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Abstract: This paper details our attempts to find control knowl­
edge using Fuzzy Classifier Systems (FCSs). Three mobile robots 
are equipped with the FCS controllers and each robot with an FCS 
moves avoiding collision with other robots. This paper also presents 
new payoffs and credits. The new methods make it possible to fully 
utilize a powerful feature of the genetic algorithm, namely the effec­
tiveness of crossover operations. Simulations are done to show that 
each FCS can find fuzzy rules for collision avoidance in a complex, 
changing environment. 

Keywords: fuzzy classifier system, genetic algorithm, collision 
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1. Introduction

Fuzzy controls, described in linguistic IF-THEN rules, have been widely used 
in industry in view of their high degree of performance in human-computer 
interactions. Demand for fuzzy inference systems which can describe complex, 
multi-input/output situations is growing. In application of fuzzy inference to 
large scale systems, there are the following difficulties: 1) The number of fuzzy 
rules becomes extremely large; 2 )It takes a great deal of time to identify the 
objects; and, 3) It is difficult to obtain the complete input/output data of the 
systems. 

The authors have studied applications of the stimulus-response type Fuzzy 
Classifier Systems (FCS), Valenzuela-Rendon (1991), to knowledge-finding in 
large scale systems, Furuhashi, Nakaoka, Morikawa, Uchikawa (1993;1994). The 
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FCS is a Classifier System (CS), Goldberg (1989), into which a fuzzy rule base 
and fuzzy inference are introduced. The FCS can obtain appropriate fuzzy rules 
using reinforcement learning based on payoffs. A feature of the FCS is that the 
designer of the inference system has only to judge the final performance of the 
system: the FCS finds detailed fuzzy rules according to the designer's judgment. 

Research on Q-learning and Profit Sharing for reinforcement learning has 
been performed by Nagayoshi (1994), Iwashita, Yamamura, Kobayashi (1994). 
In these references the space where the robot moves around is divided into 
small subspaces, and the information of the obstacles and the goal, as well as 
the behavior of the robot are handled on the basis of crisply divided subspaces. 
Learning is done under discrete input/output relations. On the contrary, the 
FCS can handle continuous variables and is expected to learn in a more complex, 
changing environment. However, the control problem studied in Furuhashi, 
Nakaoka, Morikawa, Uchikawa (1993;1994), was very simple, merely steering a 
ship to reach the goal. 

This paper details our attempts to find control knowledge for use by multi­
ple mobile robots avoiding collision with each other. Three mobile robots are 
equipped with FCS controllers. Each robot moves according to its own fuzzy 
rules, which are found by each FCS in the complex, varying environment. This 
paper also presents new payoffs and credits, i.e. (1) payoffs and credits based on 
the performance of the system, and (2) payoffs and credits based on the number 
of valid membership functions. The proposed payoffs and credits are effective 
for finding valid rules from a large number of possibilities, e.g. 62,500 in this 
paper. 

2. Problem formulation

We have attempted to find control knowledge using three mobile robots equipped 
with FCS controllers. The task presented is to steer each robot to reach a goal 
avoiding collision with other robots. The three robots each have their own goals. 
Fig.l shows the position and angles of robot2 and goall viewed from robotl. 

The speed of each robot is IVI and is set to be constant. The distance 
between robotl and robot2 is denoted by D12. The angle between the direction 
of robotl and the direction of robot2 viewed from robotl is denoted by 612. In 
the same way, the angle between the direction of robotl and the goal is 01. VR12 

is the relative velocity of robot2 viewed from robotl. The angle between the 
relative velocity VR12 and the direction from robotl to robot2 is </J12- When </J12 

is nearly zero, robot2 is approaching robotl head on. Each angle is set to be 
counterclockwise positive when viewed from the reference line in Fig.1. 

3. Fuzzy classifier system

The CS, Goldberg (1989), is a learning system that has the following four com­
ponents: a rule generation mechanism, a rule base, a production system and 
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an apportionment of credit system. The reinforcement learning using the CS is 

done in an enYironment where the movable space of the robot is crisply divided 

into small snbspaces. The information of the obstacles and the goal, as well as 

the actions of the robot are handled as discrete values. Action selection among 

several active production rules should also be done carefully. 

The FCS replaces the rnle base by a fuzzy rule base, and the production sys­

tem by a fuzzy inference system. The configuration of the FCS is shown in Fig.2. 

The fuzzy inference system can handle continuous variables and can aggregate 

all the activated rules easily. On the other hand, the apportionment of credit 

system should be carefully designed to assign credits to multiple rules which 

were active at the same instance. In this paper, robotl~robot3 are equipped 
with FCSl~FCS3, respectively. Each robot is expected to find control know­

ledge through the success and failure of its actions. However, it is difficult to 

specify the cause of the success or failure in the case where the three robots 

change fuzzy rules simultaneously. When one robot is learning, the fuzzy rules 

of the two other robots are fixed. The two other robots become the moving 
obstacles for the learning robot. Thus the learning of the three robots is done 

alternately. 

Considering the case where the robotl finds the fuzzy rules, the functions of 

the components of FCSl are explained as follows: 
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Figure 2. Configuration of the fuzzy classifier system 

3.1. Fuzzy rule base 

The inputs of the FCSl are the relative distances D12, D13 , the angles cp12, cp13 , 

the relative angles 812, 813 , and the relative angle 01 . The output of FCSl is 
the steering angle u1. Two membership functions (Small (S), Big (B)) are used 
for the distances D12, D13, and five (Negative Big (NB), Negative Small (NS), 
Zero (ZO), Positive Small (PS), Positive Big (PB)) are used for other variables. 
A rule of FCSl is encoded into eight loci as in Fig.3. 

Each locus corresponds to one of the labels of the membership functions for 
each variable. The rule in Fig.3 can be read as follows: 

012 013 13 012 013 01 U1 

S B PS NS NS PB NB PB 

Figure 3. An example of coding of input/output variables 
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IF D12 is S, D13 is B, c/>12 is PS, c/>13 is N S, 612 is N S, 613 is PB,

01 is NB THEN v,1 is PB,
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(1) 

Fig.4 shows the membership functions for each variable. The width of mem­
bership functions is determined through several trials. 

3.2. Fuzzy inference system 

Fuzzy inference is done here using fuzzy rules in the fuzzy rule base. The 
product-sum-center of gravity method is used. The steering of robotl is conti­
nued until robotl collides with either of the two other robots, or robotl goes off 
the screen on the CRT, or robotl reaches the goal avoiding collision with the 
two other robots. 

3.3. Apportionment of credit system 

In this paper, two kinds of methods are presented: (a) payoffs and credits based 
on the performance of the system, (b) payoffs and credits based on the number 
of the valid membership functions. 

3.3.1. Payoffs and credits based on the performance of the system 

Payoffs are given to the apportionment of credit system on success/failure of 
the steering. Success means that the robot reaches its goal avoiding collision 
with the two other robots, and failure means that the robot goes out of the 
screen, or the robot collides with one of the two other robots. Fig.5 shows the 
definition of payoffs. The FCSl loaded on robotl receives a positive payoff in 
case of success, and receives a negative payoff in case of failure. The feature 
of this system is that the FCS finds the rules using such a simple standard of 
evaluation, without being taught detailed rules by operators. 

The way of delivering the credits a in accordance with the payoffs to each 
fuzzy rule in the rule base is as follows: 

Each rule has the initial credit of a0. Suppose that the simulation is at the 
k-th (k = 1, 2, · · ·) generation. The steering of robotl is done ntri times in a
generation. The truth value and the output steering angle u1 of each fuzzy rule
at each sampling time from the start to the goal/failure are memorized. FCSl
receives the payoff µs(> 0) in case of success or the payoff µp( < 0) in case
of failure. The apportionment of credit system assigns these payoffs to each
fuzzy rule as the credit b.ajk (j = 1, 2, ... , nchr)- nchr means the number of
rules. The mean values of the positive and negative steering angles u1 for each
steering trial are obtained separately. Then the rules which satisfy the following
condition receive the credit given by (3).

iu1 I > rthr !mean value of the steering angle! (2)
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/::,.a_ik = µi �(the truth value of the fuzzy rule)i 

(i=S,F, j=l,2, ... ,nchr) (3) 

where rthr E (0, 1.5) determines the threshold level, l means the Z-th sequence 
of events in a control simulation. 

The rules with the output lu1 I smaller than rthr x lmean value of the steering 
anglel receive no credit (!::,.ajk = 0). Thus the credits of the rules at the (k+l)-th 
generation a1k+l is renewed as follows: 

(4) 

The rules which have never had the truth value bigger than O pay the tax 
/::,.a tax ( < 0) as follows: 

(5) 

The credit a, together with the crossover and mutation operators, is effective 
for finding valid rules for the steering. 

3.3.2. Payoffs and credits based on the number of the valid mem-
bership functions 

The number of possible rules npos = 22 x 56 
= 62, 500 in this system, whereas 

most of these npos rules are anticipated not to be used for controlling the robot. 
It is easily expected that a smaller number of rules relative to npos is sufficient 
to fulfil the steering task. On the contrary, with the small number of randomly 
generated rules, the number of rules which have truth values larger than zero 
is expected to be very small, and the steering of the robot becomes difficult. 
It is hard to find rules which have truth values larger than zero with payoffs 
based on the performance of the system. Thus the payoffs and credits based on 
the number of valid membership functions are used for generating proper fuzzy 
rules. These payoffs are directly given to the fuzzy rules whose membership 
functions in the antecedent have a certain amount of grades at each sequence 
of events in the simulation. For every generation, e.g. the k-th (k = 1, 2, ... ) 
generation, the credit /3jk (j = l, 2, ... , nchr) of each fuzzy rule is accumulated 
in proportion to the number of membership functions having grades larger than 
zero. At the early generations, there are few rules which have truth values. 
This credit /3, together with the crossover operator, is effective for searching 
valid combinations of membership functions in the antecedent. 

3.4. Rule generation mechanism 

Tn this component, fuzzy rules are selected and reproduced using the genetic 
algorithm (GA). In this paper, the crossover and mutation operators are used. 
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3.4.1. Selection and reproduction 

The nsel rules with the least credits /3jk+i are selected. Among the selected 
nsel rules, there may be some rules having large credits of ak+l. Let ( be the 
n1e88-th value from the least credit a among the credits of chromosomes ak+l· 
In the selected nsel rules, the rules whose credits ak+l are larger than ( are 
replaced with the rules having less credits of ak+l· The nsel rules selected in 
this way are screened out and new nsel rules are randomly reproduced from the 
remaining rules. 

3.4.2. Crossover 

The crossover operation is used especially for searching fuzzy rules which have 
truth values at each phase of the steering operations. One-point crossover is 
applied to the newly reproduced rules. Using the credit /3, the rules which have 
valid combinations of membership functions can survive and the rules which 
can be activated are found by means of the crossover operation among the 
reproduced rules. 

3.4.3. Mutation 

The mutation operation, which changes the labels of membership functions, 
is used for the following two purposes: One is application to the antecedent 
parts of the newly generated rules in case the antecedent part of the new rules 
coincide with that of the new rules for avoiding rule uniformity. The other is 
application to the consequent parts of the existing rules with a probability of 
0.5 for improving the actions. 

After these genetic operations are done, the credits of the new rules and the 
credits of the rules whose credits are less than a0 are renewed to be a0, and 
the other credits of all rules /3 are reset to zero. This is to give the new rules 
an equal chance to survive. The rules at the ( k + l )-th generation are produced 
and the simulation restarts from (2) fuzzy inference system. 

The operations of FCSl are explained above. Those of FCS2 and FCS3 are 
done in the same way. Each robot learns for ngene generations alternately. 

4. Simulations

The rules in each FCS were first randomly generated. The number of rules 
nchr = 100, the number of trials ntri = 5, initial credit ao = 100, the payoff in 
case of success µ8 = 3.0, the payoff in case of failure µp = -1.0, the threshold of 
the steering angle "/thr = 1.5, the tax b.atax = -0.1, the number of rules which 
are screened out n8e1 = 20, the number n1ess which determines the threshold 
value ( is set as niess = 30, the generations for a robot to learn in sequence 
nyene = 30. When all the robots reach the goal in every trial ntri or the 900th 
generation is over, the simulation is stopped. Robotl~robot3 appear from the 
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Figure 6. Locations of starting points and goals 

bottom line, the left-hand side line and the right-hand side line, respectively. 
Each robot has 5 different starting points. The starting points and the goals of 
robotl,vrobot3 are located as shown in Fig.6. If the robots do not steer, the 
robots will collide with the other robots. 

Fig. 7 shows an example of the tracks of the robots with the initial fuzzy 
rules. All the robots went straight without steering because there existed few 
rules which h!l,d truth values. Fig.8 shows an example of the tracks of the robots 
at the 91st g;enerati�n ( after the three robots have learned for 30 generations 
each). The rules which have the truth values were produced in each FCS and 
each. robot was steered a little. However, the steering was not sufficient to 
reach the goal avoiding collision with the two other robots yet. Figs.9-11 show 
examples of the tracks of the robots at the 650th generation. Figs. 9-11 show the 
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Figure 8. Tracks of robots at the 91st generation 

cases where three robots started from the 1st, 4th, and 5th points respectively. 
·with the improved fuzzy rules, all the robots steered well.

At the point 1 in Fig.10, the three robots used the fuzzy rules as follows: 

Robotl 

IF D12 is B, D13 is B, </>12 is P J\([, </>13 is PM, 812 is PB, 813 is PB, 

01 is PM THEN v.1 is NB. 

Robot2 

IF D23 is S,D2l is B,</>23 is PM,</>21 is PM,823 is Z0,821 is PB, 

02 is PM THEN u2 is ZO. 



Finding control knowledge for multiple mobile robots 327 

Goal3 Goal2 

Figure 9. Tracks of robots which started from 1st points at the 650th generation 
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oall 

Figure 10. Tracks of robots which started from 4th points at the 650th genera­

tion 
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Figure 11. 'Thacks of robots which started from 5th points at the 650th genera­

tion 
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Robot3 

IF D31 is B, D32 is S, q.>31 is PM, q.>32 is PM, 831 is PM, 832 is PM, 

03 is ZO THEN u3 is NB.

In order to investigate the generality of the obtained fuzzy rules, the robots 
were steered under the conditions different from the cases when the learning 
occured. Figs.12-14 show examples of the tracks of the robots with the fuzzy 
rules acquired at the 650th generation in the case where some robots started 
from other points. In Fig.12, the starting point of robotl was the 4th, and those 
of robot2 and 3 were the 1st. In Fig.13, the starting point of robotl was the 1st, 
and those of robot2 and 3 were the 5th. In Fig.14, the starting point of robotl 
was the 3rd, that of robot2 was the 1st, and that of robot3 was the 5th. Under 
these conditions in which the three FCSs were not specifically trained, all the 
robots steered well to reach their goals. 

Conclusions 

This paper has detailed our attempts to find control knowledge using FCSs. 
New payoffs and credits were proposed. Simulation results demonstrated that 
the three mobile robots which were equipped with FCS controllers could find 
the fuzzy rules for avoiding collision among the robots. Because each robot 
moved according to its own fuzzy rules and fuzzy rules were found in each FCS 
separately, the simulated environment was complex and dynamic. Simulations 
meant to investigate the generality of the obtained fuzzy rules were also done. 
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