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A b s t r a c t :  A computer language is a very general form of rep-
resenting and specifying an autonomous agent's behavior. The task 
of planning feasible actions could then simply be reduced to an in-
stance of automatic programming. We have evaluated the use of an 
evolutionary technique for automatic programming called Genetic 
Programming (GP) to directly control a miniature robot. To our 
knowledge, this is the first attempt to control a real robot with a GP 
based learning method. Two schemes are presented. The objective 
of the GP system in our first approach is to evolve real-time ob-
stacle avoiding behavior. This technique enables real-time learning 
with a real robot using genetic programming. It has, however, the 
drawback that the learning time is limited by the response dynam-
ics of the environment. To overcome this problem we have devised a 
second method, learning from past experiences which arc stored in 
memory. This new system allows a speed-up of the algorithm by a 
factor of more than 2000. Obstacle avoiding behavior emerges much 
faster, approximately 40 times as fast, allowing learning of this task 
in 1.5 minutes. This learning time is several orders of magnitude 
faster than in comparable experiments with other control architec-
tures. Furthermore, the GP algorithm is very compact and can be 
ported to the micro-controller of the autonomous mobile miniature 
robot. 

K e y w o r d s :  robotics, on-line learning, adaptive systems 

1. Introduction
A computer language is one of the most general forms of representing and spe-
cifying behavior. We can use a suitable computer programming language to 
specify any behavior of an autonomous agent. Genetic Programming (GP) is a 
method which uses an evolutionary algorithm to develop computer programs. 
It is thus a probabilistic method of automated programming. Given a goal in 
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the form of a fitness function and a set of instructions to be used, the genetic 
programming system will try to evolve a program that solves the tasks specified 
by the fitness function. In this paper we present a general method for on-line 
learning from past experiences with a mobile robot in real-time. It is built 
on experiences from earlier experiments using a genetic programming system 
to control a real robot. The older method, briefly described below, does not 
provide an explicit ability to learn from past experiences and is thus restricted 
to stimulus-response type of behavior. The approach is further limited by the 
mechanical dynamics of the robot to get feed-back from its actions. The learning 
speed is consequently reduced by this dynamics. If an agent's brain is able to 
process events faster than the time it takes to perform actions in the real world, 
it is feasible to start remembering past experiences and to try to form a world 
model based on these memory entries. The world model in turn could then 
serve as the basis for decisions regarding future actions. 

To use a genetic process as the architecture for mental activities could, at 
first, be considered awkward. As far as we know today, genetic information pro-
cessing is not directly involved in information processing in brains, although the 
idea of genetics as a model of mental processes is not new. William James, the 
father of American psychology, argued just 15 years after Darwin published The 
Origin of Species, in 1874, that mental processes could operate in a Darwinian 
manner, James (1890). He suggested that ideas "compete" with each other in 
the brain leaving only the best or fittest. Just as Darwinian evolution shaped a 
better brain in a couple of million years, a similar Darwinian process operating 
within the brain might shape intelligent solutions to problems on the time scale 
of thought and action. This allows ''our thoughts to die instead of ourselves". 
More recently, selectionist approaches to learning have been studied in detail 
by Gerald Edelman and his collaborators (see Edelman, 1987, and references 
therein). 

The use of an evolutionary method to develop controller architectures has 
been reported previously in a number of variants. Robotic controllers have, for 
instance, been evolved using dynamic recurrent neural nets, Cliff (1991), Harvey, 
Husbands and Cliff (1993). Several experiments have also been performed where 
a controller program has been evolved directly through genetic programming 
Handley (1994), Koza (1992), Reynolds (1994). 

Previous experiments with genetic programming and robotic control, how-
ever, have been performed with a simulated robot and a simulated environment. 
In such a set-up, the environment and the robot can be reset easily into an initial 
state in order to ensure that each individual in the population is judged starting 
from the same state. Apart from being practically infeasible for a real robot, 
this method could result in over-specialization and failure to evolve a behavior 
that can generalize to unseen environments and tasks. In order to overcome the 
latter problem artificially generated noise is added sometimes to the simulated 
environment. 

We have earlier reported on a first series of experiments using GP to control 
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a real robot trained in real-time with actual sensor values, Nordin and Banzhaf 
(1995, 1997). In such an environment, the system has to evolve robust con-
trollers because noise is present everywhere and the number of real-life training 
situations is infinite. In addition, it is highly impractical to reset the robot to a 
predefined state before evaluating a fitness case. Consequently, we were forced 
to devise a method which ensures learning of behavior while the environment 
is probabilistically sampled with new real-time fitness cases for each individual 
evaluation. 

Over time, fluctuations of the environment cancel out and the system devel-
ops a robust behavior. The advantage of this evaluation method, which we call 
stochastic sampling, is a considerable acceleration of evolutionary process. We 
propose to use it in other evolutionary applications, too. 

Using this approach the evolution of a successful control program is driven 
by continuous interaction with, and feedback from, the environment. There is, 
however, no memory of past experiences other than the information implicitly 
stored in the genetic material. Hence, the main disadvantage of this method is 
that learning speed depends on the mere mechanical dynamics of the environ-
ment, and not on the speed of the algorithm or the processor. In our example 
the learning algorithm consumes less than 0.1 % of the available CPU time - the 
rest of the time is spent waiting for feedback from the environment. 

What we describe below is an extension of this method using a memory 
buffer to store and use past experiences, that allows learning at a speed only 
determined by the processor. The execution of the GP system is consequently 
accelerated by a factor larger than 2000 and the agent learns its task as soon as 
there are enough experiences collected in memory. Convergence towards feasible 
behavior requires only a few minutes in the obstacle avoidance experiments 
described below. 

The rest of this paper is organized as follows: In Sections 2 and 3 we start by 
briefly introducing the genetic programming paradigm and the real-time variant 
we use here. We present the miniature robot used in these experiments and the 
environment it is trained in, in Sections 4 and 5. The objective of the training 
in these experiments, obstacle avoiding behavior, as well as the fitness function 
defining it, are described in Section 6. Our earlier approach towards a control 
architecture is briefly summarized in Section 7. This architecture represents the 
first application of a real-time GP system to a real autonomous robot. The 
new method is presented in Section 8, with a GP control architecture learning 
form past experiences and enabling fast convergence. We present the results 
from learning obstacle avoiding behavior with this architecture in Section 9 and 
relate it to the performance of our previous approach and other evolutionary 
learning techniques. Finally we summarize our results, discuss conclusions and 
present ideas for future work. 
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2. Genetic programming
Evolutionary Algorithms mimic aspects of natural evolution in order to opti-
mize a solution towards a defined goal. Darwin's principle of natural selection is 
thought to be responsible for the evolution of all life forms on earth. This princi-
ple has been employed successfully on computers over the past 30 years. Differ-
ent research subfields have emerged, such as Evolution Strategics, Rechenberg 
(1975), Schwefcl (1995), Genetic Algorithms, Holland (1975) and Evolutionary 
Programming, Fogel, Owens and Walsh (1966), indicating that they all mimic 
various aspects of natural evolution. In recent years, these methods have been 
applied successfully to a spectrum of real-world and academic problem domains, 
like robot control. 

A comparatively young and growing research topic in this field is Genetic 
Programming (GP). Genetic Programming uses the mechanisms behind natural 
selection for evolution of computer programs, Koza (1992), Banzhaf et al. (1997). 
Instead of a human programmer programming the computer, the computer can 
self-modify, through genetic operators, a population of programs in order to 
finally generate a program that solves the defined problem. This technique, like 
other adaptive techniques, has applications in problem domains where theories 
arc incomplete and insufficient for the human programmer, or when there is not 
enough time or resources available to allow for human programming. 

Methods with similarities to GP were suggested as far back as in the 1950s, 
Friedberg (1958). For various reasons these experiments never were a complete 
success even if partial results were achieved, Cramer (1985). It was a break-
through when J .  Koza formulated his approach based on program individuals 
as tree structures represented by LISPS-expressions, Koza (1992). A hierarchi-
cal subtree exchanging genetic crossover operator guaranteed syntactic closure 
during evolution. Koza has been very influential in developing GP and was the 
first to demonstrate the feasibility of the technique with dozens of applications. 

In his notion, genetic programming evolves programs stored as trees in a 
population by exchanging subtrees during crossover. Selection is performed 
according to a fitness function. Fig. 1 illustrates the crossover method used 
with tree-based genetic programming. 

A simple genetic programming system may consist of: 
1. A population of solution candidates (programs) where the population size

usually varies between 30 and 50,000 individuals. The population is nor-
mally initiated with random content.

2. A fitness measure defining the desired task of the programs.
3. A recombination or crossover operator allowing for exchange of solution

segments between individual programs.
4. A mutation operator changing code more locally than the crossover oper-

ator, namely within an individual.
5. A set of basic constants, instructions, procedures or function used as the

atomic parts of evolved programs.
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Parents 

Figure 1. Hierarchical GP and effect of crossover. Only subtrees are exchanged 
which guarantees syntactic closure. 

In the experiments described below we use another genetic programming 
system which has properties well suited for real-time applications. 

2.1. Genetic programming and machine code 

The GP system we use has a linear genome and stores the individuals of the 
population as binary machine code in memory. In this way execution speed of 
the GP system is several orders of magnitude higher than in interpreted tree-
based GP systems. The method is also memory efficient, requiring only 32KB 
for the GP kernel. Memory consumption is stable during evolution without 
any need for garbage collection. All these properties make the system ideally 
suited for real-time control in low-encl processor architectures such as one-chip 
embedded control applications. 

Programs are composed of variable length strings of 32 bit instructions for 
a register machine. The register machine performs arithmetic operations on 
a small set of registers. Each instruction might also include a small integer 
constant of maximum 13 bits. The 32 bits in the instruction thus represent 
simple arithmetic operations such as "a=b+c"  or "c=b*5".  The actual format 
of the 32 bits corresponds to the machine code format of a SUN-4, SPARC 
International Inc. (1991), which enables the genetic operators to manipulate 
binary code directly. For a more thorough description of the system and its 
implementation, sec Nordin (1994), Nordin and Banzhaf (1995a). 

The machine code manipulating GP system uses two-point string crossover. 
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Parents 

Figure 2. Linear GP and crossover. Instructions or sequences of instructions 
are exchanged. 
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A node is the atomic crossover unit in the GP structure. Crossover can occur on 
either or both sides of a node but not within a node. Because our particular im-
plementation of GP works with 32 bit machine code instructions, a node is a 32 
bit instruction. Fig. 2 illustrates the crossover method used in our experiments. 
Mutation flips bits inside the 32-bit node. The mutation operator ensures that 
only allowed instructions, with valid ranges of registers and constants are the 
result of a mutation. Thus, all genetic operators ensure syntactic closure during 
evolution. 

The instructions used in our experiments are all low-level machine code 
instructions. The function set consists of the arithmetic operations ADD, SUB 
and MUL, the shift left and shift right operations SLL and S L R  and the logic 
operations AND, OR and XOR. All instructions operate on 32-bit registers. 

Below we see how an individual program may look like if printed as a 'C' 
program. 

a=s3 + 4; 
d=s2 >> s1; 
b=s1 - d; 
d=s2 + 2; 
c=d >> 1; 
b=d - d; 
a=c - 3; 
c=s4 << a; 
d=a * 4; 
a=a - 5; 
e=d + s4; 
c=b & c; 
d=d + d; 
c=d 8· ' 
d=d * 10;
b=e >> 6; 
d=b & O; 
e=c >> b; 
motor2=a e· ' 
c=d I 7; 
motor1=c * 9; 
c=e & e; 

(' '>>'', ''>>' '=Shift ''I' '=Dr ''&'' =And ,,-,, =Exor) 

Each individual is composed of simple instructions (program lines) trans-
forming variables and input and output parameters. Input is in the form of sen-
sor values represented as register variables (si), The resulting actions (outputs) 
are motor speed values also given as register variables (motorl and motor2). 
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3. The evolutionary algorithm
The same basic evolutionary algorithm is at the heart of both the simple system 
learning directly from actual sensor input and the system learning form past 
experiences. 

At the outset, the population of programs is initialized with random con-
tent. Tournaments are used for the competitive selection of individuals which 
are allowed to produce offspring. The GP system with its simple steady state 
tournament selection algorithm, Reynolds (1994), Syswerda (1991) has the fol-
lowing execution cycle: 

1. Select four arbitrary programs from the population.
2. For each of the programs calculate fitness. 
3. Make two copies ( offspring) of the two individuals with highest fitness and 

subject the copies to crossover and mutation
4. Replace the two individuals of worst fitness with the two new offspring. 
5. Repeat steps 1 to 4
See also Figs. 7, 8, 11 and 13 which describe the flow-chart and show a

diagram of the system. 

3.1. Symbolic regression 

Symbolic regression is the procedure of inducing a symbolic equation, function 
or program which should be able to fit given numerical data. Genetic pro-
gramming is well suited for symbolic regression and many GP applications can 
be formulated as a variant of symbolic regression. A GP system performing 
symbolic regression takes a number of numerical input/output relations, called 
fitness cases, and produces a function or program that is consistent with these 
fitness cases. Consider, for example, the following fitness cases: 

f (2) 6 
f (4) 20 
f (5) 30 
f (7) 56 

These input/output pairs or fitness cases are consistent with the function below: 

f (x )  = x*x+x 

This very simple example would, in our register machine language, look like: 

a = x*x; 
y_out = a+x; 

or: 

a= x+i ; 
y_out = x*a; 
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Here, the input and the expected output both consist of a single number, yet 
in many cases symbolic regression is performed with vectors specifying the in-
put/ output relation of the desired function. In the examples below the input 
vector has more than 10 components and the output vector has sometimes two 
outputs. 

The fitness used to guide the system during evolution is often an error sum-
mation of the expected values versus the actual values produced by an individual 
program. 

4. The Khepera robot

Figure 3. The Khepera Robot (diameter 6 cm). 

Our experiments were performed with a standard autonomous miniature robot, 
the Swiss mobile robot platform Khepera Mondada, Franzi and Ienne (1993). 
It is equipped with eight infrared proximity sensors. The mobile robot has a 
circular shape, a diameter of 6 cm and a height of 5 cm. It possesses two motors 
and on-board power supply. The motors can be independently controlled by 
a P I D  controller. The eight infrared sensors arc distributed around the robot 
in a circular pattern. They emit infrared light, receive the reflected light and 
measure distances in a short range: 2-5 cm. The robot is also equipped with a 
Motorola 68331 micro-controller which can be connected to a workstation via 
serial cable. 

It is possible to control the robot in two ways. The controlling algorithm 
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Figure 4. Position of the I R  proximity sensors. 

could be executed on a workstation, with data and commands communicated 
through the serial line. Alternatively, the controlling algorithm is cross-compiled 
on the workstation and down-loaded to the robot which then runs the complete 
system autonomously. At present, we use both versions of the system. 

The micro-controller has 256 K B  of RAM and a large ROM containing a 
small operating system. The operating system has simple multi-tasking capa-
bilities and manages the communication with the host computer. 

The robot has several extension ports where peripherals such as grippers 
and TV cameras can be attached. Figs. 3, 4 and 5 show the robot, its sensor 

,,--,. ,,, o' ---
' , 

' . . .  ) " - - -

Figure 5. The approximate sensor range of the Khepera robot. 



Real time control of a Khepera robot using genetic programming 543 

Figure 6. The training environment. 

placement and the sensor range in its environment. 

5. The training environment
The environment used for the obstacle avoiding task is about 70 cm x 90 cm. 
It has an irregular border with different angles and four deceptive dead-ends in 
each corner. In the large open area in the middle, movable obstacles can be 
placed. The friction between wheels and surface is low, enabling the robot to 
slip with its wheels during a collision with an obstacle. There is an increase in 
friction with the walls making it hard for the circular robot to turn while in 
contact with a wall. 

6. Objectives
The goal the GP system  in our experiments is to evolve the obstacle avoiding 
behavior in a sense-think-act context. Both realized systems operate in real-
time and aim at obstacle avoiding behavior derived from real noisy sensorial 
data. (See Braitenberg, 1984, Mataric, 1993, Reynolds, 1988, Zapata, Lepinay, 
Novales and Deplanques, 1993, for a discussion of this problem domain.) 

Symbolic regression is, as mentioned above, the procedure of inducing a 
symbolic equation fitting given numerical data. Genetic programming is used 
here for symbolic regression. In the obstacle avoiding application the GP system 
tries to approximate a function that takes the sensor values as input vector and 
returns an action in the form of a vector of two motor speeds: 

(1) 

Function f models the simple stimulus-response behavior of the robot. Our 
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original approach was to evolve this function through interaction with the en-
vironment, Nordin and Banzhaf (1995, 1997). 

The second, more efficient approach reported here generates a simulation or 
world model instead of deriving motor speeds directly from sensor input. This 
involves another function, g, which codes the relation between motor speed 
values, sensory inputs and fitness. 

(2) 

Function regression for g is the central idea we shall discuss in this paper. It is 
memory-based in that a sensory-motor state is "associated" with a fitness that 
might be termed "feeling" . 

6.1. Fitness calculation 

The fitness function defining the obstacle avoiding task (it will be used in both 
approaches) has two parts, "pain" and "pleasure". The negative contribution to 
fitness, called pain, is simply the sum of all proximity sensor values. The closer 
the robot's sensors are to an object, the more pain it experiences. In order to 
keep the robot from standing still or gyrating, it has a positive contribution 
to fitness, called pleasure, as well. It receives pleasure from going straight and 
fast. Both motor speed values minus the absolute value of their difference is 
thus added to the fitness. 

Let Si be the values of the proximity sensors ranging between O and 1023 
where a higher value means being closer to an object. Let m1 and m2 be the 
left and right motor speeds resulting from an execution of an individual. The 
values of m1 and m2 are in the range of zero to 15. The fitness value can then 
be expressed more formally as: 

7 
fitness= a(m1 + m 2 - I m1 - m2 I)  - /3 L si 

i=O 
(3) 

Thus, motor speed values minus the absolute value of their difference and sensor 
values enter the fitness function. The weights a =  16, f3 = 1 have been used in 
these experiments. 

7. The first approach
The first method tried to evolve the controlling function (1) directly and

fitness was calculated from the current events, Nordin and Banzhaf (1997). The 
evolved programs were true functions and no side-effects were allowed. The 
learning algorithm had a small population size, typically less than 50 individuals. 
The individuals used the eight values from the sensors as input and produced 
two output values which were transmitted to the robot as motor speeds. Each 
individual program did this manipulation independently of the others and thus 
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Objective : 
Terminal set : 

Obstacle avoiding behavior in real-time 
Integers in the range 0-8192 

Function set : 

Raw and standardized fitness : 

Wrapper: 
Parameters : 
Maximum population size : 
Crossover Prob 
Mutation Prob : 
Selection : 
Termination criteria : 
Maximum number of generations: 
Maximum number of nodes: 

ADD, SUB, MUL, SHL, SHR, XOR, 
OR,AND 
Pleasure subtracted from pain value 
desired value 
None 

50 
90% 
5% 
Tournament Selection 
None 
None 
256 (1024) 

Table 1. Summary of parameters used during training. 

stood for an individual behavior of the robot when it was invoked to control 
the motors. Fig. 7 shows a schematic view of the system and Table 1 gives a 
summary of the problem and its parameters according to the conventions used 
in Koza (1992). 

The modules of the learning system and the execution cycle of the GP system 
are illustrated in Fig. 8. 

In the first, as well as in the second approach, each individual is thus tested 
against a different real-time fitness case. This could result in "unfair" compari-
son where individuals have to maneuver in situations with very different possible 
outcomes. However, our experiments show that over time the averaging effects 
will help stochastic sampling to even out the random effects in learning. As a 
result, a set of good solutions will survive. 

7.1. Results with the non-memory approach 

Interestingly, the robot shows exploratory behavior from the first moment. This 
is a result of the diversity in behavior that resides in the first generation of 
programs which have been generated randomly. Naturally, behavior is erratic 
at the outset of a run. 

During the first minutes, the robot keeps colliding with different objects, 
but as time goes on the collisions become more and more infrequent. The 
first intelligent behavior usually emerging is some kind of backing up after a 
collision. Then the robot gradually learns to steer away in an increasingly more 
sophisticated manner. 

After about 40-60 minutes, or 120-180 generation equivalents, the robot has 
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Figure 7. Schematic view of the control system. 

learned to avoid obstacles in the rectangular environment almost completely. 
It has learned to associate the values from the sensors with their respective 
location on the robot and to send correct motor commands. In this way the 
robot is able, for instance, to back out of a corner or turn awa y  from an obstacle 
at its side. Tendencies toward adoption of a special path in order to avoid as 
many obstacles as possible can also be observed. Fig. 9 shows how the number of 
collisions per minute diminishes as the robot learns and the population becomes 
dominated by good control strategics. 

Despite only processing results for less than 0.1% of the CPU time, the 
method competes well with other paradigms. It is, for instance, 100 times faster 
than a related evolutionary approach evolving Neural Network controllers on the 
same robot platform, Floreano and Mondada (1994). 

The moving robot gives the impression of displ a y ing complex behavior. Its 
behavior resembles that of a bug or an ant exploring an environment, with small 
and irregular moves around the objects, see Fig. 14. 

8. The memory-based GP control architecture
The memory-based control architecture consists of two separate processes. One 
process is communicating with sensors and motors as well as storing events into 
the memory buffer. The other process is constantly trying to learn and induce 
a model of the world consistent with the entries in the memory buffer. 

We call the former process the planning process, because it is involved in 
deciding what action to perform given a certain model of the world. The latter 
process is called learning process, because it consists of trying to derive a model 
(in the form of a function) from memory data. 

Fig. 10 gives a schematic illustration of the architecture of the control sys-
tem. 

It contains six different major components: 
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Real time GP control architecture 

from the population 

For all four individuals 
selected do: 

Read proximity sensors 
and instantiate the values 

Let the two best individuals 
have two oflsprings 
through mutation and 
crossover. 

Replace the two worst 
individuals with the two 
children: 

Figure 8. The execution cycle of the GP control architecture 
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" .. /Collisions" -

50 60 

Figure 9. The number of collisions per minute in a typical training run with the 
environment as in Fig. 5. 

1. The robot with sensors and actuators.
2. The memory buffer storing event vectors representing events in the past.
3. The GP system trying to evolve a model of the world which fits the infor-

mation of the event vectors.
4. The fitness calculation module.
5. The currently best induced individual model.
6. A search module that tries to find the best action given the currently best

world model.
Each component is communicating with the two main processes. 

8.1. The planning process 

The main execution cycle of the planning process has several similarities with the 
execution cycle of the simple genetic control architecture described in Section 
7, see Fig. 11. 

It is the planning process which has actu·al contact with the robot and decides 
what action should be performed next. It operates according to the best model 
of the world supplied by the learning process. The process has three main 
objectives. It should communicate with the robot, find a feasible action and 
store the resulting event. 

The loop in this process starts with reading all eight infrared proximity 
sensors. These values are used to instantiate the corresponding variables in the 
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Figure 10. Schematic view of the memory-based control architecture. 
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Figure 11. The execution cycle of the planning process. 
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currently best world model. The next objective is to find a favorable action given 
the current sensor values. In the obstacle avoiding task used here the possible 
actions are 16 different motor speeds for each of the two motors. Each motor has 
8 speeds forward and 7 backwards and a zero speed. Combining all alternatives 
of the two motors, there are 256 different actions altogether to choose from. This 
comparatively small figure means that we can easily afford to search through all 
possible actions while the world model provides us with a predicted fitness for 
each of them. The induced model in the form of a computer program from the 
learning process can thus be seen as a simulation of the environment consistent 
with past experiences, where the robot can simulate different actions. The 
action which gives the best fitness is recalled and sent as motor speeds to the 
robot. 

If we had an agent with so many possible atomic actions that exhaustive 
search would become infeasible, then we could use a heuristic search method to 
find an action that gives good predicted fitness. We would, for instance, have 
another genetic programming system evolve a step-wise plan which optimizes 
fitness according to the currently best world model. 

In order to get feedback from the environment the planning process has to 
sleep and await the result of the chosen action. The planning process sleeps 300 
ms while the robot performs the movement defined by the motors speeds. This 
time is an approximate minimum in order to get usable feedback from changes 
in the sensor values. Thus, the main operation of the planning process is the 
sleeping period waiting for feedback from the environment and it, therefore, 
consumes less then 0.1 % of the total CPU time of the system. 

After the sleeping period the sensor values are read again. These new values 
are used to compute a new fitness value. This fitness value is stored, together 
with the earlier sensor values and the motor speeds as an event vector. There-
fore, an event vector consists of 11 numbers: the eight sensor values, the two 
motor speeds and the resulting calculated fitness. This vector represents what 
the agent experienced, what it did and what the results were of its action. In 
our implementation, the memory buffer can store 50 of these event vectors. It 
shifts out old memory entries according to a policy described in Section 8.3. 

It is then the responsibility of the learning process to evolve a program 
that simulates the environment as well and as consistently as possible with 
respect to the events in the memory buffer. As we will see below, this can be 
done by a straightforward application of symbolic regression through genetic 
programming. 

8.2. The learning process 

The objective of the learning process is to find a function or a program which 
will predict the fitness of an action, given the initial conditions in the form of 
the sensor values: 

(4) 
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Figure 12. The memory based GP system in the learning process. 

In most cases we have used an additional state variable as part of the pro-
gram. This is simply a memory cell allowing the possibility to use side-effects 
in evolved solutions. This feature significantly improves performance in the 
complex environment used throughout these experiments: 

Each event vector stores an instance of the values in ( 4) - the sensor values, 
motor speeds and the resulting fitness. 

Fig. 12 gives an illustration of interactions between the GP system and the 
memory buffer in the learning process. 

8.3. Giving the system a childhood 

Our first approach to managing the memory buffer when all 50 places had 
been filled, was to simply shift out the oldest memories as new entries come 
in. However, we soon realized that the system then forgot important early 
experiences. We found out that early mistakes, made before a good strategy was 
found, are crucial to remember in order to not evolve world models that permit 
the same mistakes to be done again. Hence, we gave the robot a "childhood" -
an initial period whose memories were not so easily forgotten. The childhood 
also reduces the likelihood that the system displays a strategy sometimes seen 
even in humans - it would only perform actions which confirmed its current 
(limited) world model. Another important factor for successfully inducing an 
efficient world model is to have a stimulating childhood. It is important to have 
a wide set of experiences to draw conclusions from. Noise is therefore added to 
the behavior during this period in order to avoid stereotypic behavior in the first 
seconds of the syste:µi's activity. As long as experiences are too few to allow for 
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Figure 13. The GP system in the learning process 
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a meaningful model of the world, this noise is needed to ensure enough diversity 
for early experiences. The childhood of the system is defined as the time before 
the memory buffer is filled and takes about 20 seconds. 

9. Results
The memory based system quickly learns the obstacle avoiding task in most 
individual experiments. It normally takes only a few minutes before the robot 
displays a successful obstacle avoiding behavior. The obvious reason for this 
increased speed when using memory can be identified in the flowchart of the 
algorithms. 

Note the difference between Figs. 8, 11 and 13. There is no "sleeping" 
period in Fig. 13 which means that the genetic programming system can run 
at the full speed possible for the CPU. This results in a speed up of more than 
2000 times in the GP system. On the other hand, there is now a more complex 
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Objective: 

Terminal set : 
Function set : 

Raw and standardized fitness : 

Wrapper: 
Parameters : 
Maximum population size : 
Crossover Prob : 
Mutation Prob : 
Selection: 
Termination criteria : 
Maximum number of generations: 
Maximum number of nodes: 

P. NORDIN and W. BANZHAF

Symbolic regression of environment 
simulation 
Integers in the range of 0-8192 
ADD, SUB, MUL, SHL, SHR, XOR, 
OR, AND 
The sum taken over 50 fitness cases 
of the absolute value of difference 
between the actual and desired 
value predicting the fitness. 
None 

10000 
90% 
5% 
Tournament Selection 
None 
None 
256 (1024) 

Table 2. Summary of the parameters used by the GP system in the learning 
process 

task to learn. Instead of evolving an ad-hoe strategy for steering the robot, the 
system has to evolve a complete model of relationships between the eight input 
variables, the two action variables and the fitness. This forces us to increase the 
population size from 50 individuals to 10,000 to ensure robust learning, compare 
Table 2. The system still has to wait for the robot to collect enough memory 
events to draw some meaningful conclusions. Yet the resulting actual speed up 
with memory exceeds the factor of 40 which makes it possible for the system 
to learn the successful behavior in less than 1.5 minutes on the average. All in 
all this means that the behavior in question emerges 4000 times faster than in 
similar approaches, Floreano and Mondada (1994). 

The behavior of the robot is very different for the two systems discussed 
here. The system without memory behaves in a very complex way and gives 
the impression of a small bug which randomly runs around avoiding obstacles, 
but with little overall strategy, see Fig. 14. 

The memory system, on the other hand, displays a set of very "thought 
through" behaviors. The robot always displays a clear strategy and travels in 
straight lines or smooth curves. Some of the behaviors evolved show an almost 
perfect solution to the current task and fitness function, see Fig. 15 

The robot usually demonstrates a limited set of strategies during evolution 
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Complex Behavior 

0 

Figure 14. Behavior of the Non-Memory System. 

in our experiments. Some of the emerging intelligent strategies are illustrated 
in Fig. 15 and might be described as belonging to different behavioral classes 
( ordered according to increasing success): 

1. The straight and fast strategy: This is the simplest "intelligent" behavior.
The induction process has only seen the pattern arising from the pleasure
part of the fitness function. The model of the robot and its environment
thus only contains the relationship expressing that going straight and fast
is good. The robot consequently heads into the nearest wall and continues
to stand there spinning its wheels. This strategy sometimes emerges right
after the childhood when the noise is removed and the system is solely
controlled by inferences from the induced model, see Section 8.3.

2. The spinning behavior: The second simplest strategy is based on the ex-
perience that turning often improves fitness. The robot starts spinning
around its own axis and does avoid all obstacles but also ignores the plea-
sure part of the fitness rewarding it for going straight and fast.

3. The dancing strategy: This strategy uses the state information in the
model and navigates to the open space where it starts to move in an
irregular circular path avoiding obstacles. Most of the time the robot
moves around keeping big enough a distance to the obstacles to avoid any
reaction from its sensors. If this strategy worked in all cases it would be
nearly perfect because it keeps obstacles out of reach of the sensors and
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the robot is totally unexposed to pain. In most cases, however, the robot 
wanders off its path and comes too close to an obstacle where it then is 
unable to cope with the new situation and experiences collisions. 

4. The backing-v.p strategy: This is the first effective technique that allows
the robot to avoid obstacles while moving around to some extent. The
path the robot travels is, however, very limited and it is not the kind of
solution we would prefer.

5. The bouncing strategy. Here the robot gradually turns away from an ob-
stacle as it approaches it. It looks as if the robot bounced like a ball at
something invisible close to the wall or obstacle. This behavior gives a
minimum speed change in the robot's path.

6. The perfect or nearly perfect strategy: The robot uses the large free space
in the middle of the training environment to go straight and fast, opti-
mizing the pleasure part of the fitness. As soon as it senses an object the
robot turns 180 degrees on the spot and continues going straight and fast.
This strategy also involves state information because turning 180 degrees
takes several events in the robot's perception and that cannot be achieved
without states.

Most of our experiments displayed a simple behavior very early after the 
childhood, just to realize a more successful pattern a few seconds later and 
changing its strategy correspondingly. The change in strategy was always ac-
complished by a new best individual and fitness value displa y ed by the GP 
algorithm. 

Table 3 reports the results of 10 evaluation experiments with the memory 
based system. The results were produced by timing the robot's behavior in 
10 consecutive experiments. In each experiment the robot was watched for 
20 minutes before the experiment was terminated. Each time the behavior 
changed was noted. The table gives the number 9f the experiment, the strategy 
displayed when the experiment was terminated and the time when this strategy 
first appeared. 

9.1. The autonomous system 

It is not completely evident what really constitutes an autonomous agent. Some 
would argue that the autonomy is a property of the controlling algorithm while 
others would argue that physical autonomy is needed. 

In order to try the fully autonomous paradigm, we have ported a special ver-
sion of the system to the micro-controller. It is possible to download this system 
via the serial cable to the robot. With the accumulators switched on, the robot 
can be disconnected from the workstation and can run fully autonomous. The 
Motorola 68331 micro-controller then runs the complete GP learning system. 

As mentioned earlier, this micro controller has 256 K B  of RAM memory. The 
kernel of the GP system occupies 32 K B  and 1 K B  for each individual, in our 
present setup. The complete system without memory consists of 50 individuals 
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1.Straight and fast 2.Spinning

0-------------------------

3.Dancing 4.Backing

------0 

5.Bouncing 6.Perfect

0 
(  ------0---------------------:_ -: 

Figure 15. Different common strategies that evolve in the obstacle avoiding 
behavior with the memory based learning method. 
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Run number Result Time (minutes) 
1 perfect 1.5 
2 perfect 1.5 
3 backing 0.5 
4 perfect 3.0 
5 perfect 2.0 
6 perfect 2.0 
7 perfect 1.5 
8 perfect 2.0 
9 perfect 1.0 
10 dancing 0.5 

Table 3. Results of 10 consecutive runs with the memory-based system. 

and occupies 82KB which lies well within the limits of the on-board system. The 
more complex system, learning from memory, has to use a smaller population 
size than the 10,000 individuals employed previously. This results in less robust 
behavior with more frequent convergence to local optima such as displa y ed by 
the first strategies in Fig. 15. 

In either case, it is demonstrated herewith that the compactness of the com-
piling GP system enables relatively powerful solutions in weak architectures 
such as those used in embedded control. 

10. Future work 
As next steps we would like to investigate other tasks such as wall-following, 
and different kinds of navigation. The method is flexible in the sense that the 
only module necessary to change when adapting to a new task is the fitness 
function. 

We would also like to evaluate the use of our approach with autonomous 
systems which have a wider set of possible actions. In such systems it would 
be infeasible to use exhaustive search to find the best action according to a 
world model. Handley has previously demonstrated the feasibility of GP for 
evolution of plans for simulated robots, Handley (1994). With a real robot and 
the memory based system - the planning system could incorporate its own GP 
system to evolve a suitable plan optimizing the outcome given the currently 
best world model. 

Another possibility is to use the evolved simulation as environment when 
evolving a steering function such as the one in Section 7. This would have several 
advantages, for instance, it would give an ordering measurement allowing to pick 
the current best steering function and let it control the agent. 

Finally, exploration of different strategies of "active learning", Cohn and 
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Lewis (1995), is warranted. The decision which memory entries to keep and 
which ones to discard will have a profound influence on the resulting world 
model. 

11. Summary and conclusions
We have demonstrated that a GP system can be used to control an existing 
robot in a real-time environment with noisy input. The evolved algorithm shows 
robust performance even if the robot is lifted and placed in a completely different 
environment or if obstacles arc moved around. We believe that the robust 
behavior of the robot could partly be attributed to the generalization capabilities 
of the genetic programming system, Nordin and Banzhaf (1995b). 

We have also cross-compiled the GP system and run it in the same set-up on 
the micro-controller on board of the robot. This demonstrates the applicability 
of Genetic Programming to control tasks on low-end architectures. The tech-
nique could potentially be applied to many one-chip control applications in, for 
instance, consumer electronics devices. We have shown how the use of memory 
with a real robot and a GP based control system could speed up learning by a 
factor of 40. Furthermore, the strategies evolved with the memory based system 
have been observed to display a smoother, less chaotic behavior, undisturbed by 
the internal dynamics of the GP system. The memory-based system could also 
be expected to scale up better because training times arc not directly related to 
the dynamics of the agent and its environment, but, instead, almost completely 
depend on the difficulty of the induction problem in the application domain. 
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