
Control and Cybernetics
vol. 26 (1997) No. 3

Real time control of a Khepe_ra robot using genetic
programming

by

P e t e r Nordin a n d Wolfgang B a n z h a f

Fachbereich Informatik, Universitat Dortmund
44221 Dortmund, Germany

email: nordin, banzhaf@cs.uni-dortmund.de

A b s t r a c t : A computer language is a very general form of rep-
resenting and specifying an autonomous agent's behavior. The task
of planning feasible actions could then simply be reduced to an in-
stance of automatic programming. We have evaluated the use of an
evolutionary technique for automatic programming called Genetic
Programming (GP) to directly control a miniature robot. To our
knowledge, this is the first attempt to control a real robot with a GP
based learning method. Two schemes are presented. The objective
of the GP system in our first approach is to evolve real-time ob-
stacle avoiding behavior. This technique enables real-time learning
with a real robot using genetic programming. It has, however, the
drawback that the learning time is limited by the response dynam-
ics of the environment. To overcome this problem we have devised a
second method, learning from past experiences which arc stored in
memory. This new system allows a speed-up of the algorithm by a
factor of more than 2000. Obstacle avoiding behavior emerges much
faster, approximately 40 times as fast, allowing learning of this task
in 1.5 minutes. This learning time is several orders of magnitude
faster than in comparable experiments with other control architec-
tures. Furthermore, the GP algorithm is very compact and can be
ported to the micro-controller of the autonomous mobile miniature
robot.

K e y w o r d s : robotics, on-line learning, adaptive systems

1. Introduction
A computer language is one of the most general forms of representing and spe-
cifying behavior. We can use a suitable computer programming language to
specify any behavior of an autonomous agent. Genetic Programming (GP) is a
method which uses an evolutionary algorithm to develop computer programs.
It is thus a probabilistic method of automated programming. Given a goal in

534 P. NORDIN and W. BANZHAF

the form of a fitness function and a set of instructions to be used, the genetic
programming system will try to evolve a program that solves the tasks specified
by the fitness function. In this paper we present a general method for on-line
learning from past experiences with a mobile robot in real-time. It is built
on experiences from earlier experiments using a genetic programming system
to control a real robot. The older method, briefly described below, does not
provide an explicit ability to learn from past experiences and is thus restricted
to stimulus-response type of behavior. The approach is further limited by the
mechanical dynamics of the robot to get feed-back from its actions. The learning
speed is consequently reduced by this dynamics. If an agent's brain is able to
process events faster than the time it takes to perform actions in the real world,
it is feasible to start remembering past experiences and to try to form a world
model based on these memory entries. The world model in turn could then
serve as the basis for decisions regarding future actions.

To use a genetic process as the architecture for mental activities could, at
first, be considered awkward. As far as we know today, genetic information pro-
cessing is not directly involved in information processing in brains, although the
idea of genetics as a model of mental processes is not new. William James, the
father of American psychology, argued just 15 years after Darwin published The
Origin of Species, in 1874, that mental processes could operate in a Darwinian
manner, James (1890). He suggested that ideas "compete" with each other in
the brain leaving only the best or fittest. Just as Darwinian evolution shaped a
better brain in a couple of million years, a similar Darwinian process operating
within the brain might shape intelligent solutions to problems on the time scale
of thought and action. This allows ''our thoughts to die instead of ourselves".
More recently, selectionist approaches to learning have been studied in detail
by Gerald Edelman and his collaborators (see Edelman, 1987, and references
therein).

The use of an evolutionary method to develop controller architectures has
been reported previously in a number of variants. Robotic controllers have, for
instance, been evolved using dynamic recurrent neural nets, Cliff (1991), Harvey,
Husbands and Cliff (1993). Several experiments have also been performed where
a controller program has been evolved directly through genetic programming
Handley (1994), Koza (1992), Reynolds (1994).

Previous experiments with genetic programming and robotic control, how-
ever, have been performed with a simulated robot and a simulated environment.
In such a set-up, the environment and the robot can be reset easily into an initial
state in order to ensure that each individual in the population is judged starting
from the same state. Apart from being practically infeasible for a real robot,
this method could result in over-specialization and failure to evolve a behavior
that can generalize to unseen environments and tasks. In order to overcome the
latter problem artificially generated noise is added sometimes to the simulated
environment.

We have earlier reported on a first series of experiments using GP to control

Real time control of a Khepera robot using genetic programming 535

a real robot trained in real-time with actual sensor values, Nordin and Banzhaf
(1995, 1997). In such an environment, the system has to evolve robust con-
trollers because noise is present everywhere and the number of real-life training
situations is infinite. In addition, it is highly impractical to reset the robot to a
predefined state before evaluating a fitness case. Consequently, we were forced
to devise a method which ensures learning of behavior while the environment
is probabilistically sampled with new real-time fitness cases for each individual
evaluation.

Over time, fluctuations of the environment cancel out and the system devel-
ops a robust behavior. The advantage of this evaluation method, which we call
stochastic sampling, is a considerable acceleration of evolutionary process. We
propose to use it in other evolutionary applications, too.

Using this approach the evolution of a successful control program is driven
by continuous interaction with, and feedback from, the environment. There is,
however, no memory of past experiences other than the information implicitly
stored in the genetic material. Hence, the main disadvantage of this method is
that learning speed depends on the mere mechanical dynamics of the environ-
ment, and not on the speed of the algorithm or the processor. In our example
the learning algorithm consumes less than 0.1 % of the available CPU time - the
rest of the time is spent waiting for feedback from the environment.

What we describe below is an extension of this method using a memory
buffer to store and use past experiences, that allows learning at a speed only
determined by the processor. The execution of the GP system is consequently
accelerated by a factor larger than 2000 and the agent learns its task as soon as
there are enough experiences collected in memory. Convergence towards feasible
behavior requires only a few minutes in the obstacle avoidance experiments
described below.

The rest of this paper is organized as follows: In Sections 2 and 3 we start by
briefly introducing the genetic programming paradigm and the real-time variant
we use here. We present the miniature robot used in these experiments and the
environment it is trained in, in Sections 4 and 5. The objective of the training
in these experiments, obstacle avoiding behavior, as well as the fitness function
defining it, are described in Section 6. Our earlier approach towards a control
architecture is briefly summarized in Section 7. This architecture represents the
first application of a real-time GP system to a real autonomous robot. The
new method is presented in Section 8, with a GP control architecture learning
form past experiences and enabling fast convergence. We present the results
from learning obstacle avoiding behavior with this architecture in Section 9 and
relate it to the performance of our previous approach and other evolutionary
learning techniques. Finally we summarize our results, discuss conclusions and
present ideas for future work.

536 P. NORDIN and W. BANZHAF

2. Genetic programming
Evolutionary Algorithms mimic aspects of natural evolution in order to opti-
mize a solution towards a defined goal. Darwin's principle of natural selection is
thought to be responsible for the evolution of all life forms on earth. This princi-
ple has been employed successfully on computers over the past 30 years. Differ-
ent research subfields have emerged, such as Evolution Strategics, Rechenberg
(1975), Schwefcl (1995), Genetic Algorithms, Holland (1975) and Evolutionary
Programming, Fogel, Owens and Walsh (1966), indicating that they all mimic
various aspects of natural evolution. In recent years, these methods have been
applied successfully to a spectrum of real-world and academic problem domains,
like robot control.

A comparatively young and growing research topic in this field is Genetic
Programming (GP). Genetic Programming uses the mechanisms behind natural
selection for evolution of computer programs, Koza (1992), Banzhaf et al. (1997).
Instead of a human programmer programming the computer, the computer can
self-modify, through genetic operators, a population of programs in order to
finally generate a program that solves the defined problem. This technique, like
other adaptive techniques, has applications in problem domains where theories
arc incomplete and insufficient for the human programmer, or when there is not
enough time or resources available to allow for human programming.

Methods with similarities to GP were suggested as far back as in the 1950s,
Friedberg (1958). For various reasons these experiments never were a complete
success even if partial results were achieved, Cramer (1985). It was a break-
through when J . Koza formulated his approach based on program individuals
as tree structures represented by LISPS-expressions, Koza (1992). A hierarchi-
cal subtree exchanging genetic crossover operator guaranteed syntactic closure
during evolution. Koza has been very influential in developing GP and was the
first to demonstrate the feasibility of the technique with dozens of applications.

In his notion, genetic programming evolves programs stored as trees in a
population by exchanging subtrees during crossover. Selection is performed
according to a fitness function. Fig. 1 illustrates the crossover method used
with tree-based genetic programming.

A simple genetic programming system may consist of:
1. A population of solution candidates (programs) where the population size

usually varies between 30 and 50,000 individuals. The population is nor-
mally initiated with random content.

2. A fitness measure defining the desired task of the programs.
3. A recombination or crossover operator allowing for exchange of solution

segments between individual programs.
4. A mutation operator changing code more locally than the crossover oper-

ator, namely within an individual.
5. A set of basic constants, instructions, procedures or function used as the

atomic parts of evolved programs.

Real time control of a Khepera robot using genetic programming 537

Parents

Figure 1. Hierarchical GP and effect of crossover. Only subtrees are exchanged
which guarantees syntactic closure.

In the experiments described below we use another genetic programming
system which has properties well suited for real-time applications.

2.1. Genetic programming and machine code

The GP system we use has a linear genome and stores the individuals of the
population as binary machine code in memory. In this way execution speed of
the GP system is several orders of magnitude higher than in interpreted tree-
based GP systems. The method is also memory efficient, requiring only 32KB
for the GP kernel. Memory consumption is stable during evolution without
any need for garbage collection. All these properties make the system ideally
suited for real-time control in low-encl processor architectures such as one-chip
embedded control applications.

Programs are composed of variable length strings of 32 bit instructions for
a register machine. The register machine performs arithmetic operations on
a small set of registers. Each instruction might also include a small integer
constant of maximum 13 bits. The 32 bits in the instruction thus represent
simple arithmetic operations such as "a=b+c" or "c=b*5". The actual format
of the 32 bits corresponds to the machine code format of a SUN-4, SPARC
International Inc. (1991), which enables the genetic operators to manipulate
binary code directly. For a more thorough description of the system and its
implementation, sec Nordin (1994), Nordin and Banzhaf (1995a).

The machine code manipulating GP system uses two-point string crossover.

538 P. NORDIN and W. BANZHAF

Parents

Figure 2. Linear GP and crossover. Instructions or sequences of instructions
are exchanged.

Real time control of a Khepera robot using genetic programming 539

A node is the atomic crossover unit in the GP structure. Crossover can occur on
either or both sides of a node but not within a node. Because our particular im-
plementation of GP works with 32 bit machine code instructions, a node is a 32
bit instruction. Fig. 2 illustrates the crossover method used in our experiments.
Mutation flips bits inside the 32-bit node. The mutation operator ensures that
only allowed instructions, with valid ranges of registers and constants are the
result of a mutation. Thus, all genetic operators ensure syntactic closure during
evolution.

The instructions used in our experiments are all low-level machine code
instructions. The function set consists of the arithmetic operations ADD, SUB
and MUL, the shift left and shift right operations SLL and S L R and the logic
operations AND, OR and XOR. All instructions operate on 32-bit registers.

Below we see how an individual program may look like if printed as a 'C'
program.

a=s3 + 4;
d=s2 >> s1;
b=s1 - d;
d=s2 + 2;
c=d >> 1;
b=d - d;
a=c - 3;
c=s4 << a;
d=a * 4;
a=a - 5;
e=d + s4;
c=b & c;
d=d + d;
c=d 8· '
d=d * 10;
b=e >> 6;
d=b & O;
e=c >> b;
motor2=a e· '
c=d I 7;
motor1=c * 9;
c=e & e;

(' '>>'', ''>>' '=Shift ''I' '=Dr ''&'' =And ,,-,, =Exor)

Each individual is composed of simple instructions (program lines) trans-
forming variables and input and output parameters. Input is in the form of sen-
sor values represented as register variables (si), The resulting actions (outputs)
are motor speed values also given as register variables (motorl and motor2).

540 P. NORDIN and W. BANZHAF

3. The evolutionary algorithm
The same basic evolutionary algorithm is at the heart of both the simple system
learning directly from actual sensor input and the system learning form past
experiences.

At the outset, the population of programs is initialized with random con-
tent. Tournaments are used for the competitive selection of individuals which
are allowed to produce offspring. The GP system with its simple steady state
tournament selection algorithm, Reynolds (1994), Syswerda (1991) has the fol-
lowing execution cycle:

1. Select four arbitrary programs from the population.
2. For each of the programs calculate fitness.
3. Make two copies (offspring) of the two individuals with highest fitness and

subject the copies to crossover and mutation
4. Replace the two individuals of worst fitness with the two new offspring.
5. Repeat steps 1 to 4
See also Figs. 7, 8, 11 and 13 which describe the flow-chart and show a

diagram of the system.

3.1. Symbolic regression

Symbolic regression is the procedure of inducing a symbolic equation, function
or program which should be able to fit given numerical data. Genetic pro-
gramming is well suited for symbolic regression and many GP applications can
be formulated as a variant of symbolic regression. A GP system performing
symbolic regression takes a number of numerical input/output relations, called
fitness cases, and produces a function or program that is consistent with these
fitness cases. Consider, for example, the following fitness cases:

f (2) 6
f (4) 20
f (5) 30
f (7) 56

These input/output pairs or fitness cases are consistent with the function below:

f (x) = x*x+x

This very simple example would, in our register machine language, look like:

a = x*x;
y_out = a+x;

or:

a= x+i ;
y_out = x*a;

Real time control of a Khepera robot using genetic programming 541

Here, the input and the expected output both consist of a single number, yet
in many cases symbolic regression is performed with vectors specifying the in-
put/ output relation of the desired function. In the examples below the input
vector has more than 10 components and the output vector has sometimes two
outputs.

The fitness used to guide the system during evolution is often an error sum-
mation of the expected values versus the actual values produced by an individual
program.

4. The Khepera robot

Figure 3. The Khepera Robot (diameter 6 cm).

Our experiments were performed with a standard autonomous miniature robot,
the Swiss mobile robot platform Khepera Mondada, Franzi and Ienne (1993).
It is equipped with eight infrared proximity sensors. The mobile robot has a
circular shape, a diameter of 6 cm and a height of 5 cm. It possesses two motors
and on-board power supply. The motors can be independently controlled by
a P I D controller. The eight infrared sensors arc distributed around the robot
in a circular pattern. They emit infrared light, receive the reflected light and
measure distances in a short range: 2-5 cm. The robot is also equipped with a
Motorola 68331 micro-controller which can be connected to a workstation via
serial cable.

It is possible to control the robot in two ways. The controlling algorithm

542 P. NORDIN and W. BANZHAF

Front
S2 S3

S1

so S5

I Im

I:
- - - - - - - - - - - - 1 - - - - - - - - - - -

S7 S6

Back

Figure 4. Position of the I R proximity sensors.

could be executed on a workstation, with data and commands communicated
through the serial line. Alternatively, the controlling algorithm is cross-compiled
on the workstation and down-loaded to the robot which then runs the complete
system autonomously. At present, we use both versions of the system.

The micro-controller has 256 K B of RAM and a large ROM containing a
small operating system. The operating system has simple multi-tasking capa-
bilities and manages the communication with the host computer.

The robot has several extension ports where peripherals such as grippers
and TV cameras can be attached. Figs. 3, 4 and 5 show the robot, its sensor

,,--,. ,,, o' ---
' ,

' . . .) " - - -

Figure 5. The approximate sensor range of the Khepera robot.

Real time control of a Khepera robot using genetic programming 543

Figure 6. The training environment.

placement and the sensor range in its environment.

5. The training environment
The environment used for the obstacle avoiding task is about 70 cm x 90 cm.
It has an irregular border with different angles and four deceptive dead-ends in
each corner. In the large open area in the middle, movable obstacles can be
placed. The friction between wheels and surface is low, enabling the robot to
slip with its wheels during a collision with an obstacle. There is an increase in
friction with the walls making it hard for the circular robot to turn while in
contact with a wall.

6. Objectives
The goal the GP system in our experiments is to evolve the obstacle avoiding
behavior in a sense-think-act context. Both realized systems operate in real-
time and aim at obstacle avoiding behavior derived from real noisy sensorial
data. (See Braitenberg, 1984, Mataric, 1993, Reynolds, 1988, Zapata, Lepinay,
Novales and Deplanques, 1993, for a discussion of this problem domain.)

Symbolic regression is, as mentioned above, the procedure of inducing a
symbolic equation fitting given numerical data. Genetic programming is used
here for symbolic regression. In the obstacle avoiding application the GP system
tries to approximate a function that takes the sensor values as input vector and
returns an action in the form of a vector of two motor speeds:

(1)

Function f models the simple stimulus-response behavior of the robot. Our

544 P. NORDIN and W. BANZHAF

original approach was to evolve this function through interaction with the en-
vironment, Nordin and Banzhaf (1995, 1997).

The second, more efficient approach reported here generates a simulation or
world model instead of deriving motor speeds directly from sensor input. This
involves another function, g, which codes the relation between motor speed
values, sensory inputs and fitness.

(2)

Function regression for g is the central idea we shall discuss in this paper. It is
memory-based in that a sensory-motor state is "associated" with a fitness that
might be termed "feeling" .

6.1. Fitness calculation

The fitness function defining the obstacle avoiding task (it will be used in both
approaches) has two parts, "pain" and "pleasure". The negative contribution to
fitness, called pain, is simply the sum of all proximity sensor values. The closer
the robot's sensors are to an object, the more pain it experiences. In order to
keep the robot from standing still or gyrating, it has a positive contribution
to fitness, called pleasure, as well. It receives pleasure from going straight and
fast. Both motor speed values minus the absolute value of their difference is
thus added to the fitness.

Let Si be the values of the proximity sensors ranging between O and 1023
where a higher value means being closer to an object. Let m1 and m2 be the
left and right motor speeds resulting from an execution of an individual. The
values of m1 and m2 are in the range of zero to 15. The fitness value can then
be expressed more formally as:

7
fitness= a(m1 + m 2 - I m1 - m2 I) - /3 L si

i=O
(3)

Thus, motor speed values minus the absolute value of their difference and sensor
values enter the fitness function. The weights a = 16, f3 = 1 have been used in
these experiments.

7. The first approach
The first method tried to evolve the controlling function (1) directly and

fitness was calculated from the current events, Nordin and Banzhaf (1997). The
evolved programs were true functions and no side-effects were allowed. The
learning algorithm had a small population size, typically less than 50 individuals.
The individuals used the eight values from the sensors as input and produced
two output values which were transmitted to the robot as motor speeds. Each
individual program did this manipulation independently of the others and thus

Real time control of a Khepera robot using genetic programming 545

Objective :
Terminal set :

Obstacle avoiding behavior in real-time
Integers in the range 0-8192

Function set :

Raw and standardized fitness :

Wrapper:
Parameters :
Maximum population size :
Crossover Prob
Mutation Prob :
Selection :
Termination criteria :
Maximum number of generations:
Maximum number of nodes:

ADD, SUB, MUL, SHL, SHR, XOR,
OR,AND
Pleasure subtracted from pain value
desired value
None

50
90%
5%
Tournament Selection
None
None
256 (1024)

Table 1. Summary of parameters used during training.

stood for an individual behavior of the robot when it was invoked to control
the motors. Fig. 7 shows a schematic view of the system and Table 1 gives a
summary of the problem and its parameters according to the conventions used
in Koza (1992).

The modules of the learning system and the execution cycle of the GP system
are illustrated in Fig. 8.

In the first, as well as in the second approach, each individual is thus tested
against a different real-time fitness case. This could result in "unfair" compari-
son where individuals have to maneuver in situations with very different possible
outcomes. However, our experiments show that over time the averaging effects
will help stochastic sampling to even out the random effects in learning. As a
result, a set of good solutions will survive.

7.1. Results with the non-memory approach

Interestingly, the robot shows exploratory behavior from the first moment. This
is a result of the diversity in behavior that resides in the first generation of
programs which have been generated randomly. Naturally, behavior is erratic
at the outset of a run.

During the first minutes, the robot keeps colliding with different objects,
but as time goes on the collisions become more and more infrequent. The
first intelligent behavior usually emerging is some kind of backing up after a
collision. Then the robot gradually learns to steer away in an increasingly more
sophisticated manner.

After about 40-60 minutes, or 120-180 generation equivalents, the robot has

546 P. NORDIN and W. BANZHAF

GP-system

Genetic
Operators =7

(crossover/mutation) u
Selection

(tournament)

' '
l _J

Figure 7. Schematic view of the control system.

learned to avoid obstacles in the rectangular environment almost completely.
It has learned to associate the values from the sensors with their respective
location on the robot and to send correct motor commands. In this way the
robot is able, for instance, to back out of a corner or turn awa y from an obstacle
at its side. Tendencies toward adoption of a special path in order to avoid as
many obstacles as possible can also be observed. Fig. 9 shows how the number of
collisions per minute diminishes as the robot learns and the population becomes
dominated by good control strategics.

Despite only processing results for less than 0.1% of the CPU time, the
method competes well with other paradigms. It is, for instance, 100 times faster
than a related evolutionary approach evolving Neural Network controllers on the
same robot platform, Floreano and Mondada (1994).

The moving robot gives the impression of displ a y ing complex behavior. Its
behavior resembles that of a bug or an ant exploring an environment, with small
and irregular moves around the objects, see Fig. 14.

8. The memory-based GP control architecture
The memory-based control architecture consists of two separate processes. One
process is communicating with sensors and motors as well as storing events into
the memory buffer. The other process is constantly trying to learn and induce
a model of the world consistent with the entries in the memory buffer.

We call the former process the planning process, because it is involved in
deciding what action to perform given a certain model of the world. The latter
process is called learning process, because it consists of trying to derive a model
(in the form of a function) from memory data.

Fig. 10 gives a schematic illustration of the architecture of the control sys-
tem.

It contains six different major components:

Real time control of a Khepera robot using genetic programming

Real time GP control architecture

from the population

For all four individuals
selected do:

Read proximity sensors
and instantiate the values

Let the two best individuals
have two oflsprings
through mutation and
crossover.

Replace the two worst
individuals with the two
children:

Figure 8. The execution cycle of the GP control architecture

547

548

60

50

40

30 0

20

10

0
0 10 20 30

Minutes
40

P. NORDIN and W. BANZHAF

" .. /Collisions" -

50 60

Figure 9. The number of collisions per minute in a typical training run with the
environment as in Fig. 5.

1. The robot with sensors and actuators.
2. The memory buffer storing event vectors representing events in the past.
3. The GP system trying to evolve a model of the world which fits the infor-

mation of the event vectors.
4. The fitness calculation module.
5. The currently best induced individual model.
6. A search module that tries to find the best action given the currently best

world model.
Each component is communicating with the two main processes.

8.1. The planning process

The main execution cycle of the planning process has several similarities with the
execution cycle of the simple genetic control architecture described in Section
7, see Fig. 11.

It is the planning process which has actu·al contact with the robot and decides
what action should be performed next. It operates according to the best model
of the world supplied by the learning process. The process has three main
objectives. It should communicate with the robot, find a feasible action and
store the resulting event.

The loop in this process starts with reading all eight infrared proximity
sensors. These values are used to instantiate the corresponding variables in the

Real time control of a Khepera robot using genetic programming

MEMORY
BUFFER

(50 event
vextors)

LEARN

PLAN

•
•
•

I I I I I I I I I I I
Event vectors

)

Fitness
(pleasure
& pain)

current
sensor
values

.J:'.1__!_ Search
BEST through
MODEL � motor speeds
(INDIVIDUAL)

GP-system
(doing symbolic
regression)

SO FAR 1 1 - - - � Predicted fitness

------· \ Best Individual

Figure 10. Schematic view of the memory-based control architecture.

549

550

PLANNIN

Use Current
Sensor values and
Search through
all motor speeds
for best predicted
fitness

Sleep300ms

Read Robot
Sensor Values

Calculate fintess
from new Sensor
Values

Store old sensor values
used motor speeds
and fitness in memory
as an event vector

P. NORDIN and W. BANZHAF

Figure 11. The execution cycle of the planning process.

Real time control of a Khepera robot using genetic programming 551

currently best world model. The next objective is to find a favorable action given
the current sensor values. In the obstacle avoiding task used here the possible
actions are 16 different motor speeds for each of the two motors. Each motor has
8 speeds forward and 7 backwards and a zero speed. Combining all alternatives
of the two motors, there are 256 different actions altogether to choose from. This
comparatively small figure means that we can easily afford to search through all
possible actions while the world model provides us with a predicted fitness for
each of them. The induced model in the form of a computer program from the
learning process can thus be seen as a simulation of the environment consistent
with past experiences, where the robot can simulate different actions. The
action which gives the best fitness is recalled and sent as motor speeds to the
robot.

If we had an agent with so many possible atomic actions that exhaustive
search would become infeasible, then we could use a heuristic search method to
find an action that gives good predicted fitness. We would, for instance, have
another genetic programming system evolve a step-wise plan which optimizes
fitness according to the currently best world model.

In order to get feedback from the environment the planning process has to
sleep and await the result of the chosen action. The planning process sleeps 300
ms while the robot performs the movement defined by the motors speeds. This
time is an approximate minimum in order to get usable feedback from changes
in the sensor values. Thus, the main operation of the planning process is the
sleeping period waiting for feedback from the environment and it, therefore,
consumes less then 0.1 % of the total CPU time of the system.

After the sleeping period the sensor values are read again. These new values
are used to compute a new fitness value. This fitness value is stored, together
with the earlier sensor values and the motor speeds as an event vector. There-
fore, an event vector consists of 11 numbers: the eight sensor values, the two
motor speeds and the resulting calculated fitness. This vector represents what
the agent experienced, what it did and what the results were of its action. In
our implementation, the memory buffer can store 50 of these event vectors. It
shifts out old memory entries according to a policy described in Section 8.3.

It is then the responsibility of the learning process to evolve a program
that simulates the environment as well and as consistently as possible with
respect to the events in the memory buffer. As we will see below, this can be
done by a straightforward application of symbolic regression through genetic
programming.

8.2. The learning process

The objective of the learning process is to find a function or a program which
will predict the fitness of an action, given the initial conditions in the form of
the sensor values:

(4)

552 P. NORDIN and W. BANZHAF

GP-system ; - 1
I

' ' o_· ! rS
= 7

I

I I 1. (crossover/mutation)

D
Memory / - - -
buffer \ - -Retumsumot

Selection
(tournament)

difference between
predicted and actual
fitness '--a----'_ __ _

I '
! _ _

Figure 12. The memory based GP system in the learning process.

In most cases we have used an additional state variable as part of the pro-
gram. This is simply a memory cell allowing the possibility to use side-effects
in evolved solutions. This feature significantly improves performance in the
complex environment used throughout these experiments:

Each event vector stores an instance of the values in (4) - the sensor values,
motor speeds and the resulting fitness.

Fig. 12 gives an illustration of interactions between the GP system and the
memory buffer in the learning process.

8.3. Giving the system a childhood

Our first approach to managing the memory buffer when all 50 places had
been filled, was to simply shift out the oldest memories as new entries come
in. However, we soon realized that the system then forgot important early
experiences. We found out that early mistakes, made before a good strategy was
found, are crucial to remember in order to not evolve world models that permit
the same mistakes to be done again. Hence, we gave the robot a "childhood" -
an initial period whose memories were not so easily forgotten. The childhood
also reduces the likelihood that the system displays a strategy sometimes seen
even in humans - it would only perform actions which confirmed its current
(limited) world model. Another important factor for successfully inducing an
efficient world model is to have a stimulating childhood. It is important to have
a wide set of experiences to draw conclusions from. Noise is therefore added to
the behavior during this period in order to avoid stereotypic behavior in the first
seconds of the syste:µi's activity. As long as experiences are too few to allow for

Real time control of a I(hepera robot using genetic programming

Real time GP control architecture

Select four individuals
from the population

For all four indivduals
selected do:

•

Loop through all event
vectors summing up 1he
errors between predicted
and actual fitness

Let the two individuals
with best fitness have
two offsprtngs through
mutation and crossover:

Replace the two worst
individuals with the two
children

Figure 13. The GP system in the learning process

553

a meaningful model of the world, this noise is needed to ensure enough diversity
for early experiences. The childhood of the system is defined as the time before
the memory buffer is filled and takes about 20 seconds.

9. Results
The memory based system quickly learns the obstacle avoiding task in most
individual experiments. It normally takes only a few minutes before the robot
displays a successful obstacle avoiding behavior. The obvious reason for this
increased speed when using memory can be identified in the flowchart of the
algorithms.

Note the difference between Figs. 8, 11 and 13. There is no "sleeping"
period in Fig. 13 which means that the genetic programming system can run
at the full speed possible for the CPU. This results in a speed up of more than
2000 times in the GP system. On the other hand, there is now a more complex

554

Objective:

Terminal set :
Function set :

Raw and standardized fitness :

Wrapper:
Parameters :
Maximum population size :
Crossover Prob :
Mutation Prob :
Selection:
Termination criteria :
Maximum number of generations:
Maximum number of nodes:

P. NORDIN and W. BANZHAF

Symbolic regression of environment
simulation
Integers in the range of 0-8192
ADD, SUB, MUL, SHL, SHR, XOR,
OR, AND
The sum taken over 50 fitness cases
of the absolute value of difference
between the actual and desired
value predicting the fitness.
None

10000
90%
5%
Tournament Selection
None
None
256 (1024)

Table 2. Summary of the parameters used by the GP system in the learning
process

task to learn. Instead of evolving an ad-hoe strategy for steering the robot, the
system has to evolve a complete model of relationships between the eight input
variables, the two action variables and the fitness. This forces us to increase the
population size from 50 individuals to 10,000 to ensure robust learning, compare
Table 2. The system still has to wait for the robot to collect enough memory
events to draw some meaningful conclusions. Yet the resulting actual speed up
with memory exceeds the factor of 40 which makes it possible for the system
to learn the successful behavior in less than 1.5 minutes on the average. All in
all this means that the behavior in question emerges 4000 times faster than in
similar approaches, Floreano and Mondada (1994).

The behavior of the robot is very different for the two systems discussed
here. The system without memory behaves in a very complex way and gives
the impression of a small bug which randomly runs around avoiding obstacles,
but with little overall strategy, see Fig. 14.

The memory system, on the other hand, displays a set of very "thought
through" behaviors. The robot always displays a clear strategy and travels in
straight lines or smooth curves. Some of the behaviors evolved show an almost
perfect solution to the current task and fitness function, see Fig. 15

The robot usually demonstrates a limited set of strategies during evolution

Real time control of a Khepera robot using genetic programming 555

Complex Behavior

0

Figure 14. Behavior of the Non-Memory System.

in our experiments. Some of the emerging intelligent strategies are illustrated
in Fig. 15 and might be described as belonging to different behavioral classes
(ordered according to increasing success):

1. The straight and fast strategy: This is the simplest "intelligent" behavior.
The induction process has only seen the pattern arising from the pleasure
part of the fitness function. The model of the robot and its environment
thus only contains the relationship expressing that going straight and fast
is good. The robot consequently heads into the nearest wall and continues
to stand there spinning its wheels. This strategy sometimes emerges right
after the childhood when the noise is removed and the system is solely
controlled by inferences from the induced model, see Section 8.3.

2. The spinning behavior: The second simplest strategy is based on the ex-
perience that turning often improves fitness. The robot starts spinning
around its own axis and does avoid all obstacles but also ignores the plea-
sure part of the fitness rewarding it for going straight and fast.

3. The dancing strategy: This strategy uses the state information in the
model and navigates to the open space where it starts to move in an
irregular circular path avoiding obstacles. Most of the time the robot
moves around keeping big enough a distance to the obstacles to avoid any
reaction from its sensors. If this strategy worked in all cases it would be
nearly perfect because it keeps obstacles out of reach of the sensors and

556 P. NORDIN and W. BANZHAF

the robot is totally unexposed to pain. In most cases, however, the robot
wanders off its path and comes too close to an obstacle where it then is
unable to cope with the new situation and experiences collisions.

4. The backing-v.p strategy: This is the first effective technique that allows
the robot to avoid obstacles while moving around to some extent. The
path the robot travels is, however, very limited and it is not the kind of
solution we would prefer.

5. The bouncing strategy. Here the robot gradually turns away from an ob-
stacle as it approaches it. It looks as if the robot bounced like a ball at
something invisible close to the wall or obstacle. This behavior gives a
minimum speed change in the robot's path.

6. The perfect or nearly perfect strategy: The robot uses the large free space
in the middle of the training environment to go straight and fast, opti-
mizing the pleasure part of the fitness. As soon as it senses an object the
robot turns 180 degrees on the spot and continues going straight and fast.
This strategy also involves state information because turning 180 degrees
takes several events in the robot's perception and that cannot be achieved
without states.

Most of our experiments displayed a simple behavior very early after the
childhood, just to realize a more successful pattern a few seconds later and
changing its strategy correspondingly. The change in strategy was always ac-
complished by a new best individual and fitness value displa y ed by the GP
algorithm.

Table 3 reports the results of 10 evaluation experiments with the memory
based system. The results were produced by timing the robot's behavior in
10 consecutive experiments. In each experiment the robot was watched for
20 minutes before the experiment was terminated. Each time the behavior
changed was noted. The table gives the number 9f the experiment, the strategy
displayed when the experiment was terminated and the time when this strategy
first appeared.

9.1. The autonomous system

It is not completely evident what really constitutes an autonomous agent. Some
would argue that the autonomy is a property of the controlling algorithm while
others would argue that physical autonomy is needed.

In order to try the fully autonomous paradigm, we have ported a special ver-
sion of the system to the micro-controller. It is possible to download this system
via the serial cable to the robot. With the accumulators switched on, the robot
can be disconnected from the workstation and can run fully autonomous. The
Motorola 68331 micro-controller then runs the complete GP learning system.

As mentioned earlier, this micro controller has 256 K B of RAM memory. The
kernel of the GP system occupies 32 K B and 1 K B for each individual, in our
present setup. The complete system without memory consists of 50 individuals

Real time control of a Khepera robot using genetic programming 557

1.Straight and fast 2.Spinning

0-------------------------

3.Dancing 4.Backing

------0

5.Bouncing 6.Perfect

0
(------0---------------------:_ -:

Figure 15. Different common strategies that evolve in the obstacle avoiding
behavior with the memory based learning method.

558 F. NOR.DIN and W. BANZHAF

Run number Result Time (minutes)
1 perfect 1.5
2 perfect 1.5
3 backing 0.5
4 perfect 3.0
5 perfect 2.0
6 perfect 2.0
7 perfect 1.5
8 perfect 2.0
9 perfect 1.0
10 dancing 0.5

Table 3. Results of 10 consecutive runs with the memory-based system.

and occupies 82KB which lies well within the limits of the on-board system. The
more complex system, learning from memory, has to use a smaller population
size than the 10,000 individuals employed previously. This results in less robust
behavior with more frequent convergence to local optima such as displa y ed by
the first strategies in Fig. 15.

In either case, it is demonstrated herewith that the compactness of the com-
piling GP system enables relatively powerful solutions in weak architectures
such as those used in embedded control.

10. Future work
As next steps we would like to investigate other tasks such as wall-following,
and different kinds of navigation. The method is flexible in the sense that the
only module necessary to change when adapting to a new task is the fitness
function.

We would also like to evaluate the use of our approach with autonomous
systems which have a wider set of possible actions. In such systems it would
be infeasible to use exhaustive search to find the best action according to a
world model. Handley has previously demonstrated the feasibility of GP for
evolution of plans for simulated robots, Handley (1994). With a real robot and
the memory based system - the planning system could incorporate its own GP
system to evolve a suitable plan optimizing the outcome given the currently
best world model.

Another possibility is to use the evolved simulation as environment when
evolving a steering function such as the one in Section 7. This would have several
advantages, for instance, it would give an ordering measurement allowing to pick
the current best steering function and let it control the agent.

Finally, exploration of different strategies of "active learning", Cohn and

Real time control of a Khepera robot using genetic programming 559

Lewis (1995), is warranted. The decision which memory entries to keep and
which ones to discard will have a profound influence on the resulting world
model.

11. Summary and conclusions
We have demonstrated that a GP system can be used to control an existing
robot in a real-time environment with noisy input. The evolved algorithm shows
robust performance even if the robot is lifted and placed in a completely different
environment or if obstacles arc moved around. We believe that the robust
behavior of the robot could partly be attributed to the generalization capabilities
of the genetic programming system, Nordin and Banzhaf (1995b).

We have also cross-compiled the GP system and run it in the same set-up on
the micro-controller on board of the robot. This demonstrates the applicability
of Genetic Programming to control tasks on low-end architectures. The tech-
nique could potentially be applied to many one-chip control applications in, for
instance, consumer electronics devices. We have shown how the use of memory
with a real robot and a GP based control system could speed up learning by a
factor of 40. Furthermore, the strategies evolved with the memory based system
have been observed to display a smoother, less chaotic behavior, undisturbed by
the internal dynamics of the GP system. The memory-based system could also
be expected to scale up better because training times arc not directly related to
the dynamics of the agent and its environment, but, instead, almost completely
depend on the difficulty of the induction problem in the application domain.

Acknowledgment
This work was made possible by a grant from Deutsche Forschungsgemein-
schaft (DFG) under contract B a 1042/5-1. We also acknowledge earlier support
from the Ministerium fiir Wissenschaft und Forschung des Landes Nordrhein-
Westfalen under contract I-A-4-6037-I.

References
AGRE, P . E . and CHAPMAN, D. (1990) What are plans for? In: Robotics and

Av.tonomov,s Systems, 6, 1,2, Elsevier Science, The Netherlands.
BANZHAF, W. (1994) Genotype - Phenotype Mapping and Neutral Variation,

A case study in Genetic Programming. In: Proc. 3rd. Int. Conf. on Par-
allel Prnblem Solving frnm Nature, Jerusalem, Y. Davidor, H.P. Schwefel,
R. Manner, eds., Springer, Berlin.

BANZHAF, w., NORDIN, P . , KELLER, R. and FRANCONE, F . (1997) Genetic
Programming - An Intrnduction. Dpunkt, Heidelberg, and Morgan-Kauf-
mann, San Francisco.

BRAITENBERG, V. (1984) Vehicles. MIT Press, Cambridge, MA.

560 P. NORDIN and W. BANZHAF

CLIFF, D. (1991) Computational Neuroethology: A Provisional Manifesto. In
Prom Animals To Animats: Proceedings of the First International Con-
ference on Simulation of Adaptive Behavior, J.A. Meyer and S. Wilson,
eds., MIT Press, Cambridge, MA.

COHN, D. and LEWIS, D. (1995) For a recent report, see: Working notes from
the AAAI-95 symposium on Active Learning. MIT, Cambridge, MA, 1995.

CRAMER, N.L. (1985) A representation for adaptive generation of simple se-
quential programs. In: Proceedings of an International Conference on
Genetic Algorithms and Their Applications, 183-187.

EDELMAN, G. (1987) Neural Darwinism. Basic Books, New York.
FLOREANO, D. and MONDADA F. (1994) Automatic Creation of an Autono-

mous Agent: Genetic Evolution of a Neural-Network Driven Robot. In:
Prom Animals to Animats III: Proceedings of the Third International Con-
ference on Simulation of Adaptive Behaviov,r, D. Cliff, P. Husbands, J.
Meyer and S.W. Wilson, eds., MIT Press-Bradford Books, Cambridge,
MA.

FOGEL, L . J . , OWENS, A.J . and WALSH, M.J. (1966) Artificial Intelligence
through Simulated Evolution. Wiley, New York.

FRIEDBERG, R.M. (1958) A Learning Machine - Part I. IBM Journal of Re-
search and Development IBM, USA 2, 1, 2-11.

HANDLEY, S. (1994) The automatic generation of plans for a mobile robot via
genetic programming with automatically defined functions. In: Advances
in Genetic Programming, K. Kinnear, Jr., ed., MIT Press, Cambridge,
MA.

HARVEY, I., HUSBANDS, P. and CLIFF, D. (1993) Issues in evolutionary ro-
botics. In: From Animals To Animats 2: Proceedings of the Second Inter-
national Conference on Simv,lation of Adaptive Behavior, J.A. Meyer and
S. Wilson, eds., MIT Press, Cambridge, MA.

HOLLAND, J . (1975) Adaption in Naforal and Art ficial Systems. Ann Arbor,
MI, The University of Michigan Press.

JAMES, W. (1890) The principles of psychology. Vol. 1. Originally published:
Henry Holt, New York, 1890.

KOZA, J . (1992) Genetic Programming. MIT Press, Cambridge, MA.
MATARIC, M.J. (1993) Designing Emergent Behaviors: From Local Interac-

tions to Collective Intelligence. In: From Animals To Animats 2: Pro-
ceedings of the Second International Conference on Simulation of Ada p tive
Behavior, J.A. Meyer and S. Wilson, eds., MIT Press, Cambridge, MA.

MONDADA, F., FRANZI, E. and IENNE, P. (1993) Mobile robot miniaturiza-
tion. In Proceedings of the third international Symposium on Experimental
Robotics, Kyoto, Japan.

NORDIN, J .P . (1994) A Compiling Genetic Programming System that Directly
Manipulates the Machine-Code. In: Advances in Genetic Programming,
K. Kinnear, Jr., ed., MIT Press, Cambridge, MA.

Real time control of a Khepera robot using genetic programming 561

NORDIN, J . P . and BANZHAF, W. (1995A) Evolving Turing Complete Programs
for a Register Machine with Self-Modifying Code. In: Proceedings of Sixth
International Conference of Genetic Algorithms, Pittsburgh, 1995, L. E-
shelman, ed., Morgan Kaufmann, San Mateo, CA.

NORDIN, J . P . and BANZHAF, W. (1995B) Complexity Compression and Evo-
lution. In: Proceedings of Sixth International Conference of Genetic Al-
gorithms, Pittsburgh, 1995, L. Eshelman, ed., Morgan Kaufmann, San
Mateo, CA.

NORDIN, P . and BANZHAF, W. (1995c) Genetic Programming controlling a
Miniature Robot. In: Proceedings of AAAI-95 Fall Symposium on Genetic
Programming, November 10-12 1995, MIT, Cambridge, MA.

NORDIN, P . and BANZHAF, W. (1997) An on-line method to evolve behavior
and to control a miniature robot in real time with genetic programming.
Adaptive Behavior, 5, 2, 107-140.

RECHENBERG, I. (1975) Evolutionsstrategie. Fromann-Holtzbog. Stuttgart.
REYNOLDS, C.W. (1988) Not Bumping into Things. In: Notes for the SIG-

GRAPH'88 course Developments in Physically-Based Modeling, ACM-
SIGGRAPH.

REYNOLDS, C.W. (1994) Evolution of Obstacle Avoidance Behavior. In: Ad-
vances in Genetic Programming, K. Kinnear, Jr., ed., MIT Press, Cam-
bridge, MA.

SCHWEFEL, H.-P. (1995) Evolv,tion and Optimum Seeking. Wiley, New York.
S P A R C INTERNATIONAL INC. (1991) The S P A R C Architecture Manual. Menlo

Park, CA.
SYSWERDA, G. (1991) A study of Reproduction in Generational Steady-State

Genetic Algorithms. In: Foundations of Genetic Algorithms, Rawlings
G.J.E., ed., Morgan Kaufmann, San Mateo, CA.

ZAPATA, R . , LEPINAY, P . , NOVALES, C. and DEPLANQUES, P . (1993) Reac-
tive Behaviors of Fast Mobile Robots in Unstructured En':"ironments: Sen-
sor-based Control and Neural Networks. In: From Animals To Animats
2: Proceedings of the Second International Conference on simv,lation of
Adaptive Behavior, J.A. Meyer and S. Wilson, eds., MIT Press, Cam-
bridge, MA.

