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Abstract: We consider the well-posedness and the long time
behavior of third order in time linear evolution equations, general
and abstract version of the Moore-Gibson-Thompson system. We
find sufficient but strong conditions that guarantee the exponential
decay of the system and present some illustrative examples. Then,
by comparing the behavior of the resolvent of the Moore-Gibson-
Thompson system with the one of the resolvent of the wave equation
with a frictional interior damping, we furnish weaker conditions
that guarantee exponential, polynomial or even logarithmic decay of
the solution of the Moore-Gibson-Thompson system in a bounded
domain of Rn, n ≥ 1.
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1. Introduction

In this paper, we consider the well-posedness and the long time behavior of third
order in time linear (abstract) evolution equations. These kind of equations has
found much interest recently due to the large number of applications in nonlinear
acoustics, where Fourier’s law is replaced by the more realistic Maxwell–Catta-
neo’s law, which accounts for a finite speed of propagation of acoustic waves
(Kaltenbacher, 2015). This leads to three derivatives in time, while classical
models are second order in time.

Before going on, let us formulate the Hilbert setting and the basic assumptions.
Let H and V be two Hilbert spaces such that V is continuously and densely
embedded into H and let V ′ be the dual of V (with H as pivot space). We
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suppose to be given two sesquilinear and continuous forms a0 and a1 on V and
such that a1 is symmetric and coercive, namely

a1(u, v) = a1(v, u), ∀u, v ∈ V,

and

a1(u, u) & ‖u‖2V , ∀u ∈ V.

Then we introduce the associated (bounded) operators A0 and A1 from V into
V ′ defined by

〈Aiu, u
′〉V −V ′ = ai(u, u

′), ∀u, u′ ∈ V, i = 0, 1,

where here and below 〈·, ·〉 means the duality pairing between V and V ′. Note
that A1 is selfadjoint due to the assumptions on a1. Note that A−1

1 A0 is bounded
from V into itself, but we suppose that it can be extended into a bounded
operator from H into itself. Finally, we suppose also given a bounded operator
B from H into itself.

In this setting we consider the third order in time abstract evolution equation
set in the Hilbert space H :

{

uttt +Butt +A0u+A1ut = 0,
u(0) = u0, ut(0) = u1, utt(0) = u2,

(1)

where u0, u1, and u2 are initial data in the appropriate Hilbert spaces, specified
later on.

The case of B = αI and A0 = βA1, with a real number α and a positive real
number β, was analyzed in Kaltenbacher, Lasiecka and Marchand (2011) and
Marchand, McDevitt and Triggiani (2012) (see also Kaltenbacher, Lasiecka and
Pospieszalska, 2012), where existence is proved using semi-group theory and an
exponential stability result is proved under the assumption: α − β > 0. Note
that under this assumption, the optimal exponential decay rate of the solutions
is proved in Pellicer and Solà-Morales (2019) by showing that the associated
operator is normal in an appropriate inner product. Let us also mention that
under the assumption that α = β, problem (1) is conservative, see Kaltenbacher,
Lasiecka and Marchand (2011, Theorem 1.3), while in Conejero, Lizama and
Rodenas (2015) it is demonstrated that if α− β < 0, a chaotic behaviour of the
system may occur, as shown for a particular example (namely system (2) in R).

In this paper, our first goal is to show that problem (1) is well-posed with
the sole assumptions stated above. This allows for treating concrete examples,
where the operators B,A0, and A1 have space variable coefficients (see (18)
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below), in particular, we can consider the standard Moore-Gibson-Thompson
system







uttt + αutt − β∆u −∆ut = 0, in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),
u(0, ·) = u0, ut(0, ·) = u1, utt(0, ·) = u2, in Ω,

(2)

where Ω is a bounded domain of Rn, β is a positive constant and α ∈ L∞(Ω), a
case mentioned in Liu and Triggiani (2014, p. 306), for which an existence result
is proved in Kaltenbacher and Lasiecka (2012). Our approach does not allow for
treating the non-autonomous situation when α may depend on the time variable,
for such a situation we refer to Kaltenbacher and Lasiecka (2012), Kaltenbacher,
Lasiecka and Pospieszalska (2012) and Kaltenbacher and Nikolić (2019) for
existence and exponential decay. We further find sufficient conditions, similar
to the ones from Kaltenbacher and Lasiecka (2012), Kaltenbacher, Lasiecka and
Marchand (2011), Kaltenbacher, Lasiecka and Pospieszalska (2012), Kaltenba-
cher and Nikolić (2019), and Marchand, McDevitt and Triggiani (2012) that
guarantee the exponential decay of the energy. We then illustrate our theory to
the system (18), in particular, for problem (2) such a condition reduces to

α− β ≥ κ > 0, a. e. in Ω. (3)

Since this sufficient condition is quite strong, we concentrate on the degenerate
case

α− β ≥ 0, a. e. in Ω,

for which, as we will show, exponential, polynomial or even logarithmic decays
are available. This is performed by comparing the resolvent of our operator with
the one of the wave equation with frictional interior damping







utt −∆u+ (α − β)ut = 0 in Ω× (0,+∞),
u = 0 on ∂Ω× (0,+∞),
u(·, 0) = u0 and ut(·, 0) = u1 in Ω.

Indeed, we show that the same behavior of the resolvent of (2) is the square of
the behavior of the resolvent of this damped wave equation. This allows for the
weakening of (3) into

α− β ≥ κ > 0 a. e. in ω0, (4)

where ω0 is a non empty open subset of Ω. Hence, under some geometrical
condition on ω0 (but weaker than (3)), system (2) is proved to be exponential,
polynomial or even logarithmic decaying.

We finally mention some recent papers, concerning the system with a memory
damping term, where the exponential decay of the energy is proved provided
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that the kernel is exponentially decaying, see Lasiecka and Wang (2015, 2016)
and Alves et al. (2018); long time behavior of third order nonlinear systems
was analysed by Caixeta, Lasiecka and Cavalcanti (2016a,b); and problems set
in the whole space were considered in Pellicer and Said-Houari (2019).

The paper is organized as follows: The well-posedness of our problem is
proved in Section 2 by using semi-group theory and an appropriate change of
unknowns. An illustrative example is also presented. In Section 3, we find
sufficient conditions that guarantee the exponential decay of the energy of our
abstract system and again illustrate such a result. The link between system
(2) and the wave equation with a frictional interior damping is extricated in
Section 4, where we show that the decay rate of the wave equation lead to a
similar decay for our system (2).

Let us finish this introduction with some notation used in the paper. The
inner product (respectively norm) of H will be denoted by (·, ·) (respectively
‖ · ‖). The inner product (respectively norm) of V will be denoted by (·, ·)V
(respectively ‖ · ‖V ). The usual norm and semi-norm of Hs(Ω) (s ≥ 0) are
denoted by ‖ · ‖s,Ω and | · |s,Ω, respectively. For s = 0 we drop the index s. By
a . b, we mean that there exists a constant C > 0 independent of a, b, such
that a ≤ Cb.

2. An existence result

In this section we first prove the well-posedness of the system (1), then we give
one illustrative example.

2.1. General setting

In order to show that system (1) is well-posed, we introduce the following
operator A on the Hilbert space H = V × V × H , endowed with the inner
product

((u, v, w)⊤, (u′, v′, w′))H = a1(u, u
′) + a1(v, v

′) + (w,w′),

∀(u, v, w)⊤, (u′, v′, w′)⊤ ∈ H.

On this space we define the unbounded operator A by

D(A) = {(u, v, w)⊤ ∈ V 3 | A0u+A1v ∈ H}, (5)

and

A(u, v, w)⊤ = (v, w,−(A0u+A1v +Bw)), ∀(u, v, w)⊤ ∈ D(A). (6)
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With that definition we see that formally u is a solution of (1) if and only if
U = (u, ut, utt) is a solution of the first order evolution equation

{

Ut = AU,
U(0) = U0,

(7)

where U0 = (u0, u1, u2).

This formal equivalence is correct as soon as strong solutions are concerned.
Namely a strong solution of (7) yields a solution to (1), more precisely we have
the following equivalence. Since its proof is immediate we leave it to the reader.

Lemma 1 U = (u, v, w)⊤ ∈ C1([0,∞),H) ∩ C0([0,∞), D(A) is a solution of
(7) if and only if u ∈ C2([0,∞), V ) ∩ C3([0,∞), H) is a solution of (1), with
v(t) = ut(t) and w(t) = utt(t) A0u(t) +A1ut(t) ∈ H for all t ∈ [0,∞).

Now we are left to proving the existence of a solution to (7), which is obtained
using semigroup theory after a change of unknowns. For that purpose, according
to the standard decomposition of the solution into z = ut +A−1

1 A0u and u, see
Kaltenbacher and Lasiecka (2012, §3.2), Marchand, McDevitt and Triggiani
(2012, §2) and Kaltenbacher, Lasiecka and Pospieszalska (2012, §2.1), where z
satisfies a wave equation (see Remark 1 below) and u an abstract ODE with
exponential decay, we introduce the bounded operator M from H into itself,
defined by

M(u, v, w)⊤ =





I 0 0
A−1

1 A0 I 0
0 A−1

1 A0 I



 (u, v, w)⊤, ∀(u, v, w)⊤ ∈ H.

This operator is even an isomorphism, since its inverse is the bounded operator
given by

M−1(u, v, w)⊤ =





I 0 0
−A−1

1 A0 I 0
(A−1

1 A0)
2 −A−1

1 A0 I



 (u, v, w)⊤, ∀(u, v, w)⊤ ∈ H.

Now we prove the following Lemma (compare with Section 3 from Kaltenbacher,
Lasiecka and Marchand, 2011).

Lemma 2 U = (u, v, w)⊤ ∈ C1([0,∞),H)∩C0([0,∞), D(A) is a strong solution
of (7) if and only if Ũ = (u, z, y)⊤ = MU ∈ C1([0,∞),H) ∩ C0([0,∞), D(Ã))
is a strong solution of

{

Ũt = ÃŨ ,

Ũ(0) = Ũ0,
(8)
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where Ũ0 = MU0 = (u0, u1 +A−1
1 A0u0, u2 +A−1

1 A0u1)
⊤,

D(Ã) = V ×D(A1)× V, (9)

and

Ã(u, z, y)⊤ = (z−A−1
1 A0u, y,−A1z−R(u, z, y)⊤), ∀(u, z, y)⊤ ∈ D(Ã), (10)

when

R(u, z, y)⊤ = (B −A−1
1 A0)

(

y −A−1
1 A0z + (A−1

1 A0)
2u

)

.

Proof. Let us first show that if U = (u, v, w)⊤ is a solution of (7), then
Ũ = (u, z, y)⊤ is a solution of (8). Indeed, (7) directly implies that v = ut, w =
vt = utt and u satisfies (1). Hence, by their definition, z = ut +A−1

1 A0u,

zt = utt +A−1
1 A0ut = y,

and

yt = wt +A−1
1 A0vt

= uttt +A−1
1 A0w

= −Butt −A0u−A1ut +A−1
1 A0w

= (−Butt +A−1
1 A0)w −A0u−A1v

= −A1z −R(u, z, y)⊤.

This directly leads to (8).

Let us notice that the regularity

Ũ = (u, z, y)⊤ ∈ C1([0,∞),H) ∩C0([0,∞), D(Ã))

follows from the fact that the operator A−1
1 A0 is bounded from H into itself as

well as from V into itself.

The converse implication is proved in a fully similar manner.

Remark 1 From (8), we see that z satisfies

ztt+A1z− (B−A−1
1 A0)zt+(B−A−1

1 A0)(A
−1
1 A0z− (A−1

1 A0)
2u) = 0, (11)

which, under the assumption that B −A−1
1 A0 is a non-negative operator from

H into itself, is an weakly damped wave type equation with lower order term
(B −A−1

1 A0)(A
−1
1 A0z − (A−1

1 A0)
2u). Similarly, u is a solution of

ut +A−1
1 A0u = z.

which is a sort of ODE, since A−1
1 A0 is bounded from H into itself.
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Theorem 1 Under the above assumptions, the operator A generates a C0-
semigroup on H.

Proof. We first prove that Ã generates a C0-semigroup on H. For that purpose,
we notice that Ã can be split up into

Ã = Ãd + B,

where the operator B, defined by

B(u, z, y)⊤ = (z −A−1
1 A0u, 0,−R(u, z, y)⊤), ∀(u, z, y)⊤ ∈ H,

is a bounded operator (in H), and the unbounded operator Ãd is defined by

Ãd(u, z, y)
⊤ = (0, y,−A1z), ∀(u, z, y)⊤ ∈ D(Ãd) = D(Ã). (12)

Therefore, by a standard bounded perturbation theorem (see for instance Pazy,
1983, Theorem 3.1.1), it suffices to demonstrate that Ãd generates a C0-semi-
group on H. This last property holds since Ãd is a maximal dissipative operator,
hence, by Lumer-Phillips’ theorem, it generates a C0-semigroup of contraction
on H (it even generates a group).

The dissipativity is mainly direct because for U = (u, z, y)⊤ ∈ D(Ã), we
have

ℜ(ÃdU,U)H = ℜ(a1(y, z)− (A1z, y)) = 0.

The maximality is also quite direct. Indeed, for λ > 0 and F = (f, g, h) ∈ H
fixed, we look for U = (u, z, y)⊤ ∈ D(Ã) solution of (λI − Ãd)U = F , or
equivalently







λu = f in V,
λz − y = g in V,
λy +A1z = h in H.

(13)

This means that u = f/λ ∈ V , y = λz − g and

λ2z +A1z = h+ λg in H.

Since λ2I+A1 is an isomorphism from D(A1) into H , we find a unique solution
z ∈ D(A1) of this problem and hence y = λz − g indeed belongs to V .

Denote by (T̃ (t))t≥0 the C0-semigroup generated by Ã, then we define

T (t) = M−1T̃ (t)M, ∀t ≥ 0,

and as M is an isomorphism from H into itself, we directly deduce that (T (t))t≥0

is a C0-semigroup on H. According to Lemma 2, its generator is nothing else
than A, the proof is then complete.
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Corollary 1 (Existence and uniqueness of the solution) If U0 ∈ H, then
problem (7) admits a unique weak solution U = (u, v, w)⊤ ∈ C0([0,∞),H). On
the contrary, if U0 ∈ D(A), then problem (7) admits a unique strong solution
U = (u, v, w)⊤ ∈ C1([0,∞),H) ∩ C0([0,∞), D(A)).

2.2. An illustrative example

Let Ω ⊂ R
d, d ≥ 1 be a bounded open set with a Lipschitz boundary Γ. We take

H = L2(Ω) and V = H1
0 (Ω). Now we define the operators Ai, i = 0 and 1 and

B as follows. For i = 0, 1, we suppose to be given scalar functions bi ∈ L∞(Ω),
and matrix valued functions Mi ∈ L∞(Ω;Rd×d). Suppose also that we are given
a scalar function α ∈ L∞(Ω), and a vector field function c ∈ L∞(Ω;Rd). Then
we define

a1(u, v) =

∫

Ω

(M1∇u · ∇v̄ + b1uv̄) dx,

a0(u, v) =

∫

Ω

(M0∇u · ∇v̄ + (c · ∇u)v̄ + b0uv̄) dx,

for all u, v ∈ H1
0 (Ω) and

Bu = αu, ∀u ∈ L2(Ω). (14)

This yields two sesquilinear and continuous forms on H1
0 (Ω) and a bounded and

selfadjoint operator B from L2(Ω) into itself.

We further assume that a1 is symmetric and coercive on H1
0 (Ω). The

symmetry of a1 is clearly guaranteed if and only if M1 is symmetric. The
coerciveness of a1 holds if we further assume that M1 is uniformly positive
definite, namely for almost all x ∈ Ω,

M1(x)ξ · ξ̄ ≥ m‖ξ‖22, ∀ξ ∈ C
d,

for some m > 0 (independent of x) and if the negative part b−1 = max{−b1, 0}
of b1 is small enough (see below). First define

B1 = sup
x∈Ω

b−1 (x),

and let c0 > 0 be the Poincaré constant

c0‖u‖
2
L2(Ω) ≤ ‖∇u‖2L2(Ω)d , ∀u ∈ H1

0 (Ω).

Since by the above assumption and definition, we have

a1(u, u) ≥ (mc0 −B1)‖u‖
2
L2(Ω), ∀u ∈ H1

0 (Ω), (15)



Wellposedness and long time behavior for general class of Moore-Gibson-Thompson equations 253

then if we assume that

B1 < mc0, (16)

then a1 will be coercive on H1
0 (Ω). The assumption (16) means that the negative

part b−1 of b1 is small enough with respect to M1 and is easily checked in practice,
since c0 is explicitly known for some domains Ω or different upper bounds are
available in the literature, see Kuznetsov and Nazarov (2015) and the references
cited there.

It remains to check the assumption that A−1
1 A0 can be extended into a

bounded operator from L2(Ω) into itself. The trivial case is to take a0 = a1,
here is a non trivial one.

Lemma 3 Assume that the boundary Γ is of class C1,1 and that M0 ∈ W 1,∞

(Ω;Rd×d), as well as c ∈ W 1,∞(Ω;Rd), then A−1
1 A0 can be extended into a

bounded operator from L2(Ω) into itself.

Proof. Define the unbounded operator A1 that is the extension of A1 from
L2(Ω) into itself, defined by

D(A1) := {u ∈ H1
0 (Ω) : ∃gu ∈ L2(Ω) such that a1(u, v) =

∫

Ω

guv̄ dx, ∀v ∈ H1
0 (Ω)},

and

A1u = gu, ∀u ∈ D(A1).

From our assumptions, it is well known that this operator is positive and
selfadjoint. It is then an isomorphism from D(As

1) to D(As−1
1 ), for every real

number s.

Now the assumption on the boundary guarantees that

D(A1) = H2(Ω) ∩H1
0 (Ω),

see, for instance, Grisvard (1985, Theorem 2.2.2.3).

We now show that the mapping A0 can be extended into a continuous
mapping from L2(Ω) into D(A−1

1 ) = (H2(Ω) ∩ H1
0 (Ω))

′, the dual of H2(Ω) ∩
H1

0 (Ω). This holds if we can show that

|a0(u, v) . ‖u‖L2(Ω)‖v‖H2(Ω), (17)

for any u ∈ H1
0 (Ω) and v ∈ H2(Ω) ∩ H1

0 (Ω). Indeed, let u ∈ H1
0 (Ω) and

v ∈ H2(Ω) ∩ H1
0 (Ω), then by Green’s formula (allowed by our assumptions on

M0 and c), we get

a0(u, v) =

∫

Ω

(

−u div(M⊤
0 ∇v̄)− u div(cv̄) + b0uv̄

)

dx.
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By Cauchy-Schwarz’s inequality we obtain (17).

In conclusion, as the restriction of A1 to D(A
1

2

1 ) = H1
0 (Ω) coincides with A1,

the operator A−1
1 A0 can then be extended from L2(Ω) into itself.

Altogether, this means that the system






uttt + αutt + div(M0∇u) + (c · ∇u) + b0u+ div(M1∇ut) + b1ut = 0,
u = 0 on ∂Ω× (0,∞), in Ω× (0,∞),
u(0, ·) = u0, ut(0, ·) = u1, utt(0, ·) = u2, in Ω

(18)

is well-posed in H1
0 (Ω)

2 × L2(Ω).

Remark 2 Note that other choices for B are possible, for instance – an integral
operator is possible, namely if a scalar kernel k ∈ L∞(Ω× Ω) is given, we may
choose

Bu(x) =

∫

Ω

k(x, y)u(y) dy, ∀u ∈ L2(Ω),

that is a bounded operator B from L2(Ω) into itself.

3. Uniform stability results

In this section, inspired by Kaltenbacher and Lasiecka (2012, §4), Kaltenbacher,
Lasiecka and Marchand (2011, §4), Kaltenbacher, Lasiecka and Pospieszalska
(2012, §3) and Marchand, McDevitt and Triggiani (2012, §4), we prove that
the semi-group (T (t))t≥0, generated by A, decays exponentially under some
additional assumptions. In the whole section we assume that A0 and B are
selfadjoint, that

A−1
1 A0 = A0A

−1
1 , (19)

A−1
1 A0B = BA−1

1 A0, (20)

and that

(Bv, v) ≥ 0, ∀v ∈ H, (21)

(A−1
1 A0(B −A−1

1 A0)v, v) ≥ 2δ‖v‖2, ∀v ∈ H, (22)

((B −A−1
1 A0)v, v) ≥ 2δ‖v‖2, ∀v ∈ H, (23)

a0(u, u) ≥ α0‖u‖
2
V , ∀u ∈ V, (24)

for some positive constants δ and α0. According to Remark 1, the assumption
(23) is certainly needed to obtain the exponential decay of T (t).
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Let us first define the following energies

E(t) =
1

2

(

a1(ut +A−1
1 A0u, ut +A−1

1 A0u)

+ ‖utt +A−1
1 A0ut‖

2 + (A−1
1 A0(B −A−1

1 A0)ut, ut)
)

,

E0(t) =
1

2
((But, ut) + a0(u, u)),

Etot(t) = E(t) + δE0(t), ∀t ≥ 0.

Note that our assumptions guarantee that A−1
1 A0 is selfadjoint as well as

A−1
1 A0B.

Notice that E(t) and E0(t) are non negative, both are not equivalent to
‖(u, ut, utt)‖2H in general, but under the previous assumptions, the sum is, as
shown in the next Lemma, compare with Kaltenbacher and Lasiecka (2012,
Remark 4.2), Kaltenbacher, Lasiecka and Marchand (2011, Remark 4.1), Kalten-
bacher, Lasiecka and Pospieszalska (2012, Remark 3.2).

Lemma 4 Let U = (u, ut, utt) be a strong solution of (7) with an initial datum
U0 = (u0, u1, u2) ∈ D(A). Then, the following holds

Etot(t) ∼ ‖(u, ut, utt)‖
2
H, ∀t ≥ 0. (25)

Proof. Since the estimate

Etot(t) . ‖(u, ut, utt)‖
2
H,

is immediate, let us concentrate on the converse estimation. As

‖(u, ut, utt)‖
2
H = a1(u, u) + a1(ut, ut) + ‖utt‖

2,

by the continuity of a1 and (24), we get

‖(u, ut, utt)‖
2
H . E0(t) + a1(ut, ut) + ‖utt‖

2.

For the two last terms of this right-hand side, we insert some zero term to get

‖(u, ut, utt)‖
2
H . E0(t) + 2a1(ut +A−1

1 A0u, ut +A−1
1 A0u)

+ 2‖utt +A−1
1 A0ut‖

2

+ 2a1(A
−1
1 A0u,A

−1
1 A0u) + 2‖A−1

1 A0ut‖
2.

By the boundedness properties of A−1
1 A0, mentioned before, we obtain

‖(u, ut, utt)‖
2
H . E0(t) + a1(ut +A−1

1 A0u, ut +A−1
1 A0u)

+ 2‖utt +A−1
1 A0ut‖

2 + ‖ut‖
2.
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Using the assumption (22), we arrive at

‖(u, ut, utt)‖
2
H . E(t) + E0(t),

as requested.

In the first step, we give an explicit expression of the derivative of the energy
E (compare with Kaltenbacher and Lasiecka, 2012, Lemma 4.3; Kaltenbacher,
Lasiecka and Marchand, 2011, Lemma 4.1; Kaltenbacher, Lasiecka and Pospie-
szalska, 2012, Lemma 3.1).

Lemma 5 Let U = (u, ut, utt) be a strong solution of (7) with an initial datum
U0 = (u0, u1, u2) ∈ D(A). Then

E′(t) = −((B −A−1
1 A0)utt, utt). (26)

In particular, the energy E is non increasing.

Proof. Introduce the continuous form

((u, v, w)⊤, (u′, v′, w′))H0
= a1(v +A−1

1 A0u, v
′ +A−1

1 A0u
′)

+ (w +A−1
1 A0v, w

′ +A−1
1 A0v

′)

+ (A−1
1 A0(B −A−1

1 A0)v, v
′),

∀(u, v, w)⊤, (u′, v′, w′)⊤ ∈ H. (27)

As underlined before, since A−1
1 A0 and A−1

1 A0(B−A−1
1 A0) are selfadjoint, the

above form is symmetric.

Now we notice that

2E(t) = (U(t), U(t))H0
,

hence

E′(t) = ℜ(U ′(t), U(t))H0
= ℜ(AU(t), U(t))H0

.

To get the conclusion it then remains to show that

ℜ(AU,U)H0
= −((B −A−1

1 A0)w,w), ∀U = (u, v, w) ∈ D(A). (28)

But in view of the definition of A, for U = (u, v, w) ∈ D(A), we have

(AU,U)H0
= a1(w +A−1

1 A0v, v +A−1
1 A0u)

+ (−A0u−A1v −Bw +A−1
1 A0w,w +A−1

1 A0v)

+ (A−1
1 A0(B −A−1

1 A0)w, v).
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Using the definition of A1, we get

ℜ(AU,U)H0
=

ℜ
{

〈A1w +A0v, v +A−1
1 A0u〉 − 〈A0u,w +A−1

1 A0v〉 − 〈A1v, w +A−1
1 A0v〉

+(−Bw +A−1
1 A0w,w +A−1

1 A0v) + (A−1
1 A0(B −A−1

1 A0)w, v)
}

.

Using our assumptions, some terms of this right-hand side cancel out to reduce
to the right-hand side of (28).

In the second step, we need the following identity (compare with Kaltenbacher
and Lasiecka, 2012, Lemma 4.4; Kaltenbacher, Lasiecka and Marchand, 2011,
identity (30), and Kaltenbacher, Lasiecka and Pospieszalska, 2012, Lemma 3.2).

Lemma 6 Let U = (u, ut, utt) be a strong solution of (7) with an initial datum
U0 = (u0, u1, u2) ∈ D(A), then, the following holds

a1(ut, ut) = ‖utt‖
2 −

d

dt
E0(t)−

d

dt
(ℜ(utt, ut)) . (29)

Proof. Taking the inner product of the first identity of (1) with ut we directly
get

(uttt, ut) + (Butt, ut) + a0(u, ut) + a1(ut, ut) = 0.

Taking the real part of this identity, we obtain

a1(ut, ut) = −ℜ(uttt, ut)−
d

dt
E0(t).

As

d

dt
(utt, ut) = (uttt, ut) + (utt, utt),

the two previous identities directly yield (29).

We are ready to state the exponential decay result (compare with Kaltenba-
cher and Lasiecka, 2012, Lemma 4.5 and §4.3; Kaltenbacher, Lasiecka and
Marchant, 2011, steps 3 and 4, pp. 982–983, and Kaltenbacher, Lasiecka and
Pospieszalska, 2012, steps 3 and 4, pp. 20–21).

Theorem 2 Under the additional assumptions of this section, the semigroup
generated by A is exponentially stable in H, namely there exist two positive
constants M and ω such that

‖etAU0‖ ≤ Me−ωt‖U0‖, ∀U0 ∈ H.
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Proof. Let us first fix U0 ∈ D(A) and let U(t) = (u(t), v(t), w(t)) = etAU0

be the strong solution of (7) (that satisfies v = ut and w = utt). For such a
solution, using the identities (26) and (29), we have

d

dt
Etot(t) = −((B −A−1

1 A0)utt, utt)

+ δ‖utt‖
2 − δa1(ut, ut)− δ

d

dt
(ℜ(utt, ut)) .

Hence, by our assumption (23), we get

d

dt
Etot(t) ≤ −δ‖utt‖

2 − δa1(ut, ut)− δ
d

dt
(ℜ(utt, ut)) .

Integrating this estimate in t ∈ (0, T ) for an arbitray T > 0, one gets

Etot(T )− Etot(0) + δ

∫ T

0

(

‖utt‖
2 + a1(ut, ut)

)

dt ≤

−δℜ(utt(T ), ut(T )) + δℜ(utt(0), ut(0)). (30)

For the second term of this right hand side, using Cauchy-Schwarz’s inequality
and Lemma 4, we get

ℜ(utt(0), ut(0)) . Etot(0). (31)

On the contrary, for the first term, we write

(utt(T ), ut(T )) = (utt(T ) +A−1
1 A0ut(T ), ut(T ))− (A−1

1 A0ut(T ), ut(T )).

Using Cauchy-Schwarz’s inequality and Young’s inequality and the boundedness
of A−1

1 A0 from H into itself, we find

(utt(T ), ut(T )) . ‖utt(T ) +A−1
1 A0ut(T )‖

2 + ‖ut(T )‖
2;

note that here and below the constant involved in . is independent of T . By
the assumption (22) and the definition of E(t), we get

(utt(T ), ut(T )) . E(T ),

and since E is non increasing, we arrive at

(utt(T ), ut(T )) . E(0).

This estimate and (31) in (3) directly yield

Etot(T ) + δ

∫ T

0

(

‖utt‖
2 + a1(ut, ut)

)

dt . Etot(0).
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Using Lemma 4, we arrive at

‖(u(T ), ut(T ), utt(T ))‖
2
H +

∫ T

0

(

‖utt‖
2 + a1(ut, ut)

)

dt .

‖(u(0), ut(0), utt(0))‖
2
H. (32)

It now remains to estimate
∫ T

0
‖u‖2V dt. For that purpose, we take the inner

product in H of the first identity of (1) with u to get

(uttt +Butt +A0u+A1ut, u) = 0.

Taking the real part of this identity, we find that

a0(u, u) +
1

2

d

dt
a1(u, u) = −ℜ(uttt +Butt, u).

As

ℜ(uttt, u) = −
1

2

d

dt
‖ut‖

2 + ℜ
d

dt
(utt, u),

and

(Butt, u) =
d

dt
(But, u)− (But, ut),

we get

a0(u, u) +
1

2

d

dt
a1(u, u) = (But, ut)

+
d

dt

(

1

2
‖ut‖

2 −ℜ(utt, u)−ℜ(But, u)

)

.

By integrating this estimate between 0 and T > 0, we find
∫ T

0

a0(u, u) dt+
1

2
a1(u(T ), u(T ))−

1

2
a1(u(0), u(0)) ≤

∫ T

0

(But, ut) dt

+
1

2
‖ut(T )‖

2 + |(utt(T ), u(T ))|+ |(But(T ), u(T ))|

+
1

2
‖ut(0)‖

2 + |(utt(0), u(0))|+ |(But(0), u(0))|.

Using Cauchy-Schwarz’s inequality, the boundedness of B, the continuous embed-
ding of V into H and the coerciveness of a1, we obtain

∫ T

0

a0(u, u) dt .

∫ T

0

a1(ut, ut) dt

+‖(u(T ), ut(T ), utt(T ))‖
2
H + ‖(u(0), ut(0), utt(0))‖

2
H.
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With the help of (3), we get

∫ T

0

a0(u, u) dt . ‖(u(0), ut(0), utt(0))‖
2
H.

This estimate and again (3) lead to

∫ T

0

(

‖utt‖
2 + a1(ut, ut) + a0(u, u)

)

dt . ‖(u(0), ut(0), utt(0))‖
2
H,

and by Lemma 4, we finally obtain

∫ T

0

‖(u(t), ut(t), utt(t))‖
2
H dt . ‖(u(0), ut(0), utt(0))‖

2
H.

Since this estimate is valid for all T > 0 and as (u(t), ut(t), utt(t)) = etAU0, we
get

∫ ∞

0

‖etAU0‖
2
H dt . ‖U0‖

2
H.

As D(A) is dense in H, this estimate remains valid for all U0 ∈ H and by Datko
(1970, Corollary) (see also Pazy, 1983, Theorem 4.1.4) we conclude that etA is
exponentially stable.

Let us end up with some examples.

Example 1 In the setting of Subsection 2.2, assuming that M0 = βM1, b0 =
βb1+r, c = 0 for some real number r and a positive real number β, the operator
A0 is selfadjoint. Then, due to (15), (24) will be valid if

r > β(B1 −mc0).

Now, denoting by I the identity operator, as

A0 = βA1 + rI,

we deduce that

A−1
1 A0 = A0A

−1
1 = βI+ rA−1

1 ,

and hence (19) holds.

If r 6= 0, we take B = αI with a constant α which guarantees that (20)
holds. On the contrary, if r = 0, we can take B = αI with α ∈ L∞(Ω) and (20)
remains valid.
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In both cases, (21) holds if α ≥ 0. Hence, it remains to examine (22) and
(23). If r = 0, as A−1

1 A0 = βI with β > 0, (22) and (23) are equivalent and as

B −A−1
1 A0 = (α− β)I,

they hold if and only if

α− β ≥ 2δ, a. e. in Ω. (33)

On the contrary, if r 6= 0, then

B −A−1
1 A0 = (α− β)I− rA−1

1 ,

while

A−1
1 A0(B −A−1

1 A0) = β(α − β)I+ (α− 2β)rA−1
1 − r2A−2

1 .

As there exists a positive constant C1 such that

‖A−1
1 v‖L2(Ω) ≤ C1‖v‖L2(Ω), ∀v ∈ L2(Ω),

by Cauchy-Schwarz’s inequality we deduce that

((B −A−1
1 A0)v, v)L2(Ω) = (α− β)‖v‖2L2(Ω) − r(A−1

1 v, v)L2(Ω)

≥ (α− β − |r|C1)‖v‖
2
L2(Ω).

This means that (23) holds if

α− β − |r|C1 > 0.

Similarly, we have

(A−1
1 A0(B−A−1

1 A0)v, v)L2(Ω) ≥ (β(α−β)−|α−2β||r|C1 − r2C2
1 )‖v‖

2
L2(Ω).

Consequently, (22) holds if

β(α− β)− |α− 2β||r|C1 − r2C2
1 > 0.

4. A degenerate case

In this section we present examples, where the assumptions (22) and (23) fail
and for which exponential, polynomial or logarithmic rate is reached.

In the setting of Subsection 2.2, we assume that Ω is connected and we
choose M1 equal to the identity matrix = Id×d, M0 = βId×d, where β is a
positive constant and B in the form (14) with α ∈ L∞(Ω) such that

α ≥ β a. e. in Ω. (34)
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In other words, we study Moore-Gibson-Thompson system (2). We further
suppose that there exist an non empty open subset ω0 of Ω and a positive
constant κ such that

α− β ≥ κ a. e. in ω0. (35)

In this case, all assumptions of Section 3 hold except for (22) and (23), since

A−1
1 A0(B −A−1

1 A0) = β(B −A−1
1 A0) = β(α− β)I,

that could be zero on Ω \ ω0. Hence, the sole case of interest here is the case
when ω0 is different from Ω and α = β on a non empty open set of Ω.

According to Remark 1 and commonly found papers about weaker (polyno-
mial or logarithmic) decay rate of the wave equation (see below), we can expect
a weaker decay rate for system (2). In this case our stability result is based on
a spectral analysis and a resolvent estimate, obtained by a comparison with the
resolvent of the wave equation with an interior damping in ω0.

We then first analyze the resolvent set ρ(A) of A. Note that the domain of
A is not compactly embedded into H, hence, if it exists, the resolvent of A is
not compact. This renders the analysis more complex and forces us to use a
compact perturbation argument (described below).

Lemma 7 Under the previous assumptions,

C+ = {λ ∈ C : ℜλ ≥ 0} ⊂ ρ(A). (36)

Proof. Let λ ∈ C+ and F = (f, g, h)⊤ ∈ H. We look for U = (u, v, w)⊤ ∈ D(A)
such that

λU −AU = F, (37)

or equivalently

λu − v = f, (38)

λv − w = g, (39)

(λ+ α)w −∆(βu+ v) = h (40)

Assume that a solution U exists. Then the two first identities yield

v = λu− f, (41)

w = λv − g = λ2u− λf − g, (42)
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and by plugging (41) and (42) into (40), we find

(λ+ α)λ2u− (β + λ)∆u = h+ (λ+ α)(λf + g)−∆f in D′(Ω), (43)

where D′(Ω) is the space of Schwartz distributions, the dual of the space D(Ω)
made of smooth and compactly supported functions in Ω, see Schwartz (1966)
or Adams (1975, p.19). This equivalently means that

aλ(u, v) = Fλ(v), ∀v ∈ D(Ω), (44)

where for all u, v ∈ H1
0 (Ω)

aλ(u, v) =

∫

Ω

(

(λ+ α)λ2uv̄ + (β + λ)∇u · ∇v̄
)

dx,

Fλ(v) =

∫

Ω

((h+ (λ + α)(λf + g)) v̄ +∇f · ∇v̄) dx.

Since aλ is continuous on H1
0 (Ω)×H1

0 (Ω) and Fλ is continuous on H1
0 (Ω) and

D(Ω) is dense in H1
0 (Ω), the identity (44) remains valid for the test-functions

in H1
0 (Ω), namely

aλ(u, v) = Fλ(v), ∀v ∈ H1
0 (Ω). (45)

Let us now show that this problem has a unique solution u ∈ H1
0 (Ω). For

that purpose, we distinguish two cases:

1. If λ = 0, we see that

a0(u, v) = β

∫

Ω

∇u · ∇v̄ dx,

F0(v) =

∫

Ω

((h+ αg) v̄ +∇f · ∇v̄) dx.

Since a0 is a continuous sesquilinear and coercive form on H1
0 (Ω), problem (45)

(with λ = 0) has a unique solution u ∈ H1
0 (Ω). Upon defining v = −f and

w = −g (see (41) and (42)), we easily see that the triple U = (u, v, w)⊤ belongs
to D(A) and is a solution of (37) (with λ = 0). Hence, 0 belongs to ρ(A).

2. If λ 6= 0, our argument is more complex and is based on a compact perturbation
argument. Namely, introduce the sesquilinear and continuous form bλ on H1

0 (Ω),
defined by

bλ(u, v) = (β + λ)

∫

Ω

∇u · ∇v̄ dx, ∀u, v ∈ H1
0 (Ω).

Introduce further the operators Aλ and Bλ by

Aλ : H1
0 (Ω) → H−1(Ω) : u → Aλu,

Bλ : H1
0 (Ω) → H−1(Ω) : u → Bλu,
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with

〈Aλu, v〉 = aλ(u, v), 〈Bλu, v〉 = bλ(u, v), ∀u, v ∈ H1
0 (Ω).

Since ℜ(β + λ) ≥ β, the form bλ is coercive, in the sense that

ℜbλ(u, u) ≥ β

∫

Ω

|∇u|2 dx & ‖u‖21,Ω, ∀u ∈ H1
0 (Ω),

due to Poincaré inequality. Hence, by Lax-Milgram lemma, the operator Bλ is
an isomorphism from H1

0 (Ω) into H−1(Ω). Since Aλ − Bλ = (λ + α)λ2I is a
compact operator from H1

0 (Ω) into H−1(Ω), Aλ is then a Fredholm operator of
index zero from H1

0 (Ω) into H−1(Ω). Hence, it is an isomorphism if and only if
it is injective.

So, let u ∈ kerAλ, then it is a solution of (45) with Fλ = 0, namely

aλ(u, v) = 0, ∀v ∈ H1
0 (Ω). (46)

But then, upon defining (compare with (41) and (42))

v = λu,w = λv,

we easily see that the triple U = (u, v, w)⊤ belongs to D(A) and is a solution of

λU −AU = 0.

Now we take advantage of the identity (28) that here implies

ℜλ(U,U)H0
= −

∫

Ω

(α− β)|w|2 dx.

But, according to its definition (27) and the assumption (34), we have

(U,U)H0
≥ 0, and

∫

Ω

(α − β)|w|2 dx ≥ 0,

and therefore the previous identity implies that
∫

Ω

(α− β)|w|2 dx = 0.

By (34) and (35), we conclude that

w = 0 on ω0.

As λ 6= 0, we deduce that

u = 0 on ω0. (47)
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Now, since u ∈ H1
0 (Ω), the solution of (46), it satisfies

(λ+ α)λ2u− (β + λ)∆u = 0 in D′(Ω).

Since the operator ∆ is elliptic and u is zero on ω0 by Calderon uniqueness
theorem (see, for instance, Rousseau and Lebeau, 2012, Theorem 4.2), u = 0 on
the whole Ω. This obviously implies that v = w = 0 and hence U = (0, 0, 0)⊤

and the injectivity of Aλ is proved.

In conclusion, Aλ is an isomorphism, which guarantees that problem (45)
has a unique solution u ∈ H1

0 (Ω). As before, defining v by (41) and w by (42),
we easily see that the triple U = (u, v, w)⊤ belongs to D(A) and is a solution
of (37). The proof is then complete.

The main ingredient to obtain the resolvent estimate is to use the decay
rate (exponential, polynomial or less) of the semigroup generated by the wave
equation in Ω with Dirichlet boundary condition and with a frictional interior
damping in ω0:







utt −∆u+ (α − β)ut = 0 in Ω× (0,+∞),
u = 0 on Γ× (0,+∞),
u(·, 0) = u0 and ut(·, 0) = u1 in Ω,

(48)

where α and β are the functions introduced before. More precisely, let us
introduce the Hilbert space Hw = H1

0 (Ω)× L2(Ω) with norm

‖(u, v)⊤‖2Hw
= |u|21,Ω + ‖v‖2Ω, ∀(u, v)⊤ ∈ Hw,

and the operator Aw defined by

D(Aw) = {(u, v)⊤ ∈ H1
0 (Ω)×H1

0 (Ω) |∆u ∈ L2(Ω)}, (49)

and

Aw(u, v)
⊤ = (v,∆u− (α− β)v)), ∀(u, v)⊤ ∈ D(Aw). (50)

It is well-known that Aw generates a C0-semigroup of contractions (Tw(t))t≥0,
see Arendt et al. (2001, p. 232). Hence, it is straightforward that its resolvent
set ρ(Aw) contains the open right half-plane {λ ∈ C : ℜλ > 0} and that

‖(λI−Aw)
−1‖L(Hw) ≤

1

ℜλ
, ∀λ ∈ C : ℜλ > 0. (51)

Since ω0 is open and non empty, by Calderon uniqueness theorem (see above),
one can show that the imaginary axis is included into ρ(Aw) and therefore
C+ ⊂ ρ(Aw). The decay rate of the solution to system (1) is based on the
following bound on the resolvent of Aω on the imaginary axis

‖(iξI−Aw)
−1‖L(Hw) . M(|ξ|), ∀ξ ∈ R, (52)



266 S. Nicaise and H. Bounadja

where M is a continuous, positive, and non decreasing function from [0,∞) into
itself.

Before going on, recall that for any λ ∈ C+ and an arbitrary F1 = (f1, g1) ∈
Hw, (u1, v1)

⊤ = (λI −Aw)
−1F1 ∈ D(Aw) satisfies

v1 = λu1 − f1, (53)

(λ+ α− β)λu1 −∆u1 = g1 + (λ+ α− β)f1, (54)

and the estimate

|u1|1,Ω + ‖v1‖Ω ≤ ‖(λI−Aw)
−1‖L(Hw)(|f1|1,Ω + ‖g1‖Ω). (55)

Due to (53), this implies

|u1|1,Ω + |λ|‖u1‖Ω ≤ max{1, ‖(λI−Aw)
−1‖L(Hw)}(|f1|1,Ω + ‖g1‖Ω). (56)

Now we are ready to prove the following result.

Theorem 3 There exists a positive constant C such that

‖(λI−A)−1‖L(H) ≤ Cmax
{

1, ‖(λI−Aw)
−1‖L(Hw),

‖(λI−Aw)
−1‖2L(Hw)

1 + |λ|2

}

,

∀λ ∈ C+. (57)

Proof. 1. For λ ∈ K = {µ ∈ C+ | |µ| ≤ 1}, the estimate (3) is direct using
Lemma 7 and since the resolvent operator

λ → (λI −A)−1

is holomorphic on ρ(A) (see Arendt et al., 2001, Corollary B.3), hence continuous
on K. Therefore

‖(λI−A)−1‖L(H) . 1, ∀λ ∈ K,

where from now on the positive constant, hidden in ., is independent of λ.

2. Let λ ∈ C+ satisfy |λ| ≥ 1 and F = (f, g, h)⊤ ∈ H and let U = (u, v, w)⊤ ∈
D(A) be the unique solution of (37). We have seen before that v is given by
(41), hence the condition from D(A), A0u+A1v ∈ L2(Ω) takes the form

∆((β + λ)u − f) ∈ L2(Ω).

This suggests the introduction of the new unknown

u1 = (λ+ β)u − f (58)
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that belongs to H1
0 (Ω) with ∆u1 ∈ L2(Ω). Recalling that u satisfies (43), we

see that u1 satisfies

(λ+ α)λ2u−∆u1 = h+ (λ+ α)(λf + g) in L2(Ω).

As λ+ β 6= 0, replacing u by 1
λ+β

(u1 + f), we find

λ+ α

λ+ β
λ2u1 −∆u1 = h+ (λ+ α)g +

λβ(λ + α)

λ+ β
f in L2(Ω). (59)

By setting

g1 = h+ βg +
λβ2

λ+ β
f +

λβ(α − β)

λ+ β
u1,

f1 = g +
λβ

λ+ β
f,

we see that u1 is a solution of (54). Hence, upon setting v1 = λu1 − f1, we find
a pair (u1, v1)

⊤ ∈ D(Aw), satisfying (53)-(54). Consequently, the estimate (56)
holds for u1, namely

|u1|1,Ω + |λ|‖u1‖Ω ≤ Cλ(|f1|1,Ω + ‖g1‖Ω),

where for shortness we have set

Cλ = max{1, ‖(λI−Aw)
−1‖L(Hw)}.

Using (41) and (58), we see that

λ

λ+ β
u1 = v +

β

λ+ β
f,

hence

g1 = β(α − β)v + h+ βg +
β2(λ+ α− β)

λ+ β
f.

Using this expression of g1 and the definition f1, we get

|u1|1,Ω + |λ|‖u1‖Ω ≤

Cλ

(

|g|1,Ω +
|λ|β

|λ+ β|
|f |1,Ω + ‖h‖Ω + β‖g‖Ω +

β2

|λ+ β|
‖(λ+ α− β)f‖Ω

+β‖(β − α)v‖Ω
)

.

As

|λ|

|λ+ β|
≤ 1, ∀λ ∈ C+, (60)
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we find that

|u1|1,Ω + |λ|‖u1‖Ω ≤

Cλ(|g|1,Ω + β|f |1,Ω + ‖h‖Ω + β‖g‖Ω + β(β +K)‖f‖Ω + β‖(β − α)v‖Ω), (61)

where K = maxΩ(α− β).

Now we exploit the dissipativeness relation (28) that here implies

−ℜ((λU −AU,U)H0
=

∫

Ω

(α− β)|w|2 dx.

Using Cauchy-Schwarz’s inequality and the fact that (U,U)H0
. (U,U)H, we

find
∫

Ω

(α− β)|w|2 dx . ‖F‖H‖U‖H.

By Young’s inequality this estimate implies that

‖(α− β)w‖Ω . ‖
√

α− βw‖Ω . ε−1‖F‖H + ε‖U‖H, (62)

for all ε > 0. As (42) yields λv = w + g, we get

|λ|‖(α− β)v‖Ω ≤ ‖(α− β)w‖Ω + ‖(α− β)g‖Ω,

and therefore, by (62)

|λ|‖(α− β)v‖Ω . (1 + ε−1)‖F‖H + ε‖U‖H,

for all ε > 0. As we assumed here that |λ| ≥ 1, this estimate in (4) leads to

|u1|1,Ω + |λ|‖u1‖Ω . Cλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

, (63)

for all ε > 0.

Now we come back to u, v and w. First, using (58), we have (recalling that
β is constant)

|λ+ β||u|1,Ω ≤ |u1|1,Ω + |f |1,Ω,

which, by (63), yields

|λ+ β||u|1,Ω . Cλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

,

for all ε > 0. Recalling (60), we deduce that

|λ||u|1,Ω . Cλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

, (64)
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for all ε > 0. By (41), we directly obtain

|v|1,Ω . Cλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

, (65)

for all ε > 0.

It remains to estimate the L2-norm of w. For that purpose, we notice that
u1 = βu+ v, hence

‖v‖Ω ≤ β‖u‖Ω + ‖u1‖Ω.

Therefore, using (63) and (64) (with Poincaré inequality), we get

|λ|‖v‖Ω ≤ β|λ|‖u‖Ω+ |λ|‖u1‖Ω . Cλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

,

for all ε > 0. By (42), we get that

‖w‖Ω . Cλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

, (66)

for all ε > 0.

In conclusion, using this estimate and (64)-(66), there exists a positive
constant C (independent of λ and ε) such that

‖U‖H = ‖(u, v, w)‖H ≤ CCλ

(

(1 + ε−1|λ|−1)‖F‖H + ε|λ|−1‖U‖H
)

,

for all ε > 0. Hence, choosing ε = |λ|
2CCλ

, we conclude that

1

2
‖U‖H ≤ CCλ(1 + 2CCλ|λ|

−2)‖F‖H, (67)

which proves (3) for |λ| ≥ 1.

Corollary 2 Under the previous setting, if we suppose additionally that (52)
holds for a continuous, positive, and non decreasing function M from [0,∞)
into itself, then the semigroup T (t) = etA, generated by A, is bounded and the
bound of the resolvent of A

‖(iξI−A)−1‖L(H) . max{M(|ξ|),
M(|ξ|)2

1 + |ξ|2
},∀ξ ∈ R (68)

holds.

Proof. To prove the first statement, recall (see for instance Arendt et al., 2001)
that the spectral bound of the operator A is defined by

s(A) = sup {ℜλ : λ ∈ Sp(A)},
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while

s0(A) := inf {x > s(A) : ∃Cx > 0 : ||(λI −A)−1|| ≤ Cx whenever ℜλ > x}.

By Theorem 5.2.1 in Arendt et al. (2001), we know that

ω(T ) := inf
{

ω ∈ R : ∃Mω > 0 such that ||T (t)||L(H) ≤ Mωe
ωt, ∀t ≥ 0

}

= s0(A). (69)

First, owing to Lemma 7, s(A) ≤ 0. Secondly, by combining the estimates (51)
and (3), we directly get

‖(λI−A)−1‖L(H) . max{1,
1

(ℜλ)2
}, ∀λ ∈ C : ℜλ > 0.

This proves that

s0(A) ≤ 0,

and by (4), we deduce that T (t) is bounded.

Finally, the bound (68) is a direct consequence of (3) and (52), since M(x) ≥
M(0) > 0.

This result, combined with the frequency domain approach yields the following
decay rates of the semi-group generated by A. We start with the exponential
decay.

Corollary 3 Assume that Aw generates a C0-semigroup of contractions
(Tw(t))t≥0 that is exponentially stable, namely

‖Tw(t)U‖Hw
≤ Me−ωt‖U‖Hw

, ∀U ∈ Hw,

for some positive constants M and ω. Then, the semi-group (etA)t≥0 is
exponentially stable in H.

Proof. By a well-known result, due to Huang and Prüss (see Prüss, 1984,
and Huang, 1985) , (etAw)t≥0 is exponentially stable in Hw if and only if
iR ∩ σ(Aw) = ∅ and (52) with M(x) = 1 holds. Hence, by Corollary 2, (68)
holds with M(x) = 1, and again applying the Huang/Prüss theorem to A, we
conclude.

For polynomial decays, we replace the Huang/Prüss theorem by the Borichev-
Tomilov theorem (Borichev and Tomilov, 2010, Theorem 2.4) to obtain the next
result.
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Corollary 4 Assume that the semi-group (etAw )t≥0 is polynomially stable in
Hw, namely there exists a positive real number ℓ such that

||etAwU0||Hw
. t−

1

ℓ ||U0||D(Aw), ∀U0 ∈ D(Aw), ∀t > 1. (70)

Then the semi-group (etA)t≥0 is polynomially stable in H, i.e.,

||etAU ||H . t−
1

2ℓ−2 ||U ||D(A), ∀U ∈ D(A), ∀t > 1,

if ℓ > 2, while if ℓ ≤ 2, one has

||etAU ||H . t−
1

ℓ ||U ||D(A), ∀U ∈ D(A), ∀t > 1.

Proof. As the semi-group generated by Aw is bounded and iR ∩ σ(Aw) = ∅,
by Borichev and Tomilov (2010, Theorem 2.4), (70) holds if and only if (52)
holds with M(x) = 1 + xℓ. As before, the conclusion follows with the help of
Corollary 2, and again applying Borichev and Tomilov (2010, Theorem 2.4) to
A by noticing that

max{1 + |ξ|ℓ, 1 + |ξ|2ℓ−2} =

{

1 + |ξ|2ℓ−2, if ℓ > 2,
1 + |ξ|ℓ, ℓ ≤ 2.

For lower decay, the equivalence between the semi-group decay rate and the
asymptotic behavior of the resolvent on the imaginary axis is not guaranteed,
but by taking advantage of a result due to Batty and Duyckaerts (2008, Theorem
1.5) and our Corollary 2, we get as before the following corollary.

Corollary 5 Assume that (52) holds with a continuous, positive, and non
decreasing function M from [0,∞) into itself. Then, the semi-group (etA)t≥0

has the following asymptotic decay in H:

||etAU ||H .
1

M̃−1
log

(

t
C

) ||U ||D(A), ∀U ∈ D(A), ∀t > 1,

for some positive constant C, and M̃log is defined by

M̃log(x) = M̃(x)
(

log(1 + M̃(x)) + log(1 + x)
)

, ∀x ≥ 0,

with M̃(x) = max{M(x), M(x)2

1+x2 }.

Let us finish this section with some illustrative examples for which exponen-
tial, polynomial or logarithmic decay is available. Of course, due to our previous
results, it suffices to mention the result for the wave equation.
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Example 2 There are many cases for which the frictional damping in ω0 is
sufficient to guarantee the exponential stability of the wave equation (48). Let
us mention a few of them.

1) By Rauch and Taylor (1974, Theorem 2) (see also Bardos, Lebeau and Rauch,
1988, and Lebeau, 1996), (48) is exponentially stable if the boundary of Ω is of
class C∞ and ω0 satisfies the Geometric Control Condition (GCC). Recall that
the GCC can be formulated as follows: For a subset ω of Ω, we shall say that ω
satisfies the Geometric Control Condition if there exists T > 0 such that every
geodesic traveling at speed one issued from Ω at time t = 0 intersects ω before
time T.

2) From Lions (1988, Lemme VII.2.4) (see also Zuazua, 1990, Theorem 1.1
and Remark 1.2, or Haraux,1989, Exemple 3) (48) is exponentially stable if
the boundary of Ω is of class C2 and ω0 is a neighborhood of Γ̄(x0), for some
x0 ∈ Rd, where

Γ(x0) = {x ∈ ∂Ω | (x− x0) · ν(x) > 0},

ν(x) being the unit outward normal vector at x ∈ ∂Ω.

3) From Haraux (1989, Exemple 1), (48) is exponentially stable if d = 1,
Ω = (0, ℓ) for some positive real number ℓ, and ω0 is a non empty open subset
of Ω.

4) In Liu (1997, Remark 4.3), further examples of pairs (Ω, ω0) such that (48)
is exponentially stable are given.

Example 3 Let us now mention some examples, for which the frictional damping
in ω0 guarantees the polynomial stability of the wave equation (48).

1) If Ω is the unit square and ω0 contains a vertical strip of Ω, then the
polynomial decay rate is demonstrated in Liu and Rao (2005) and Stahn (2017).
Namely, in Liu and Rao (2005), assuming that

(a, b)× (0, 1) ⊂ ω0,

for some 0 ≤ a < b < 1, it is shown that (70) holds with ℓ = 2. On the contrary
if

(0, c)× (0, 1) ⊂ ω0,

for 0 < c < 1, it is shown in Stahn (2017) that (70) holds with ℓ = 3/2.

2) If Ω is a partially rectangular domain and ω0 contains the non-rectangular
part of Ω, then it is proved in Burq and Hitrik (2007) (combined with Borichev
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and Tomilov, 2010, Theorem 2.4) that (70) holds with ℓ = 2.

3) Examples of domains Ω and ω0 leading to (70) holding for some ℓ > 0 can
be found in Phung (2007).

Example 4 It was shown in Lebeau (1996) that if α − β is smooth and not
identically equal to zero and if the boundary of Ω is smooth or convex, then
(52) holds with M(x) = eCx, for some positive constant C. This yields

||etAU ||H .
1

log t
||U ||D(A), ∀U ∈ D(A), ∀t > 1,

since M̃−1
log (t) ∼ log t, for t large (see Batty and Duyckaerts, 2008, Example 1.6).

Remark 3 In the abstract setting from Section 2, let us assume that A0 = βA1

and

B = CC∗ + βI.

with C being a bounded operator from H into itself. Consider the wave type
equation

{

utt +A1u+ CC∗ut = 0 t > 0,
u(·, 0) = u0 and ut(·, 0) = u1.

(71)

This system generates a C0-semigroup of contractions (Taw(t))t≥0 in V × H
equipped with the inner product

((u, v)⊤, (u′, v′)⊤ = a1(u, u
′) + (v, v′)H .

If we assume that Lemma 7 holds, then, as before, one can prove that Theorem
3 holds.
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