1q), C̃(p,2q) of order two. In this case the
number of the parameters for estimation is 22 + 24 + 26 = 84. The matrices
C(p,0q), C̃(p,1q), C̃(p,2q) are supposed to be random independent Gaussian.

The following mean values Ca,(p,0q), Ca,(p,1q), Ca,(p,2q) of the matrices C̃(p,0q),

C̃(p,1q), C̃(p,2q) are used. The matrix Ca,(p,0q) is Ca,(p,0q) =

(

3 2
2 4

)

. The ma-

trix Ca,(p,1q) = (Ca,(p,1q),i1,i2,i3,i4) has the element Ca,(p,1q),1,1,2,1 = 3 and all
other elements are equal to 1. The matrix Ca,(p,2q) = (Ca,(p,2q),i1,i2,i3,i4,i5,i6)
has the elements
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Ca,(p,2q),1,1,2,1,2,2 = 0.5,
Ca,(p,2q),1,2,2,1,2,1 = 0,
Ca,(p,2q),1,2,1,2,2,1 = 0

and all other elements are equal to 0.1.

The real values of the parameters C̃(p,0q), C(p,1q), C(p,2q) were chosen as

follows: C(p,0q) =

(

5 2
2 1

)

. The matrix C(p,1q) = (C(p,1q),i1,i2,i3,i4) has the

element C(p,1q),1,1,2,1 = 5 and all other elements are equal to 1. The matrix
C(p,2q) = (C(p,2q),i1,i2,i3,i4,i5,i6) has the elements

Ca,(p,2q),1,1,2,1,2,2 = 0,
Ca,(p,2q),1,1,2,2,2,1 = 0,
Ca,(p,2q),1,2,2,1,2,1 = 2,
Ca,(p,2q),1,2,1,2,2,1 = 3,
Ca,(p,2q),1,2,2,1,1,2 = 3

and all other elements are equal to 0.1.

The elements of the matrices C̄(p,0q), C̃(p,1q), C̃(p,2q) are supposed to be inde-

pendent. The variances of the elements of the matrix C̃(p,0q) are equal to 4, the

variances of the elements of the matrix C̃(p,1q) are equal to 5 and the variances

of the elements of the matrix C̃(p,2q) are equal to 3.

The measurements were simulated according to the formulas (26) and (1).
The elements of the two-dimensional matrix of the errors of the measurements
ε̄ are supposed to be independent with variances equal to 4.

Bayesian estimations Ĉ(p,0q), Ĉ(p,1q), Ĉ(p,2q) were calculated by the formulas
(23), (24), (25), and the empirical Bayesian regression – by the formula

ˆ̄y = Ĉ(p,0q) +
0,2(Ĉ(p,1q)x̄) +

0,4(Ĉ(p,2q)x̄
2). (27)

The Bayesian empirical regression function ŷ1,1 = Ŷ1,1(x1,1, x1,2), (27), when
x2,1 = x2,2 = −5, constructed on the four measurements at the points

x1 =

(

−10 −10
−5 −5

)

, x2 =

(

10 −10
−5 −5

)

,

x3 =

(

−10 10
−5 −5

)

, x4 =

(

10 10
−5 −5

)

is shown in Fig. 1 (top surface). The measurements are marked as asterisks
in the figure. The bottom surface in the figure is a general (true) regression
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function y1,1 = y1,1(x1,1, x1,2), (26), when x2,1 = x2,2 = −5. This figure con-
firms the correctness of the theoretical results and illustrates the capacity of the
Bayesian approach to make use of the samples of small sizes.

Figure 1. Bayesian empirical quadratic regression function (27) built on four
measurements (the top surface) compared with the true regression function (the
bottom surface)

7. Conclusion

In conclusion, we outline the main results of this work and note their particu-
larities.

1. The problem of constructing the maximum likelihood multidimensional-
matrix polynomial regression was formulated and solved. This regression has the
following particularities, when compared the existing regressions: 1) a more gen-
eral multidimensional-matrix polynomial regression function, when input and
output variables are the multidimensional matrices, is considered; 2) a new non-
traditional multidimensional-matrix form of the representation of the regression
function in the manner of multidimensional-matrix polynomial is used. The
general solution of the problem is a system of linear multidimensional-matrix
equations relative to the multidimensional-matrix parameters of the regression
function (Theorem 1).
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2. The problem of constructing the Bayesian multidimensional-matrix poly-
nomial regression with the same particularities as in the point 1 above was
formulated and solved. Besides, the prior distributions of the multidimensional-
matrix parameters of the regression function are supposed to be Gaussian. The
general solution of this problem is the system of linear multidimensional-matrix
equations relative the multidimensional-matrix parameters of the regression
function (Theorem 2).

3. On the basis of the general solution, the algorithm of calculation of the
parameters of the Bayesian multidimensional-matrix quadratic empirical regres-
sion functions was obtained.

4. Simulation of the quadratic Bayesian empirical regressions function with
two-dimensional input and output variables was performed. The simulation con-
firmed the correctness of the theoretical results and illustrated the important
benefits of the Bayesian approach in terms of having the algorithmic generality
and obtaining the estimations for the cases with the small number of measure-
ments.

Some aspects of the work, reported in this article were presented in a short
form at the international conference, Mukha (2020).

8. Appendix

For more details on the subjects here considered, see Sokolov (1972), Mukha
(2004).

The definition of a multidimensional matrix. A multidimensional (p-dimensio-
nal) matrix is a system of numbers or variables ai1,i2,...,ip , iα = 1, 2, ..., nα,
α = 1, 2, ..., p, located at the points of the p-dimensional space defined by the
coordinates i1, i2, ..., ip.

The p-dimensional matrix is denoted as

A = (ai1,i2,...,ip), iα = 1, 2, ..., nα, α = 1, 2, ..., p, (A.1)
or
A = (ai),

where i = (i1, i2, ..., ip) is a multi-index, iα = 1, 2, ..., nα, α = 1, 2, ..., p.

If n1 = n2 = ...np = n, then the matrix (A.1) is called p-dimensional matrix
of the order n (a hyper-square matrix). In this connection, the matrix (A.1)
with different n1, n2, ...np could be called a hyper-rectangular matrix.
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Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a
vector and a two-dimensional matrix is an ordinary matrix in traditional nota-
tion.

Matrices associated with multidimensional matrices. Let the p-dimensional
matrix A = (ai1,i2,...,ip) of the order n be represented in the form of A = (al,s,c),
where l = (l1, l2, ..., lκ), s = (s1, s2, ..., sλ), c = (c1, ..., cµ) are multi-indexes,
κ+ λ+ µ = p. In this case we say that the matrix A has the (κ, λ, µ)-structure
and is denoted A(κ,λ,µ). The multi-indexes l, s, c of this matrix have nκ, nλ and
nµ values, respectively. Let us arrange the values of l, s, c in some way:

l̃ = l(1), l(2), ..., l(n
κ),

s̃ = s(1), s(2), ..., s(n
λ),

c̃ = c(1), c(2), ..., c(n
µ).

The cell-diagonal matrix

Ã(κ,λ,µ) = diag
{

A
(1)
(κ,0,µ), A

(2)
(κ,0,µ), ..., A

(nλ)
(κ,0,µ)

}

,

consisting of the elements of the matrix A, where the diagonal cells A
(h)
(κ,0,µ), h =

1, 2, ..., nλ, are two-dimensional (nκ × nµ)-matrices

A
(h)
(κ,0,µ) = (al̃,s(h),c̃), l̃ = l(1), l(2), ...l(n

κ), c̃ = c(1), c(2), ..., c(n
µ),

is called (κ, λ, µ)-associated matrix with the matrix A(κ,λ,µ).

The associated matrix Ã(κ,λ,µ) represents fully the initial multidimensional
matrix A(κ,λ,µ), because it contains all of its elements.

Addition of multidimensional matrices. IfA = (ai1,i2,...,ip), B = (bi1,i2,...,ip),
then C = A + B = (ci1,i2,...,ip), where ci1,i2,...,ip = ai1,i2,...,ip + bi1,i2,...,ip ,
iα = 1, 2, ..., nα, α = 1, 2, ..., p.

Multiplication of multidimensional matrix by a scalar. If t is some scalar
number or a variable andA is a p-dimensional matrix, then C = tA = (ci1,i2,...,ip),
where ci1,i2,...,ip = tai1,i2,...,ip , iα = 1, 2, ..., nα, α = 1, 2, ..., p.

Multiplication of two multidimensional matrices. If a p-dimensional matrixA
is represented in the form of A = (ai1,i2,...,ip) = (al,s,c), where l = (l1, l2, ..., lκ),
s = (s1, s2, ..., sλ), c = (c1, ..., cµ) are multi-indices, κ+ λ+ µ = p, and a
q-dimensional matrix B is represented in the form of B = (bj1,j2,...,jq ) = (bc,s,m),
where m = (m1, ...,mν) is a multi-index, λ + µ + ν = q, then the matrix
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D = (dl,s,m) is called a (λ, µ)-folded product of the matrices A and B, if its
elements are defined by the expression

dl,s,m =
∑

c

al,s,cbc,s,m =
∑

c1

∑

c2

· · ·
∑

cµ

al,s,cbc,s,m.

The (λ, µ)-folded product of the matrices A and B is denoted λ,µ(AB) . Thus,

D = λ,µ(AB) = (
∑

c

al,s,cbc,s,m) = (dl,s,m). (A.2)

In the case of the (0, 0)-folded product we often omit the left upper indices
and write AB instead of 0,0(AB) .

In the general case λ,µ(AB) 6= λ,µ(BA).

The associative law of multiplication of the multidimensional matrices is
fulfilled. If λ′ + µ′ ≤ ν, then

λ′,µ′

(λ,µ(AB)C) = λ,µ(Aλ′,µ′

(BC)).

The distributive law of multiplication of the multidimensional matrices takes
the form as follows:

λ,µ(A(B + C)) = λ,µ(AB) + λ,µ(AC).

The degree of multidimensional matrix. The matrix

D = λ,µ(AA) = λ,µA2

is called a (λ, µ)-folded square of the matrix A, and the matrix

D = λ,µ(Aλ,µ(A · · · λ,µ(AA))) = λ,µAk

is called a (λ, µ)-folded k-th degree of the matrix A. If it is (0, 0)-folded k-th
degree of the matrix A, then we omit the left upper indices and write Ak instead
of 0,0Ak .

A multidimensional identity matrix. The matrix E(λ, µ) is called a (λ, µ)-
identity matrix if for any multidimensional matrix A the equality

λ,µ(AE(λ, µ)) = λ,µ(E(λ, µ)A) = A

is fulfilled. E(λ, µ) is a (λ+2µ)-dimensional matrix, whose elements are defined
by the formula

E(λ, µ) = (ec,s,m) =

({

1, if c = m,
0, if c 6= m

)

,
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c = (c1, ..., cµ), s = (s1, s2, ..., sλ), m = (m1, ...,mµ).

A multidimensional inverse matrix. The matrix A−1(λ, µ) ( or λ,µA−1) is called
the (λ, µ)-inverse to the matrix A, if the equalities

λ,µ(AA−1(λ, µ)) = λ,µ(A−1(λ, µ)A) = E(λ, µ) (A.3)

are satisfied.

The transpose of a multidimensional matrix. The matrix AT = (aTi1,i2,...,ip)

is composed of the elements aTi1,i2,...,ip , which are connected with the elements

ai1,i2,...,ip of the matrix A = (ai1,i2,...,ip) by the equalities

aTi1,i2,...,ip = aiα1 ,iα2 ,...,iαp
, (A.4)

where iα1 , iα2 , ..., iαp
is some permutation of the indices i1, i2, ..., ip and is called

transposed according to the substitution

T =

(

i1, ...,
iα1 , ...,

ip
iαp

)

of matrix A.

In Mukha (2004) some standard substitutions are introduced that allow us
to form various substitutions: of the types ‘onward’, ‘back’, and ‘onward-back’.

The substitution on the p indices, the lower string of which is formed from
the upper string by the transfer of the r left indices to the right (onward) is
called substitution of the type ‘onward’:

Bp,r =

(

i1,
ir+1,

i2,
ir+2,

...,

...,
ip−r,
ip,

ip−r+1,
i1,

...,

...,
ip
ir

)

,

p ≥ r. (A.5)

The substitution on the p indices, the lower string of which is formed from
the upper string by the transfer of the r right indices to the left (back) is called
substitution of the type ‘back’:

Hp,r =

(

i1,
ip−r+1,

i2,
ip−r+2,

...,

...,
ir,
ip,

ir+1,
i1,

...,

...,
ip
ip−r

)

,

p ≥ r. (A.6)

The substitution on the p indices, the lower string of which is formed from
the upper string by the transfer of the r left indices to the right (onward) and the
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s right indices to the left (back) is called substitution of the type ‘onward-back’:

BrHs =

(

i1,
ip−s+1,

...,

...,
ir,
ip,

...,

...,
ip−s+1,
i1,

...,

...,
ip
ir

)

,

p ≥ r + s.

The Matlab’s function ipermute.m performs a transpose of a multidimensional
array in accordance with the definition (A.4).

A multidimensional-matrix derivative (Sokolov, 1960). Let Y = (ym), m =
(m1,m2, ...,mp), be a p-dimensional matrix depending on a q-dimensional ma-
trix X = (xk), k = (k1, k2, ..., kq). The derivative of the matrix Y with respect
to the matrix X is a (p+ q)-dimensional matrix Z, defined by the expression:

Z(X) = (zm,k(X)) =
dY (X)

dX
= Y ′(X) =

(

∂ym
∂xk

)

.

The derivatives of the higher orders are defined by the sequential differenti-
ation:

dnY (X)

dXn
=

d

dX

(

dn−1Y (X)

dXn−1

)

,

or Y (n)(X) = (Y (n−1)(X))
′
.

The derivative of the (λ, µ)-folded product of the matrices (Sokolov, 1960). If
F (X) and Φ(X) are p- and r-dimensional matrices, respectively, depending on a
q-dimensional matrixX , then the derivative of the (λ, µ)-folded product of these
matrices with respect to the matrix X is defined by the following expression:

d

dX
λ,µ (FΦ) = λ,µ

(

(

dF

dX

)Bp+q,q

Φ

)Hp+q+r−λ−2µ,q

+ λ,µ

(

F
dΦ

dX

)

,

where Bp+q,q and Hp+q+r−λ−2µ,q are substitutions of the types ‘onward’ and
‘back’, respectively.

The derivative of the composition of two multidimensional-matrix functions
(Mukha, 2004). Let

F (Y ) = (fs(Y )), s = (s1, s2, ..., sr),

be an r-dimensional matrix depending on the p-dimensional matrix

Y (X) = (ym(X)), m = (m1,m2, ...,mp),
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while Y (X) depends on the q-dimensional matrix

X = (xk), k = (k1, k2, ..., kq),

with different elements, then the derivative dF/dX is defined as the following
(0, p)-folded product:

dF (Y )

dX
= 0,p

(

dF

dY

dY

dX

)

.

If the function F is explicitly dependent on the matrix X , i.e. if F = F (X,Y ),
then

dF (X,Y )

dX
= 0,p

(

∂F

∂Y

dY

dX

)

+
∂F

∂X
.

The derivative of the implicitly defined multidimensional-matrix function (Mukha,
2004). Let

Y (X) = (yl), l = (l1, l2, ..., lp),

be a p-dimensional matrix function,

X = (xs), s = (s1, s2, ..., sq),

be a q-dimensional matrix and function Y (X) be defined implicitly by the equal-
ity

F (X,Y ) = 0,

where F is an r-dimensional matrix function,

F = (fk), k = (k1, k2, ..., kr) ,

then the derivative dY/dX is the (p+ q)-dimensional matrix that is defined as
the solution of the following multidimensional-matrix equation:

0,p

(

∂F

∂Y

dY

dX

)

+
∂F

∂X
= 0.

The derivatives of some multidimensional-matrix functions (Mukha, 2004). If
X is a q-dimensional matrix and A is an r-dimensional constant matrix, then

dA

dX
= 0,

dX

dX
= E(0, q),

d

dX
0,q(AX) = A,

where 0 is an (r + q)-dimensional zero matrix and E(0, q) is a (0, q)-identity
matrix (2q-dimensional matrix).
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If X is a q-dimensional matrix, B = (bl,c1,c2,...,cm) is a (p+mq)-dimensional
constant matrix, such that each multi-index c1, c2, ..., cm of it contains q indices
and B is symmetric relative to these multi-indices, then

d

dX
0,mq(AXm) = m 0,(m−1)q(AXm−1).

The multidimensional-matrix Gaussian distribution (Mukha, 2004). The ran-
dom p-dimensional matrix ξ of the order n with probability density of the form

fξ(x̄) =
1√

(2π)n
p
|dξ|

exp(− 1
2
0,2p(d−1

ξ (x̄− aξ)
2)) (A.7)

is called Gaussian or normal random matrix. In this definition, aξ is the mean
value of the ξ, dξ is the variance matrix of the ξ, d−1

ξ is the matrix (0, p)-inverse
to the dξ, and |dξ| is the determinant of the matrix dξ (the determinant of the
matrix (0, p)-associated with the matrix dξ).
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