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Abstract: Optimality conditions for optimal control problems
arising in network modeling are discussed. We confine ourselves to
the steady state network models. Therefore, we consider only control
systems described by ordinary differential equations. First, we derive
optimality conditions for the nonlinear problem for a single beam.
These conditions are formulated in terms of the local Pontryagin
maximum principle and the matrix Riccati equation. Then, the
optimality conditions for the control problem for networks posed
on an arbitrary planar graph are discussed. This problem has a
set of independent variables xi varying within their intervals [0, li],
associated with the corresponding beams at network edges. The
lengths li of intervals are not specified and must be determined. So,
the optimization problem is non-standard, it is a combination of
control and design of networks. However, using a linear change of
the independent variables, it can be reduced to a standard one, and
we show this. Two simple numerical examples for the single-beam
problem are considered.
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1. Introduction

1.1. Motivation

We are interested in the optimum design of optimal control systems for networks.
We restrict ourselves in this study to the steady state nonlinear network models.
First, a single element is considered. Then, a network with the star graph is
studied. The geometric domain for the network is a star graph for the sake of
simplicity.

Optimization problems for steady state models are important for networks
that enjoy some specific features as regards the control problems. Roughly
speaking, the control strategy with long time horizons includes two parts. The
first part is constituted by an exact controllability problem for the fixed time
interval with the aim of attaining some steady state solution, which is then
followed by the stabilization of the steady state solution. The cost functional
is chosen of tracking type with some regularization components for the state
and the control, if necessary to assure the turnpike property for the control
problems under consideration. The steady state solution could be selected by
the optimization of the steady state network model. In other words, it turns
out that for some control problems with nonlinear state equations, the so-called
turnpike property occurs. This means that the optimal control and optimum
design for a steady state system can be used for the evolution system in the
specific case of the cost. Therefore, our analysis of the optimality conditions is
performed for the nonlinear steady state models. Such an analysis can be useful
for the real systems that are governed by the networks of Nonlinear Partial
Differential Equations.

The practical examples for our framework include, e.g., the Gas and Hy-
drogen Distribution (GHD) Networks, see Gugat and Herty (2011, 2022), and
the Geometrically Exact Beam (GEB) Networks, which lead to the Intrinsic
Geometrically Exact Beam (IGEB) network models, see Rodriguez and Leuger-
ing (2020) and Leugering et al. (2021). The GHD Networks are modeled by
quasilinear hyperbolic systems. The IGEB Networks are governed by semilin-
ear hyperbolic systems under some assumptions on the transformation of GEB
models. The steady state equations for two types of networks are given by
ODEs.

The quadratic tracking type cost, depending on the specific solution to the
steady state equation, is considered for the optimal control problem. The opti-
mal control cost is augmented by an auxiliary term depending on design, usually
in a finite-dimensional space, which models the cost of manufacturing the net-
works. We present an example of the elastic networks governed by the static
GEB state equations.
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1.2. Model for a single beam

The networks of elastic beams are of primal importance for applications that
we have in mind. Thus, we describe in detail the nonlinear models of beams
which lead to semilinear state equations for static and evolution problems. The
optimal steady state can be determined by solving the control problem for static
model. We are looking for optimal control and optimum design in the framework
of the systems which enjoy the turnpike property.

The mathematical framework describing geometrically exact beams (GEB)
focuses on the position of the beam’s centerline and the orientation of its cross
sections with a fixed coordinate system, denoted as {ej}

3
j=1 (representing the

standard basis of R
3). In the GEB context, the system state is denoted as

(p,R), expressed in the basis {ej}
3
j=1. This state comprises the position of the

centerline, denoted as p(x, t) ∈ R
3, and the orientation of the cross sections,

represented by the columns
{
bj

}3

j=1
of the rotation matrix R(x, t) ∈ SO(3).

Here, SO(3) denotes the special orthogonal group, which comprises unitary real
matrices of size 3 with a determinant equal to 1. For visual reference, we could
refer to Fig. 1. The figure illustrates three pivotal states of a deformable beam:
the unchanged reference beam; the initial beam characterized by a curvature
described as Υc = vec

(
R⊤ d

dxR
)
, where R =

[
b1 b2 b3

]
; and the beam at

time t, represented by the state variables p and R =
[

b1 b2 b3
]
.

0 xe1e1

e3

e2

Ω

b1 (x )

b3 (x )
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Figure 1. The straight reference beam (bottom), the beam before deformation
(upper left), and the beam at time t (upper right)

For a beam with a length l > 0, positioned within the domain (0, l)× (0, T ),
the governing system is defined as follows:
[

∂t 0

(∂tp̂) ∂t

] [[
R 0

0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [
R 0

0 R

]
z

]
+

[
φ̄
ψ̄

]
, (1)

given external forces and moments φ̄(x, t), ψ̄(x, t) ∈ R
3, the mass matrix M(x) ∈

S
6
++(the set of positive definite symmetric matrices), the flexibility (or compli-
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ance) matrix C(x) ∈ S
6
++, and the curvature before deformation Υc(x), where

v, z depend on (p,R):

v =

[
R⊤∂tp

vec
(
R⊤∂tR

)
]
, s =

[
R⊤∂xp − e1

vec
(
R⊤∂xR

)
− Υc

]
, z = C−1s. (2)

Here, for any u ∈ R
3, the skew-symmetric matrix û is defined as follows:

û =




0 −u3 u2
u3 0 −u1
−u2 u1 0


 .

Consider the Intrinsic Geometrically Exact Beam (IGEB) model for a single
beam. The governing semilinear system consists of twelve equations. The state
variable is denoted as

y =

[
v
z

]

expressed on a moving basis. Here, v(x, t) ∈ R
6 represents linear and angular

velocities, and z(x, t) ∈ R
6 represents internal forces and moments. We use

vf , zf , vl, and zl to denote the first and last three components of v and z,
respectively. The notation Φ̄(x, t) and Ψ̄(x, t) ∈ R

3 is employed for external
forces and moments expressed in the moving basis. Within the domain (0, l) ×
(0, T ), the governing system of IGEB reads:

[
M 0

0 C

]
∂ty −

[
0 I6

I6 0

]
∂xy −Ay = −B(v, z)

[
Mv
Cz

]
+




Φ̄
Ψ̄
0

0


 , (3)

where

A =




0 0 Υ̂c 0

0 0 ê1 Υ̂c

Υ̂c ê1 0 0

0 Υ̂c 0 0


 , B(v, z) =




v̂l 0 0 ẑf
v̂f v̂l ẑf ẑl
0 0 v̂l v̂f
0 0 0 v̂l


 , (4)

and I6 is the identity matrix having the size 6×6. The system (3) is semilinear,
because of the presence on the right-hand side of the quadratic terms

(v, z) 7→ B(v, z)

[
Mv
Cz

]
.

We introduce the matrix E(x) ∈ R
6×6, which contains information about

curvature and twist at rest, and the matrix QP(x) ∈ S
12
++, defined by

E =

[
Υ̂c 0

ê1 Υ̂c

]
, QP = diag(M,C).
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We present a simple example, that of a single beam clamped at x = 0 and with
the zero velocities at x = l. The IGEB system with boundary conditions reads





∂ty + Ā(x)∂xy + B̄(x)y = ḡ(x, y) in (0, l) × (0, T )

v(0, t) = 0 for t ∈ (0, T )

z(l, t) = 0 for t ∈ (0, T )

y(x, 0) = y0(x) for x ∈ (0, l)

(5)

where the coefficients Ā, B̄ and the source ḡ depend on M,C and R, and y0(x)
is the initial velocity. The governing system is derived by left-multiplying Eq.
(3) by the inverse of QP . Specifically, the functions Ā(x) and B̄(x) are defined
over the interval [0, l] and map to R

12×12,

Ā = −
(
QP

)−1
[

0 I6

I6 0

]
, B̄ =

(
QP

)−1
[

0 −E

E⊤ 0

]
. (6)

The function ḡ : [0, l] × R
12 → R

12 is defined by

ḡ(x, u) = QP(x)−1G(u)QP(x)u

for all x ∈ [0, l] and u =
(
u⊤1 , u

⊤
2 , u

⊤
3 , u

⊤
4

)⊤
∈ R

12 with each uj ∈ R
3, where the

map G is defined by

G(u) = −




û2 0 0 û3
û1 û2 û3 û4
0 0 û2 û1
0 0 0 û2


 .

For the static problem, the nonlinear transformation results in v = 0. Denote

L(z) :=

[
0 ẑf
ẑf ẑl

]
and we have a steady state system:





−∂xz = E(x)z − L(z)Cz +




f(x)

0
...

0




in (0, l)

z(l) = 0

(7)

where f(x) is control.

Remark 1 We are going to present numerical examples for the evolution state
equation in a separate paper. We are interested in the steady state models as
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well as dynamic models. The framework and the analysis of optimization prob-
lems for the steady state models are presented in this paper. The steady state
problems for one edge of the network are considered in Section 3. In the simplest
case, the model problem for the semilinear state equation for the steady state of
a single edge of the network can be considered in the form of the semilinear ordi-
nary differential equation (14). We refer the reader to Section 4 for elementary
numerical examples.

The paper is organized as follows. In Section 2, we recall the formulations of
known first-order necessary conditions and second-order sufficient conditions for
a weak local minimum for problems of optimal control of ordinary differential
equations.

In Section 3, we discuss a problem of optimal control of a single beam that
arises in network modeling and obtain optimality conditions for a weak local
minimum in this problem. An elementary numerical example of a single beam
problem is considered in Section 4.

Section 5 studies a general optimal control problem with m beams that
arises in network modeling, which is not a standard optimal control problem.
The characteristic of our setting is the optimum design part of the cost, which
allows to include the variable geometry of network in our analysis of the opti-
mal control and at the same time of shape optimum design. With the help of a
change of independent variables, we transform such a complex problem to the
standard one in the reference geometry, and in the latter, we use the known
optimality conditions. We then rewrite these conditions in terms of the original
problem. In shape optimization this is a standard approach, which is called the
material derivative method, see Soko lowski and Zolésio (1992) in the reference
domain setting, in contrast to the shape derivative method in the variable do-
main setting. Note that a similar technique was used by A.V. Dmitruk and
A.M. Kaganovich (2008, 2011) with slightly different goals. An example ends
Section 5.

2. Preliminaries

2.1. Formulation of the first-order necessary optimality conditions

for an autonomous problem on the interval [0, 1]

Consider the following autonomous problem of optimal control:

J(x, u) =
∫ 1

0
F (x(t), u(t)) dt→ min,

ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, 1], κ(x(0), x(1)) ≤ 0, K(x(0), x(1)) = 0.

}
(8)

Here x : [0, 1] → R
n is a continuously differentiable function, u : [0, 1] → R

m is
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a continuous function, and ẋ = dx/ dt. Hence, the problem is considered in the
space

W := C1([0, 1],Rn) × C([0, 1],Rm).

A local minimum in this space is called a weak local minimum. We call x the
state variable and u the control. All data F : Rn+m → R, f : Rn+m → R

n,
κ : R2n → R

k, K : R2n → R
s are assumed to be continuously differentiable.

We say that w = (x, u) ∈ W is an admissible point if it satisfies all the
constraints of the problem. For brevity, we set ξ = (x(0), x(1)).

Let us formulate the first-order necessary optimality conditions for this prob-
lem. We introduce the Hamiltonian (Pontryagin) function and the endpoint
Lagrange function:

H(x, u, p, α0) = pf(x, u) + α0F (x, u), L = ακ(ξ) + βK(ξ),

where p, α, β are row vectors of the same dimensions as the column vectors f ,

κ, K, respectively, α0 is a number. By definition, pf =
n∑

i=1

pifi, where pi and

fi are the components of the vectors p and f , respectively.

Denote by R
n⊤ the space of row vectors of dimension n.

By Fx and Fu we denote the partial derivatives ∂F/∂x and ∂F/∂u, re-
spectively, considered as row vectors, i.e. Fx ∈ R

n⊤, Fu ∈ R
m⊤. Similarly,

fx := ∂f/∂x and fu := ∂f/∂u, which are matrices of order n×n and n×m, re-
spectively. Note that Hx ∈ R

n⊤, Hu ∈ R
m⊤ are row vectors, and Hp = f ∈ R

n

is a column vector.

We say that at an admissible point w0 = (x0, u0) ∈ W the local minimum
principle (LMP) is satisfied if there exists a continuously differentiable function
p : [0, 1] → R

n⊤, a number α0, and row vectors α ∈ R
k⊤, β ∈ R

s⊤ such that
the following system of optimality conditions holds:

(a) the nonnegativity conditions: α0 ≥ 0, α ≥ 0,
(b) the nontriviality condition: α0 + |α| + |β| > 0,
(c) the complementary slackness condition: ακ(ξ0) = 0,

where ξ0 = (x0(0), x0(1)),
(d) the adjoint equation: −ṗ(t) = Hx(w0(t), p(t), α0) ∀ t ∈ [0, 1],
(e) the transversality conditions: (−p(0), p(1)) = Lξ(ξ0, α, β),
(f) the stationarity of the Hamiltonian with respect to the control:

Hu(w0(t), p(t), α0) = 0 ∀t ∈ [0, 1].

From the equation ẋ0 = f(w0) and conditions (d) and (f) there follows
(g) the condition for the Hamiltonian to be constant: there exists a constant

cH such that H(w0(t), p(t), α0) = cH ∀ t ∈ [0, 1].
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Indeed

d

dt
H(w0(t), p(t), α0) = Hx(w0(t), p(t), α0)ẋ0(t) +Hu(w0(t), p(t), α0)

u̇0(t) + ṗ(t)Hp(w0(t), p(t), α0) = −ṗ(t)ẋ0(t) + ṗ(t)ẋ0(t) = 0. �

The following theorem is well known, see, for example, Alekseyev et al.(1979),
Dubovitskii and Milyutin (1965), Milyutin and Osmolovskii (1998), Milyutin et
al. (2004), Pontryagin et al. (1961).

Theorem 2.1 If w0 is a weak local minimum in problem (8), then it satisfies
the LMP.

The case, when the cost Lagrange multiplier α0 is not equal to zero (for
any quadruple (α0, α, β, p(·)) satisfying the LMP conditions), is called normal.
Let us formulate a condition that guarantees the normal case for the point w0.
Introduce a set of active indices

I = {i ∈ {1, . . . , k} : κi(ξ
0) = 0}.

We say that the Mangasarian-Fromovitz constraint qualification (MFCQ) is sat-
isfied for the point w0 = (x0, u0) ∈ W if there exists a pair (x, u) ∈ W such
that

κ′i(ξ
0)ξ < 0 ∀ i ∈ I, K ′(ξ0)ξ = 0, ξ = (x(0), x(1)), ẋ = f ′(w0)w,

where, for example, f ′(w0)w = fx(w0)x + fu(w0)u. In this case, in the LMP
conditions, we can set α0 = 1.

2.2. Formulation of the second-order sufficient optimality conditions

for an autonomous problem on the interval [0, 1]

Consider again the autonomous problem (8). Now we suppose that all data F ,
f , κ, K are twice continuously differentiable.

Let us formulate sufficient second-order conditions for a weak local mini-
mum at an admissible point w0 = (x0, u0) ∈ W, satisfying necessary first-order
conditions with the adjoint variable p and Lagrange multipliers α0, α, β. Define
the critical cone at the point w0:

C :=
{
δw = (δx, δu) ∈ W : δẋ(t) = f ′(w0(t))δw(t), K ′(ξ0)δξ = 0,

κ′i(ξ
0)δξ ≤ 0, i ∈ I,

∫ 1

0
F ′(w0(t))δw(t) dt ≤ 0

}
,

where δξ = (δx(0), δx(1)). The equation δẋ = f ′(w0)δw is called the equation
in variations.
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In the normal case, where α0 = 1, the inequality
∫ 1

0
F ′(w0(t))δw(t) dt ≤ 0

can be excluded from the definition of the critical cone, but then we must add
the equalities αiκ

′
i(ξ

0)δξ = 0, i ∈ I. Thus, in the normal case, we have

C := {δw = (δx, δu) ∈ W : δẋ(t) = f ′(w0(t))δw(t), K ′(ξ0)δξ = 0,

κ′i(ξ
0)δξ ≤ 0, i ∈ I, αiκ

′
i(ξ

0)δξ = 0, i ∈ I}.

This is easy to prove using the LMP conditions. Later, in Section 3, where we
consider the normal case, we will use this critical cone representation.

Define the strengthened Legendre condition: there exists cL > 0 such that
for all t ∈ [0, 1] we have 〈Huu(w0(t), p(t), α0)u, u〉 ≥ cL|u|

2 ∀u ∈ R
m. Here

Huu = ∂2H/∂u2 stands for the second partial derivative of H with respect to
the control.

Next, define a quadratic form:

2Ω(δw) = 〈Lξξ(ξ0, α, β)δξ, δξ〉 +

∫ 1

0

〈Hww(w0(t), p(t), α0)δw(t), δw(t)〉 dt.

Note that if κ(ξ) and K(ξ) are affine functions, then L = ακ + βK is also
an affine function of ξ, and therefore, Lξξ = 0. In this case, the endpoint term
〈Lξξ(ξ0, α, β)δξ, δξ〉 vanishes, and Ω reduces to the integral only.

The following theorem holds, see, for example, Maurer and Osmolovskii
(2012).

Theorem 2.2 Assume that for the point w0

(a) the strengthened Legendre condition is satisfied,
(b) there exists a constant cΩ > 0 such that Ω(δw) ≥ cΩ(|δx(0)|2 + ‖δu‖22)

∀ δw ∈ C.

Then, there are c > 0 and ε > 0 such that J(w) − J(w0) ≥ c
(
‖x − x0‖2∞ +

∫ 1

0
|u(t) − u0(t)|2 dt

)
for all admissible w = (x, u) such that ‖w − w0‖∞ < ε,

and hence w0 is a weak local minimum in the problem.

Remark 2 Since Ω(−δw) = Ω(δw) for all δw ∈ W, condition (b) in this the-
orem is equivalent to the condition Ω(δw) ≥ cΩ(|δx(0)|2 + ‖δu‖22) ∀ δw ∈ Σ,
where Σ = C ∪ (−C). In particular, let C = {δw ∈ Γ, l(δw) ≤ 0}, where Γ is a
subspace, and l is a linear functional. Then, obviously, Σ = Γ.

2.3. Matrix Riccati equation

Now we consider a sufficient condition for positive definiteness of the quadratic
form Ω on the subspace Γ. Assume that Γ has the form:

Γ =
{
δw = (δx, δu) ∈ W : δẋ = fx(w0)δx+ fu(w0)δu, Eδξ = 0

}
,
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where E is a constant matrix, δξ = (δx(0), δx(1)). Let us show that the quadratic
form Ω could be transformed into a perfect square if the corresponding Ric-
cati equation has a solution Q(t), defined on [0, 1]. Assume that the strength-
ened Legendre condition is satisfied. Define the Riccati matrix equation along
(x0(t), u0(t), p(t)) by

Q̇+Qfx + f⊤x Q+Hxx− (Hxu +Qfu)H−1
uu (Hux + f⊤u Q) = 0, t ∈ [0, 1], (9)

where Q = Q(t) is a symmetric matrix of order n, whose elements belong to C1,
fx = fx(w0), Hxx = Hxx(w0, p, α0), etc., f⊤x means the transposed matrix fx.

Theorem 2.3 Assume that the strengthened Legendre condition is satisfied and
there exists a symmetric solution Q (with the entries belonging to C1) of the
matrix Riccati equation on [0, 1]. Then, the quadratic form Ω has the following
transformation into a perfect square on the subspace Γ:

2Ω(δw) =

∫ 1

0

〈H−1
uu δv, δv〉 dt+ 〈Mδξ, δξ〉 ∀ δw ∈ Γ, (10)

where δv := (Hux +f⊤u Q)δx+Huuδu, H
−1
uu is the inverse matrix of matrix Huu,

and

M :=

(
Lx0x0

+Q(0) Lx0x1

Lx1x0
Lx1x1

−Q(1)

)
.

For the reader’s convenience, we give a proof of this theorem. We follow Maurer
and Osmolovskii (2012) (see also Maurer and Pickenhein, 1995).

Proof Let (δx, δu) ∈ Γ. Then

2〈Qδẋ, δx〉 = 2〈Q(fxδx+ fuδu), δx〉
= 〈(Qfx + f⊤x Q)δx, δx〉 + 〈Qfuδu, δx〉 + 〈f⊤u Qδx, δu〉.

Consequently,

d

dt
〈Qδx, δx〉 = 〈Q̇δx, δx〉 + 2〈Qδẋ, δx〉

= 〈Q̇δx, δx〉 + 〈(Qfx + f⊤x Q)δx, δx〉 + 〈Qfuδu, δx〉 + 〈f⊤u Qδx, δu〉

= 〈(Q̇+Qfx + f⊤x Q)δx, δx〉 + 〈Qfuδu, δx〉 + 〈f⊤u Qδx, δu〉.

Integrating over [0, 1], we get

〈Q(1)δx(1), δx(1)〉 − 〈Q(0)δx(0), δx(0)〉

=
∫ 1

0

(
〈(Q̇+Qfx + f⊤x Q)δx, δx〉 + 〈Qfuδu, δx〉 + 〈f⊤u Qδx, δu〉

)
dt.

Consequently,

∫ 1

0

(
〈(Q̇+Qfx + f⊤x Q)δx, δx〉 + 〈Qfuδu, δx〉 + 〈f⊤u Qδx, δu〉

)
dt

+〈Q(0)δx(0), δx(0)〉 − 〈Q(1)δx(1), δx(1)〉 = 0.
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Adding this zero form to the form 2Ω(δw), we obtain

2Ω(δw) =
∫ 1

0

(
〈(Q̇+Qfx + f⊤x Q+Hxx)δx, δx〉

+〈(Qfu +Hxu)δu, δx〉 + 〈(f⊤u Q+Huxδx, δu〉 + 〈Huuδu, δu〉
)

dt

+〈Q(0)δx(0), δx(0)〉 − 〈Q(1)δx(1), δx(1)〉 + 〈Lξξδξ, δξ〉.

Now let Q satisfy the Riccati equation (9). Then

2Ω(δw) =
∫ 1

0

(
〈(Hxu +Qfu)H−1

uu (Hux + f⊤u Q)δx, δx〉

+〈(Qfu +Hxu)δu, δx〉 + 〈(f⊤u Q+Huxδx, δu〉 + 〈Huuδu, δu〉
)

dt

+〈Q(0)δx(0), δx(0)〉 − 〈Q(1)δx(1), δx(1)〉 + 〈Lξξδξ, δξ〉.

Since

〈Huuδu, δu〉 = 〈(Huu)−1Huuδu,Huuδu〉 and 〈Q(0)δx(0), δx(0)〉−〈Q(1)δx(1),

δx(1)〉 + 〈Lξξδξ, δξ〉 = 〈Mδξ, δξ〉,

we obtain

2Ω(δw) =

∫ 1

0

(
〈(Hxu +Qfu)H−1

uu (Hux + f⊤u Q)δx, δx〉

+〈(Qfu +Hxu)δu, δx〉

+〈(f⊤u Q+Huxδx, δu〉 + 〈(Huu)−1Huuδu,Huuδu〉
)

dt

+〈Mδξ, δξ〉.

Further,

〈(Hxu +Qfu)H−1
uu (Hux + f⊤u Q)δx, δx〉

+〈(Qfu +Hxu)δu, δx〉 + 〈(f⊤u Q+Huxδx, δu〉 + 〈(Huu)−1Huuδu,Huuδu〉
= 〈(Huu)−1((Hux + f⊤u Q)δx+Huuδu), ((Hux + f⊤u Q)δx+Huuδu)〉
= 〈(Huu)−1δv, δv〉,

where δv = (Hux + f⊤u Q)δx+Huuδu.

Consequently, 2Ω(δw) =
∫ 1

0
〈(Huu)−1δv, δv〉 dt+ 〈Mδξ, δξ〉. �

Assume that M is nonnegative definite. Recall that Huu is positive definite,
and then (Huu)−1 is positive definite, too. Hence, Ω(δw) ≥ 0∀ δw = (δx, δu) ∈
Γ.

Suppose that Ω(δw) = 0 for some δw = (δx, δu) ∈ Γ. Then, given (10), both

non negative terms
∫ 1

0
〈(Huu)−1δv, δv〉 and 〈Mδξ, δξ〉 are equal zero. Condition∫ 1

0
〈(Huu)−1δv, δv〉 dt = 0 implies

δv = 0, i.e. (Hux + f⊤u Q)δx+Huuδu = 0.
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Hence, δu = −(Huu)−1(Hux + f⊤u Q)δx. It follows that δx is a solution to the
homogeneous differential equation

δẋ = fx(ŵ)δx− fu(ŵ)(Huu)−1(Hux + f⊤u Q)δx

Let us now assume that the conditions Eδξ = 0, 〈Mδξ, δξ〉 = 0 imply that
δx(0) = 0 or δx(1) = 0. Then, δx = 0 and hence δu = 0. Consequently,
Ω(δw) > 0 for all δw ∈ Γ \ {0}. Since Ω is a Legendre form, its positiveness on
the subspace Γ implies positive definiteness on Γ. Thus, we obtain the following
result.

Theorem 2.4 Assume that the strengthened Legendre condition is satisfied and
there exists a symmetric solution Q (with the entries belonging to C1) of the
Riccati matrix equation on [0, 1] such that

(a) the matrix M is nonnegative definite;

(b) for all ξ = (x0, x1) ∈ R
2n the conditions Eξ = 0, 〈Mξ, ξ〉 = 0 imply

that x0 = 0 or x1 = 0. Then, the quadratic form Ω is positive definite on the
subspace Γ.

Other designations

Let Γ have the form:

Γ =
{
δw = (δx, δu) : δẋ(t) = A(t)δx(t) +B(t)δu(t), Eδξ = 0

}
,

and

2Ω(δw) = 〈Nδξ, δξ〉

+

∫ 1

0

(
〈R(t)δx(t), δx(t)〉 + 2〈S(t)δu(t), δx(t)〉 + 〈U(t)δu(t), δu(t)〉

)
dt,

(11)

where E and N are constant matrices, A(t), B(t), R(t), S(t), U(t) are matrices
with continuous entries. Assume that the matrices R(t) and U(t) are symmetric
and, moreover, the matrix U(t) is positive definite for all t ∈ [0, 1], and the
constant symmetric matrix N of the order 2n has the form

N =

(
N00 N01

N10 N11

)
,

where N00, N01, N10, N11 are constant n×n matrices, N00 and N11 are symmet-
ric, and N10 = N⊤

01. Previously, we had A = fx, B = fu, R = Hxx, S = Hxu,
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U = Huu. We can prove similar results for the new quadratic form and subspace
in the same way as before. Now, the Riccati equation and the matrix M are:

Q̇+QA+A⊤Q+R− (S +QB)U−1(S⊤ +B⊤Q) = 0, (12)

M =

(
N00 +Q(0) N01

N10 N11 −Q(1)

)
. (13)

3. The single beam problem

3.1. Statement of the problem with one beam

Consider the following optimal control problem. Let z(x) be a state variable,
f(x) be a control, where x ∈ [0, l]. Here z = (z1, . . . , zn)⊤ ∈ R

n, f ∈ R
1,

l > 0. We assume that z(x) is a continuously differentiable function and f(x)
is a continuous function. The control system has the form

dz(x)

dx
= ϕ(z(x)) + e1f(x), x ∈ [0, l], K(z(0), z(l)) = 0, (14)

where ϕ : R
n → R

n is a twice continuously differentiable function, e1 =
(1, 0, . . . , 0)T ∈ R

n, and K : R2n → R
s is an affine function of its arguments

ζ0 := z(0) and ζl := z(l). Set ζ = (ζ0, ζl). The cost that needs to be minimized
is:

J =

∫ l

0

F (x, z(x), f(x)) dx, (15)

where F (x, z, f) is a twice continuously differentiable function. In this problem
l is not fixed, but satisfies the constraint

l ∈ [a, b], where 0 < a < b. (16)

An arbitrary admissible process in this problem is defined by the triple
(l, z(·), f(·)), where z : [0, l] → R

n, f : [0, l] → R. We will consider a fixed
admissible process

(l0, z0(·), f0(·)), (17)

where z0 and f0 are defined on [0, l0].

Let us represent this problem as a problem on the interval [0, 1]. To do this,
we use the following change of the independent variable x. Let t ∈ [0, 1] be a
new independent variable. We set

x̃(t) = lt, t ∈ [0, 1].
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Then, x̃ : [0, 1] → [0, l]. We treat x̃(t) as a new state variable. We also treat
l = l̃(t) as another state variable, constant on [0, 1]. Hence

dl̃(t)

dt
= 0,

dx̃(t)

dt
= l̃(t), t ∈ [0, 1], x̃(0) = 0.

To any admissible process (l, z, f) in the original problem, we associate the
process (l̃, x̃, z̃, f̃) in the new problem by the formulas

l̃(t) = l, x̃(t) = lt, z̃(t) = z(x̃(t)) = z(lt), f̃(t) = f(x̃(t)) = f(lt) ∀ t ∈ [0, 1].

This is one-to-one correspondence. In what follows, we will continue to use the
tilde for the variables in the interval [0, 1].

Thus, we obtain an autonomous problem with a new independent variable
t ∈ [0, 1]:

dl̃(t)

dt
= 0,

dx̃(t)

dt
= l̃(t), t ∈ [0, 1], (18)

dz̃(t)

dt
= l̃(t)

(
ϕ(z̃(t)) + e1f̃(t)

)
, t ∈ [0, 1], (19)

x̃(0) = 0, K(z̃(0), z̃(1)) = 0, (20)

−l̃(0) + a ≤ 0. l̃(0) − b ≤ 0, (21)

J =

∫ 1

0

l̃(t)F (x̃(t), z̃(t), f̃(t)) dt→ min . (22)

We study the local minimum at the point

(l̃0(·), x̃0, z̃0(·), f̃0(·)), (23)

such that

l̃0(t) = l0, x̃0(t) = l0t, z̃0(t) = z0(l0t), f̃0(t) = f0(l0t), t ∈ [0, 1].

This point corresponds to the process (17) in the original problem (14)-(16).
Clearly, the minimum at (17) in problem (14)-(16) implies the minimum at (23)
in problem (18)-(22), and vice versa.

3.2. Local minimum principle for problem with one beam

Denote by p̃z(t) the adjoint variable, which corresponds to the equation for z̃
in the new problem. We consider p̃z = (p̃z1, . . . , p̃

z
n) as a row vector. We also
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introduce one-dimensional adjoint variables p̃x(t) and p̃l(t). The Hamiltonian
and the endpoint Lagrange function are:

H̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z, α0) = p̃x l̃ + p̃z l̃
(
ϕ(z̃) + e1f̃

)
+ α0 l̃F (x̃, z̃, f̃),

L̃ = αa(−l̃(0) + a) + αb(l̃(0) − b) + βxx̃(0) + βK(z̃(0), z̃(1)).

Note that L̃ is an affine function of the endpoint values l̃(0), x̃(0), z̃(0), l̃(1),
x̃(1), z̃(1) of the states l̃, x̃, and z̃, since K is an affine function by assumption.

Let us write down the first-order necessary optimality conditions at the point
(23) in problem (18)-(22). The partial derivatives of H̃ with respect to l̃, x̃, z̃, f̃
have the form

H̃l̃ = p̃x + p̃z(ϕ(z̃) + e1f̃) + α0F (x̃, z̃, f̃),

H̃x̃ = α0 l̃Fx̃(x̃, z̃, f̃),

H̃z̃ = p̃z l̃ϕ′(z̃)T + α0 l̃Fz̃(x̃, z̃, f̃),

H̃f̃ = p̃z l̃e1 + α0 l̃Ff̃ (x̃, z̃, f̃).

Hence, the conditions of the local minimum principle at the point (23) in prob-
lem (18)-(22) are as follows.

(a) The nonnegativity conditions: α0 ≥ 0, αa ≥ 0, αb ≥ 0.
(b) The nontriviality condition: α0 + αa + αb + |βx| + |β| > 0.
(c) The complementary slackness conditions: αa(l̃0(0)−a) = 0, αb(l̃

0(0)−b) =
0.

(d) The adjoint equations:

−
dp̃l(t)

dt
= p̃x(t) + p̃z(t)

(
ϕ(z̃0(t)) + e1f̃

0(t)
)

+ α0F (x̃0(t), z̃0(t), f̃0(t)),

(24)

−
dp̃x(t)

dt
= α0 l̃

0Fx̃(x̃0(t), z̃0(t), f̃0(t)), (25)

−
dp̃z(t)

dt
= p̃z(t)l̃0ϕ′(z̃0(t)) + α0 l̃

0Fz̃(x̃0(t), z̃0(t), f̃0(t)), t ∈ [0, 1]. (26)

(e) The transversality conditions:

−p̃l(0) = −αa + αb, p̃l(1) = 0,
−p̃x(0) = βx, p̃x(1) = 0,
−p̃z(0) = βKζ̃0

(z̃0(0), z̃0(1)), p̃z(1) = βKζ̃1
(z̃0(0), z̃0(1)),

where ζ̃0 = z̃(0), ζ̃1 = z̃(1).
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(f) The condition H̃f̃ = 0: p̃z(t)l̃0e1 + α0 l̃
0Ff̃ (x̃0(t), z̃0(t), f̃0(t)) = 0. Since

l̃0 > 0 and p̃z(t)e1 = p̃z1(t), we get

p̃z1(t) + α0 l̃
0Ff̃ (x̃0(t), z̃0(t), f̃0(t)) = 0, t ∈ [0, 1].

(g) Finally, the condition H̃ = const has the form: there exists a constant ĉH
such that

p̃x(t)l̃0+ p̃z(t)l̃0
(
ϕ(z̃0(t)) + e1f̃

0(t)
)

+ α0 l̃
0F (x̃0(t), z̃0(t), f̃0(t)) = c̃H

∀ t ∈ [0, 1].

Denote the left hand side of this equality by H̃(t). Dividing this equality by l̃0,
we obtain

p̃x(t) + p̃z(t)
(
ϕ(z̃0(t)) + e1f̃

0(t)
)

+ α0F (x̃0(t), z̃0(t), f̃0(t)) =
c̃H

l̃0
∀ t ∈ [0, 1].

Integrating equation (24) over the interval [0, 1] and using the above condition,
we get p̃l(0) − p̃l(1) = c̃H

l̃0
. This, and the transversality conditions −p̃l(0) =

−αa + αb, p̃
l(1) = 0, give

c̃H

l̃0
= αa − αb.

This relation means the following:

(1) If a < l̃0 < b then by the complementary slackness conditions (c) we have
αa = αb = 0 and therefore c̃H = 0.

(2) If l̃0 = a, then by (c) we have αb = 0 and, therefore, c̃H = αa l̃
0 ≥ 0.

(3) If l̃0 = b, then by (c) we have αa = 0 and, therefore, c̃H = −αb l̃
0 ≤ 0.

(4) Moreover, if c̃H > 0, then αa > 0, and, therefore, by (c) l̃0 = a; if c̃H < 0,
then αb > 0, and, therefore, by (c) l̃0 = b.

Note that the transversality condition p̃x(1) = 0 and the adjoint equation
(25) imply

p̃x(t) = α0 l̃
0

∫ 1

t

Fx̃(x̃0(τ), z̃0(τ), f̃0(τ)) dτ, t ∈ [0, 1]. (27)

Thus, we obtain the following result. If (23) is a local minimum in problem
(18)–(22), then there exist a number α0 ≥ 0, a row vector β ∈ R

s⊤, and
a continuously differentiable function p̃z(t) such that the following system of
optimality conditions holds:

dz̃

dt
= l̃0

(
ϕ(z̃0(t)) + e1f̃

0(t)
)
, t ∈ [0, 1], K(z̃0(0), z̃0(1)) = 0,

− dp̃z

dt
= p̃z(t)l̃0ϕ′(z̃0(t)) + α0 l̃

0Fz̃(x̃0(t), z̃0(t), f̃0(t)), t ∈ [0, 1],

− p̃z(0) = βKζ̃0
(z̃0(0), z̃0(1)), p̃z(1) = βKζ̃1

(z̃0(0), z̃0(1)),

p̃z1(t) + α0 l̃
0Ff̃ (x̃0(t), z̃0(t), f̃0(t)) = 0, t ∈ [0, 1].
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These conditions imply the condition of constancy of the Hamiltonian: there
exists a constant c̃H such that

p̃x(t)l̃0+p̃z(t)l̃0
(
ϕ(z̃0(t))+e1f̃

0(t)
)
+α0 l̃

0F (x̃0(t), z̃0(t), f̃0(t)) = c̃H ∀ t ∈ [0, 1],

where p̃x(t) is defined by (27).

Moreover, the following is true. If a < l̃0 < b, then c̃H = 0. If l̃0 = a, then
c̃H ≥ 0; if c̃H > 0, then l̃0 = a. If l̃0 = b, then c̃H ≤ 0; if c̃H < 0, then l̃0 = b.
We now represent this system in an equivalent way on the interval [0, l0].

Let us introduce a function pz : [0, l0] → R
n⊤ such that p̃z(t) = pz(x̃0(t)) =

pz(l0t), that is, pz(x) = p̃z
(

x
l0

)
, x ∈ [0, l0]. Then dp̃z

dt
= dpz

dx
l0. Hence, the

adjoint equation for p̃z takes the form

−
dpz(x)

dx
= pz(x)ϕ′(z0(x)) + α0Fz(x0(t), z0(t), f0(t)), x ∈ [0, l0].

So, the obtained result has the following formulation on the interval [0, l0].
In this formulation we replace pz with p, and we also replace (l0, z0(·), f0(·))
with (l, z(·), f(·)), omitting the superscript zero.

Theorem 3.1 If (l, z(·), f(·)) is a local minimum in problem (14)-(16), then
there exist a number α0 ≥ 0, a row vector β ∈ R

s⊤, and a continuously differ-
entiable function p : [0, l] → R

n⊤ such that the following system of optimality
conditions holds:

dz(x)

dx
= ϕ(z(x)) + e1f(x), x ∈ [0, l], l ∈ [a, b], K(z(0), z(l)) = 0,

− dp(x)

dx
= p(x)ϕ′(z(x)) + α0Fz(x, z(x), f(x)), x ∈ [0, l],

− p(0) = βKζ0(z(0), z(1)), p(l) = βKζ1(z(0), z(l)),

p1(x) + α0Ff (x, z(x), f(x)) = 0, x ∈ [0, l].

These conditions imply the condition of constancy of the Hamiltonian: there
exists a constant cH such that

px(x) + p(x)
(
ϕ(z(x)) + e1f(x)

)
+ α0F (x, z(x), f(x)) = cH ∀x ∈ [0, l],

where px(x) = α0

∫ l

x
Fx(y, z(y), f(y)) dy, x ∈ [0, l]. Moreover, the following is

true. If a < l < b, then cH = 0. If l = a, then cH ≥ 0; if cH > 0, then l = a. If
l = b, then cH ≤ 0; if cH < 0, then l = b.

Since px(l) = 0 and cH = H(l), we get

cH = p(l)
(
ϕ(z(l)) + e1f(l)

)
+ α0F (l, z(l), f(l)).
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This formula does not use the adjoint variable px.

In what follows, we consider the case of

F (x, z, f) =
1

2
|z − z∗(x)|2 +

1

2
(f − f∗(x))2, (28)

where |z| =
√
〈z, z〉 and z∗(x) and f∗(x) are twice continuously differentiable

functions defined on [0, b].

3.3. Second-order sufficient conditions for problem with one beam

For problem (18)-(22) on [0, 1] with the function F , defined by formula (28), we
formulate sufficient second-order conditions for a weak local minimum at the
point w̃(·) = (l̃(·), x̃(·), z̃(·), f̃(·)).

Now suppose that the normal case holds for this point. Therefore, there are
a row vector β ∈ R

s⊤ and a continuously differentiable function p̃ : [0, 1] → R
n⊤

such that the necessary optimality conditions in Section 3.2 are satisfied with
α0 = 1. In problem (18)-(22) on [0, 1], by definition ξ̃ = (l̃(0), x̃(0), z̃(0); l̃(1),
x̃(1), z̃(1)). Since L̃ is an affine function of ξ̃, we have L̃ξ̃ξ̃ = 0. Since α0 = 1, we
have

H̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z) = p̃x l̃ + p̃z l̃
(
ϕ(z̃) + e1f̃

)
+ l̃F (x̃, z̃, f̃).

Recall that H̃f̃ = p̃z l̃e1 + α0 l̃(f̃ − f∗(x̃)). Consequently, H̃f̃ f̃ = l̃. Since l̃ = l ≥
a > 0, the strengthened Legendre condition is satisfied.

Let us write down the definition of the critical cone C̃. Equations in variations
for the system

dl̃

dt
= 0,

dx̃

dt
= l̃,

dz̃

dt
= l̃(ϕ(z̃(t)) + e1f̃(t))

at the point w̃ have the form

δ
˙̃
l = 0, δ ˙̃x(t) = δl̃, δ ˙̃z(t) = l̃

(
ϕ′(z̃(t))δz̃(t) + e1δf̃(t)

)
+
(
ϕ(z̃(t)) + e1f̃(t)

)
δl̃.

The endpoint conditions x̃(0) = 0 and K(z̃(0), z̃(1)) = 0 imply the following
conditions in the critical cone

δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0,

where ζ̃ = (z̃(0), z̃(1)), δζ̃ = (δz̃(0), δz̃(1)).

Further, recall that
c̃H

l̃
= αa − αb.

The initial conditions −l̃(0) + a ≤ 0 and l̃(0) − b ≤ 0 imply:
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• if a < l̃ < b, i.e., these constraints are not active, then c̃H = 0, and we
have no conditions on δl̃(0),

• if a = l̃ and, therefore, l̃ < b, then the following conditions are satisfied:
δl̃(0) ≥ 0, c̃Hδl̃(0) = 0,

• if l̃ = b and, therefore, l̃ > a, then the following conditions are satisfied:
δl̃(0) ≤ 0, c̃Hδl̃(0) = 0.

Consequently,

C̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δ

˙̃
l = 0

δ ˙̃x(t) = δl̃, δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0, cHδl̃(0) = 0,

δ ˙̃z(t) = l̃
(
ϕ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+

(
ϕ(z̃(t)) + e1f̃(t)

)
δl̃,

l̃ = a =⇒ δl̃(0) ≥ 0; l̃ = b =⇒ δl̃(0) ≤ 0
}
.

As stated in Remark 2, if Ω is positive definite on C̃, then it is positive definite
on (−C̃). Only one of the two conditions l̃ = a or l̃ = b could be realized.
Therefore, the conditions l̃ = a =⇒ δl̃(0) ≥ 0; l̃ = b =⇒ δl̃(0) ≤ 0 in the
definition of C̃ can be omitted. More precisely, we can replace C̃ with a subspace

Σ̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δ

˙̃
l = 0, δ ˙̃x(t) = δl̃, δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0,

c̃Hδl̃(0) = 0, δ ˙̃z(t) = l̃
(
ϕ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+
(
ϕ(z̃(t)) + e1f̃(t)

)
δl̃

}
.

Note that if c̃H 6= 0, then in the definition of Σ̃ we have δl̃(0) = 0, which gives
δl̃ = 0, and this means that δx̃ = 0. In this case,

Σ̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) :

δl̃ = 0, δx̃ = 0, δ ˙̃z(t) = l̃ϕ′(ẑ(t))δz̃(t) + l̃e1δf̃(t), K ′(ζ̃)δζ̃ = 0
}
.

Let us write down the quadratic form Ω̃. Since α0 = 1,

H̃l̃ = p̃x + p̃z(ϕ(z̃) + e1f̃) + F (x̃, z̃, f̃),

H̃x̃ = l̃Fx̃ = −l̃
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) − l̃(f̃ − f∗(x̃))(f∗)′(x̃),

H̃z̃ = p̃z l̃ϕ′(z̃) + l̃
(
z̃ − z∗(x̃)

)⊤
,

H̃f̃ = p̃z l̃e1 + l̃Ff̃ (x̃, z̃, f̃) = p̃z l̃e1 + l̃(f̃ − f∗(x̃)).

Once again we emphasize that we consider z, z̃, z∗ as column vectors, and pz,

p̃z, H̃z̃ as row vectors. Therefore,
(
z̃−z∗(x̃)

)⊤
(z∗)′(x̃) =

∑
i

(
z̃i−z

∗
i (x̃)

)
(z∗i )′(x̃).
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The second-order partial derivatives have the form

H̃l̃l̃ = 0,

H̃l̃x̃ = H̃x̃l̃ = −
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) − (f̃ − f∗(x̃))(f∗)′(x̃),

H̃l̃z̃ = H̃⊤

z̃l̃
= p̃zϕ′(z̃) +

(
z̃ − z∗(x̃)

)⊤
,

H̃l̃f̃ = H̃f̃ l̃ = p̃z1 + f̃ − f∗(x̃),

H̃x̃x̃ = l̃[(z∗)′(x̃)]⊤(z∗)′(x̃) − l̃(z̃ − z∗(x̃))⊤(z∗)′′(x̃)

+l̃[(f∗)′(x̃)]2 − l̃(f̃ − f∗(x̃))(f∗)′′(x̃),

H̃x̃z̃ = H̃⊤

z̃x̃ = −l̃[(z∗)′(x̃)]⊤, H̃x̃f̃ = H̃f̃ x̃ = −l̃(f∗)′(x̃),

H̃z̃z̃ = p̃z l̃ϕ′(z̃)⊤ + l̃In, H̃z̃f̃ = H̃⊤

f̃ z̃
= 0,

H̃f̃ f̃ = l̃.

Here In is the identity matrix of size n and

(
z̃ − z∗(x̃)

)⊤
(z∗)′′(x̃) =

∑

i

(
z̃i − z∗i (x̃)

)
(z∗i )′′(x̃).

By denoting w̃ = (l̃, x̃, z̃, f̃), we get

〈H̃ww(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z)δw, δw〉

= H̃l̃l̃(δl̃)
2 + H̃x̃x̃(δx̃)2 +〈H̃z̃z̃δz̃, δz̃〉 + H̃f̃ f̃ (δf̃)2

+2H̃l̃x̃δx̃ · δl̃ + 2H̃l̃z̃δz̃ · δl̃ + 2H̃l̃f̃δf̃ · δl̃

+2H̃x̃z̃δz̃ · δx̃+ 2H̃x̃f̃δf̃ · δx̃+ 2H̃f̃ z̃δz̃ · δf̃ .

Using the above formulas, we obtain

〈
H̃w̃w̃(l̃(t), x̃(t), z̃(t), f̃(t), p̃l(t), p̃x(t), p̃z(t))δw̃(t), δw̃(t)

〉

= l̃
(

[(z∗)′(x̃(t))]⊤(z∗)′(x̃(t)) − (z̃(t) − z∗(x̃(t)))⊤(z∗)′′(x̃(t))

+ [(f∗)′(x̃(t))]2 − (f̃(t) − f∗(x̃(t)))(f∗)′′(x̃(t))
)

(δx̃(t))2

+ l̃
〈(
p̃z(t)ϕ′′(z̃(t)) + In

)
δz̃(t), δz̃(t)

〉
+ l̃

(
δf̃(t)

)2

− 2
((
z̃(t) − z∗(x̃(t))

)
(z∗)′(x̃(t)) +

(
f̃(t) − f∗(x̃(t))

)
(f∗)′(x̃(t))

)
δx̃(t) · δl̃

+ 2
(
p̃z(t)ϕ′(z̃(t)) +

(
z̃(t) − z∗(x̃(t))

)⊤)
δz̃(t) · δl̃

+ 2
(
p̃z1(t) + f̃(t) − f∗(x̃(t))

)
δf̃(t) · δl̃

− 2l̃ · [(z∗)′(x̃(t))]⊤δz̃(t) · δx̃(t) − 2l̃ · (f∗)′(x̃(t))δf̃(t) · δx̃(t).

Recall that here l̃ = l = const > 0. Since L̃ξ̃ξ̃ = 0, the quadratic form Ω̃ is:

Ω̃(δw̃) =

∫ 1

0

〈H̃w̃w̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z)δw̃, δw̃〉 dt.
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Thus, we obtain the following result: if there exists a constant c̃Ω > 0 such that

Ω̃(δw̃) ≥ c̃Ω((δl̃)2 + |δz̃(0)|2 + ‖δf̃‖22) ∀ δw̃ ∈ Σ̃,

then the quadruple (l̃(·), x̃(·), z̃(·), f̃(·)) is a weak local minimum in problem (18)-
(22) on [0, 1].

Now let us rewrite the obtained sufficient second-order condition in terms of
the independent variable x ∈ [0, l]. Let δw̃ = (δl̃, δx̃, δz̃, δf̃) ∈ Σ̃.

Introduce δz(x) such that δz(x̃(t)) = δz(lt) = δz̃(t), that is δz(x) = δz̃
(

x
l

)
.

Then, δ ˙̃z(t) = (δz)′(x̃(t))l, where (δz)′(x) = dz(x)

dx
. Define δl such that δl̃ = lδl,

that is δl = δl̃
l
. Similarly, we define δf(x) = δf̃

(
x
l

)
, δx(x) = δx̃

(
x
l

)
. Then

the equation

δ ˙̃z(t) = l̃
(
ϕ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+
(
ϕ(z̃(t)) + e1f̃(t)

)
δl̃

takes the form

(δz)′(x) = ϕ′(z(x))δz(x) + e1δf(x) +
(
ϕ(z(x)) + e1f(x)

)
δl

and the subspace Σ̃ in the new variables reads as follows

Σ =
{
δw = (δl, δx, δz, δf) : (δl)′ = 0, (δx)′(x) = δl, δx(0) = 0, K ′(ζ)δζ = 0,

cHδl(0) = 0, (δz)′(x) = ϕ′(z(x))δz(x) + e1δf(x) +
(
ϕ(z(x)) + e1f(x)

)
δl
}
,

where ζ = (z(0), z(l)), δζ = (δz(0), δz(l)). Recall that δx and δl are one-
dimensional, δl = const and δx = xδl. Therefore,

Σ =
{
δw = (δl, δx, δz, δf) : (δl)′ = 0, δx(x) = x · δl, K ′(ζ)δζ = 0, cHδl(0) = 0,

(δz)′(x) = ϕ′(z(x))δz(x) + e1δf(x) +
(
ϕ(z(x)) + e1f(x)

)
δl
}
.

Let us rewrite the quadratic form Ω̃ in the new variables. Recall that l̃ = l.
If x = x̃(t) = lt, then dx = l dt and z̃(t) = z(x), f̃(t) = f(x), δl̃ = lδl,
δz(x) = δz̃(t), δx(x) = δx̃(t), δf(x) = δf̃(t).
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Therefore, we have

l̃
(

[(z∗)′(x̃(t))]⊤(z∗)′(x̃(t)) − (z̃(t) − z∗(x̃(t)))⊤(z∗)′′(x̃(t))

+[(f∗)′(x̃(t))]2 − (f̃(t) − f∗(x̃(t)))(f∗)′′(x̃(t))
)

(δx̃(t))2 dt

=
(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)

(δx(x))2 dx,
〈(
p̃z(t)l̃ϕ′′(z̃(t)) + l̃In

)
δz̃(t), δz̃(t)

〉
dt

=
〈(
pz(x)ϕ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx,

l(δf̃(t))2 dt = (δf(x))2 dx,

−2
((
z̃(t) − z∗(x̃(t))

)⊤
(z∗)′(x̃(t)) +

(
f̃(t) − f∗(x̃(t))(f∗)′(x̃(t))

)
δx̃(t) · δl̃ · dt

= −2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) +

(
f(x) − f∗(x)

)
(f∗)′(x)

)
δx(x) · δl · dx,

2
((
p̃z(t)ϕ′(z̃(t)) +

(
z̃(t) − z∗(x̃(t))

)⊤)
δz̃(t) · δl̃ · dt

= 2
((
pz(x)ϕ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) · δl · dx,

2
(
p̃z1(t) + f̃(t) − f∗(x̃(t))

)
δf̃(t) · δl̃ · dt

= 2
(
pz1(x) + f(x) − f∗(x)

)
δf(x) · δl · dx

−2l̃[(z∗)′(x̃(t))]⊤δz̃(t) · δx̃(t) · dt− 2l̃(f∗)′(x̃(t)) · δf̃(t) · δx̃(t) · dt

= −2[(z∗)′(x)]⊤δz(x) · δx(x) · dx− 2(f∗)′(x)δf(x) · δx(x) · dx.

Consequently,

Ω̃(δw̃) = Ω(δw),

where

Ω(δw) =
∫ l

0

{(
[(z∗)′(x)]⊤(z∗)′(x) −

(
z(x) − z∗(x)

)⊤
(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)
(δx(x))2

+
〈(
pzϕ′′(z) + In

)
δz(x), δz(x)

〉
+ (δf(x))2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
δx(x) · δl

+2
(
pz(x)ϕ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) · δl

+2
(
pz1(x) + f(x) − f∗(x)

)
δf(x) · δl

−2[(z∗)′(x)]⊤δz(x) · δx(x) − 2(f∗)′(x)δf(x) · δx(x)
}

dx.
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Below we replace pz with p, omitting the superscript z. Since δl ∈ R is a
constant, δx = x · δl, and δf is one-dimensional, we obtain

Ω(δw) = (δl)2
∫ l

0

(
[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x)(f∗)′′(x)
)
x2 dx

+
∫ l

0

〈(
p(x)ϕ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx+

∫ l

0
(δf(x))2 dx

−2(δl)2
∫ l

0

((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
x dx

+2δl
∫ l

0

(
p(x)ϕ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) dx

+2δl
∫ l

0

(
p1(x) + f(x) − f∗(x)

)
δf(x) dx

−2δl
∫ l

0

(
(z∗)′(x)

)⊤
δz(x)x dx− 2δl

∫ l

0
(f∗)′(x)δf(x)x dx.

(29)

This quadratic form is independent of δx. We can exclude δx from the definition
of Σ as well. Therefore, the quadratic form Ω is considered on a subspace, which
we still denote by Σ (we also keep the notation δw for the shorter collection
(δl, δz, δf)):

Σ :=
{
δw = (δl, δz, δf) : (δl)′ = 0, cHδl = 0, K ′(ζ)δζ = 0,

(δz)′(x) = ϕ′(z(x))δz(x) + e1δf(x) +
(
ϕ(z(x)) + e1f(x)

)
δl

}
.

Thus, we obtain the following result:

Theorem 3.2 Let an admissible triple (l, z(·), f(·)) satisfy the first order nec-
essary optimality conditions of Theorem 3.1 in problem (14)-(16) with the cor-
responding multipliers α0 = 1, β, p(·). Suppose there exists a constant cΩ > 0
such that

Ω(δw) ≥ cΩ

(
(δl)2 + |δz(0)|2 + ‖δf‖22

)
∀ δw ∈ Σ.

Then the triple (l, z(·), f(·)) is a weak local minimum in problem (14)-(16).

3.4. Matrix Riccati equation for one beam: case CH 6= 0

In this case, as we know, the condition CH > 0 implies l = a, and the condition
CH < 0 implies l = b. Then, in the definition of Σ, we have δl = 0, so that we
can put

Σ :=
{
δw = (δz, δf) : (δz)′(x) = ϕ′(z(x))δz(x) + e1δf(x), K ′(ζ)δζ = 0

}
.

Since δl = 0, the quadratic form reduces to

Ω(δw) =

∫ l

0

〈(
p(x)ϕ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx+

∫ l

0

(δf(x))2 dx.
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We study the question of the positive definiteness of Ω on Σ in terms of the
solution of the matrix Riccati equation. Obviously, the strengthened Legendre
condition is satisfied.

Upon comparing the differential equation in the definition of Σ with the
equation (δz)′ = Aδz +Bδf (see the end of Section 2.3), we obtain

A = ϕ′((z(x)), B = e1 = (1, 0, . . . , 0)⊤.

Comparing Ω with (2.3), we get

R = p(x)ϕ′′(z(x)) + In, S = 0, U = 1.

Consequently,

(S +QB)U−1(S⊤ +B⊤Q) = Qe1e
⊤

1 Q =




Q11

. . .
Q1n


(

Q11 . . . Q1n

)

=




Q11Q11 . . . Q11Q1n

. . . . . . . . .
Q1nQ11 . . . Q1nQ1n


 = ||Q1iQ1j ||

n
i,j=1.

Thus, the Riccati equation (12) reduces to the following

d

dx
Q+QA+A⊤Q+R−Qe1e

⊤

1 Q = 0, x ∈ [0, l]. (30)

where
A = ϕ′((z(x)), R = p(x)ϕ′′(z(x)) + In,

e1 = (1, 0. . . . , 0)T , Qe1e
T
1Q = ||Q1iQ1j ||

n
i,j=1.

The matrix M has the form

M =

(
Q(0) 0

0 −Q(l)

)
.

To this Riccati equation, one can add the initial condition

Q(0) = In,

where In is the identity matrix of order n.

Similarly to Theorem 2.4 the following theorem holds.

Theorem 3.3 Assume that the strengthened Legendre condition is satisfied,
CH 6= 0, and there exists a symmetric solution Q (with the entries belonging
to C1) of the Riccati matrix equation (30) on [0, l] such that

(a) the matrix M is nonnegative definite;

(b) for all ζ = (ζ0, ζ1) ∈ R
2n the conditions K ′(ζ)ζ = 0, 〈Mζ, ζ〉 = 0 imply

that ζ0 = 0 or ζ1 = 0. Then the quadratic form Ω is positive definite on the
subspace Σ.
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3.5. Matrix Riccati equation for one beam: case CH = 0

In this more complicated case, we have

Σ :=
{
δw = (δl, δz, δf) : (δl)′ = 0, K ′(ζ)δζ = 0,

(δz)′(x) = ϕ′(z(x))δz(x) + e1δf(x) +
(
ϕ(z(x)) + e1f(x)

)
δl
}
.

Consider again the sufficient condition for the positive definiteness of the
quadratic form Ω on the subspace Σ. Now Σ is defined by a linear system of
differential equations

{
(δl)′ = 0,

(δz)′ = (ϕ((z(x)) + e1f(x))δl + ϕ′((z(x))δz(x) + e1δf(x).

In the sequel, we denote

X =

(
l
z

)
=




l
z1
. . .
zn


 ∈ R

n+1, δX =

(
δl
δz

)
=




δl
δz1
. . .
δzn


 ∈ R

n+1,

w =

(
X
f

)
=




l
z
f


 ∈ R

n+2, δw =

(
δX
δf

)
=




δl
δz
δf


 ∈ R

n+2.

Let us represent the above system in matrix form (δX)′ = AδX + Bδf ,
where A is a (n+ 1) × (n+ 1) matrix, and B is a (n+ 1) × 1 matrix such that

A =

(
0 0⊤n

ϕ(z(x)) + e1f(x) ϕ′((z(x))

)
, B =

(
0
e1

)
, 0⊤n = (0, . . . , 0) ∈ R

n⊤.

It is convenient to present

A :=

(
0 0⊤n
Azl Azz

)
, where Azl = ϕ(z(x)) + e1f(x), Azz = ϕ′((z(x)).

Compare quadratic form (29) with the standard form (see (2.3)):

Ω(δw) =

∫ l

0

(
〈RδX, δX〉 + 2(δX)⊤Sδf + U(δf)2

)
dt,

where R is the symmetric (n + 1) × (n + 1) matrix, S ∈ R
n+1 is the column

vector, U is the number. Let us find the matrix R. Denote

R =

(
Rll Rlz

Rzl Rzz

)
,
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where Rll, Rlz, Rzl = R⊤

lz , Rzz = R⊤

zz are matrices of orders 1× 1, 1×n, n× 1,
n× n, respectively. Then,

〈RδX, δX〉 = Rll(δl)
2 + 2Rlzδzδl + 〈Rzzδz, δz〉.

Using (29), we obtain

〈RδX, δX〉 =
[(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)
x2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
x
]
· (δl)2

+
〈(
p(x)ϕ′′(z(x)) + In

)
δz(x), δz(x)

〉

+2
[(
p(x)ϕ′(z(x)) +

(
z(x) − z∗(x)

)⊤
− x

(
(z∗)′(x)

)⊤]
δz(x) · δl.

Consequently,

Rll =
(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)
x2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
x, (31)

Rzz = p(x)ϕ′′(z(x)) + In, (32)

Rlz = R⊤

zl =
(
p(x)ϕ′(z(x)) +

(
z(x) − z∗(x)

)⊤
− x

(
(z∗)′(x)

)⊤
. (33)

Further, U = 1, and finally, S has the form

S =

(
Sl

0n

)
∈ R

n+1,

where Sl = p1(x) + f(x) − f∗(x) − x(f∗)′(x). Recall that the Riccati equation
has the form

d

dx
Q+QA+ATQ+R− (S +QB)U−1(ST +BTQ) = 0, x ∈ [0, l],

where

Q(x) =

(
Qll Qlz

Qzl Qzz

)
(x),

where

Qll(x) ∈ R, Qzl(x) =




Qz1l

. . .
Qznl


 (x) ∈ R

n,
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Qlz(x) = Q⊤

zl(x) =
(
Qlz1 . . . Qlzn

)
(x) ∈ R

n⊤,

and

Qzz(x) =




Qz1z1 . . . Qz1zn

. . . . . . . . .
Qznz1 . . . Qznzn


 (x)

is n× n symmetric matrix. Since U = 1, we have

(S +QB)U−1(S⊤ +B⊤Q) = (S +QB)(S +QB)⊤.

Further,

QB =

(
Qll Qlz

Qzl Qzz

)(
0
e1

)
=

(
Qlze1
Qzze1

)
.

Hence

S +QB =

(
Sl

0

)
+

(
Qlze1
Qzze1

)
=

(
Qlze1 + Sl

Qzze1

)
.

Consequently,

(S +QB)(S +QB)⊤ =

(
Qlze1 + Sl

Qzze1

)(
Qlze1 + Sl, e

⊤

1 Qzz

)

=

(
(Qlze1 + Sl)

2 (Qlze1 + Sl)e
⊤

1 Qzz

Qzze1(Qlze1 + Sl) (Qzze1)(e⊤1 Qzz)

)
.

Moreover,

QA =

(
Qll Qlz

Qzl Qzz

)(
0 0⊤n
Azl Azz

)
=

(
QlzAzl QlzAzz

QzzAzl QzzAzz

)
,

A⊤Q =

(
QlzAzl A⊤

zlQzz

A⊤

zzQzl A⊤

zzQzz

)
.

Here, QlzAzl, QlzAzz, QzzAzl, QzzAzz are matrices of order 1× 1, 1×n, n× 1,
n× n, respectively. Consequently,

QA+A⊤Q =

(
2QlzAzl QlzAzz +A⊤

zlQzz

QzzAzl +A⊤

zzQzl QzzAzz +A⊤

zzQzz

)
.

Thus, according to (12), we obtain the matrix Riccati equation in the form

d

dx

(
Qll Qlz

Qzl Qzz

)
+

(
2QlzAzl QlzAzz +A⊤

zlQzz

QzzAzl +A⊤

zzQzl QzzAzz +A⊤

zzQzz

)
+

(
Rll Rlz

Rzl Rzz

)

−

(
(Qlze1 + Sl)

2 (Qlze1 + Sl)e
⊤

1 Qzz

(Qlze1 + Sl)Qzze1 (Qzze)(e
⊤

1 Qzz)

)
= 0, x ∈ [0, l], (34)
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where the blocks of the matrix R are determined by formulas (31)-(33). Further,
the matrix M has the form

M =

(
Q(0) 0

0 −Q(l)

)
.

We set

δξ =

(
δX(0)
δX(l)

)
.

Then
〈Mδξ, δξ〉 = 〈Q(0)δX(0), δX(0)〉 − 〈Q(l)δX(l), δX(l)〉,

where

δX(0) =

(
δl

δz(0)

)
, δX(l) =

(
δl
δz(l)

)
, (δl)′ = 0, i.e., δl = const .

The condition Eδξ = 0 in the definition of Σ (see Section 2.3) means Kz0δz(0)+
Kzlδz(l) = 0, (δl)′ = 0. Consequently,

δX0 := δX(0) =

(
δl

δz(0)

)
, δXl := δX(l) =

(
δl
δz(l)

)
.

Similarly to Theorem 2.4, the following theorem holds.

Theorem 3.4 Assume that the strengthened Legendre condition is satisfied,
CH = 0, and there exists a symmetric solution Q (with the entries belonging
to C1) of the Riccati matrix equation (3.5) on [0, l] such that

(a) the matrix M is nonnegative definite;

(b) for all pairs of vectors in R
n+1

δX0 =

(
δl
δz0

)
, δXl =

(
δl
δzl

)

the conditions Kz0δz0+Kzlδzl = 0, δl ∈ R, 〈Q(0)δX0, δX0〉−〈Q(l)δXl, δXl〉 = 0
imply that δX0 = 0 or δXl = 0. Then, the quadratic form Ω is positive definite
on the subspace Σ.

4. Numerical examples

4.1. Example 1

Consider a steady state scenario involving a single edge, governed by a semilinear
differential equation. The control system has the form

z′(x) = ϕ(z(x)) + f(x), x ∈ [0, l], z(l) = 0,
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where z is one dimensional and l is not fixed. The beam’s behavior is described
by the function

ϕ(z) = z − z2.

Set

l∗ = 1, z∗(x) = −2 + x+ x2, f∗(x) = 7 − 3x− 4x2 + 2x3 + x4.

It is easy to check that the triple (l∗, z∗, f∗(x)) defines an admissible process of
a given control system.

The cost functional is expressed as:

J =
1

2

∫ l

0

(
(z(x) − z∗(x))2 + (f(x) − f∗(x))2

)
dx+

1

2
(l − l∗)2 → min .

The parameter l is constrained, l ∈ [ 12 ,
3
2 ].

Obviously, (l∗, z∗, f∗(x)) is the solution to this problem. But assume that
this solution is unknown and let us write down the necessary optimality condi-
tions of Theorem 3.1.

Since
∫ l

0
(x − l∗) dx = 1

2 (l − l∗)2 − 1
2 (l∗)2, we can consider the equivalent

problem of minimizing the functional

J =

∫ l

0

F (x, z(x), f(x)) dx

with F (x, z, f) = 1
2

(
(z − z∗(x))2 + (f − f∗(x))2

)
+ x− l∗.

Let the triple (l, z(·), f(·)) be a solution to this problem. Then, according
to Theorem 3.1 there are numbers α0 ≥ 0, β, and a continuously differentiable
function p : [0, l] → R such that

z′(x) = ϕ(z(x)) + f(x), z(l) = 0,

−p′(x) = p(x)ϕ′(z(x)) + α0Fz(x, z(x), f(x)), x ∈ [0, l],

p(0) = 0, p(l) = β,

p(x) + α0Ff (x, z(x), f(x)) = 0, x ∈ [0, l].

If α0 = 0, then p(x) = 0 and β = 0. Therefore, α0 > 0, and we put α0 =
1. Hence, taking into account the facts that ϕ(z) = z − z2, ϕ′(z) = 1 − 2z,
Fz(x, z, f) = (z − z∗(x)), and Ff (x, z, f) = f − f∗(x), we get a system

z′(x) = z(x) − z2(x) + f(x), z(l) = 0,
−p′(x) = p(x)(1 − 2z(x)) + z − z∗(x), p(0) = 0
p(x) + f(x) − f∗(x) = 0.



 (35)
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Theorem 3.1 gives one more necessary optimality condition for determining
(l, z(·), f(·)). Recall that we are considering l close to l∗ = 1, which means
a < l < b with a = 0.5, b = 1.5. As we know, in this case cH = 0. Since α0 = 1,
this condition looks like

cH = px(x) + p(x)
(
ϕ(z(x)) + f(x)

)
+ F (x, z(x), f(x)) = 0 ∀x ∈ [0, l],

where px(x) = α0

∫ l

x
Fx(y, z(y), f(y)) dy, x ∈ [0, l]. Considering that px(l) = 0,

z(l) = 0, and −p(l) = f(l) − f∗(l), we get

0 = p(l)
(
ϕ(z(l)) + f(l)

)
+ F (l, z(l), f(l))

= p(l)
(
ϕ(0) + f(l)

)
+ F (l, 0, f(l))

= p(l)f(l) +
1

2
(z∗(l))2 +

1

2
((f(l) − f∗(l))2 + l − 1

= p(l)f(l) +
1

2
(z∗(l))2 +

1

2
(p(l))2 + l − 1,

that is

p(l)f(l) +
1

2
(z∗(l))2 +

1

2
(p(l))2 + l − 1 = 0. (36)

Conditions (35) and (36) constitute a complete system of necessary optimality
conditions for determining (l, z(·), f(·)). Obviously, the triple p(x) = 0, f(x) =
f∗(x), z(x) = z∗(x) is a solution to this system.

We will now show numerical results for this problem. We conducted the
computations using the finite element method and the Newton method to handle
the nonlinear component. Here are the results. Fig. 2 illustrates the variation
of the cost functional with respect to the length parameter. It is observed that
the cost functional attains its minimum value at l = 1 = l∗, indicating the
optimality of this length. This signifies that the length l = 1 is the optimal
choice based on the minimization of the cost functional. In Fig. 3, we show the
optimal control and state under the optimal length. Then, we computed the L2

norm error between the numerical solution and the analytical solution to assess
the accuracy of the results:

ferr = ||f(x) − f∗(x)|| = 1.6236e− 12, zerr = ||z(x) − z∗(x)|| = 4.5426e− 11.

4.2. Example 2

Consider the steady state for a single beam governed by the semilinear differ-
ential equation (Eq. 7). We present results from numerical simulations. The
flexibility matrices are given by

C = diag (c1, c2, c3, c4, c5, c6)
−1

= diag
(
104, 104, 104, 500, 500, 500

)−1
.
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Figure 2. Cost with respect to l

Figure 3. Optimal control and optimal state
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In Eq. (14), upon setting f∗(x) = −1, the steady state values are z∗1 = −x +
1, z∗2 = 0, . . . , z∗6 = 0. For IGEB model, the function

ϕ(r) = −E(x)r + L(r)Cr,

and its derivative is given by

ϕ′(r) = −E(x) + (L(r)Cr)′ := −E(x) + Ḡ(r).

The optimality system of equations can be written as




z′(x) = −E(x)z(x) + L(z)Cz(x) + e1(f∗ − p1(x)), x ∈ [0, l]

−p′(x) = −p(x)E(x) + p(x)Ḡ(z) + z(x) − z∗(x), x ∈ [0, l]

zi(l) = 0, i = 1, 2, . . . , 6

pi(0) = 0, i = 1, 2, . . . , 6.

The weak form of this system is given by:




−

∫ l

0

〈
dψ

dx
, z

〉
dx− z(0)ψ(0) +

∫ l

0

〈Ez, ψ〉 dx−

∫ l

0

〈CL(z)z, ψ〉 dx

+

∫ l

0

e1 〈p, ψ〉 dx =

∫ l

0

e1 〈f
∗, ψ〉 dx, ∀ψ ∈ V1

∫ l

0

〈
dη

dx
, p

〉
dx− p(1)η(1) +

∫ l

0

〈Ep, η〉 dx−

∫ l

0

〈
Ḡ(z)p, η

〉
dx

−

∫ l

0

〈z, η〉 dx = −

∫ l

0

〈z∗, η〉 dx, ∀η ∈ V2,

(37)

where

V1 := {ψ ∈ H1
(
0, l;R6

)
, ψ(1) = 0},

and

V2 := {η ∈ H1
(
0, l;R6

)
, η(0) = 0}.

In numerical discretization, the interval [0, l] is discretized intoNx points {xk}
Nx

k=1,
where x1 = 0 and xNx

= l. Each subinterval (ωe := [x2e−1, x2e+1]) for
e ∈ {1, 2, . . . , Ne} constitutes an element. These elements are defined by the
points x2e−1, x2e, and x2e+1 and have a uniform length he = x2e+1 − x2e−1. It
is important to note that Nx = 2Ne + 1.

We utilize P2 (quadratic) elements to define function spaces V1,h and V2,h
as described below:

V1,h : =
{
ψ ∈ C0

(
[0, l];RN6

)
: ψ|ωe ∈ (P2)

N6 for all e ∈ {1, . . . , Ne} , ψ(1) = 0
}
,

V2,h : =
{
η ∈ C0

(
[0, l];RN6

)
: η|ωe ∈ (P2)

N6 for all e ∈ {1, . . . , Ne} , η(0) = 0
}
.
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The Lagrange finite element approximations for zi(x) and pi(x) are represented
by the following expressions:

zi(x) =

Nx∑

j=1

Zi,jψj(x), pi(x) =

Nx∑

j=1

Pi,jηj(x),

where the unknown coefficients Zi,j denote the value of zi at the P2 basis func-
tion ψj , whose value is 1 at node xj and 0 at other nodes, and similarly for Pi,j .
In the discretized system, we define the following matrices and vectors:

A1 =

∫ l

0

ψψ⊤, A2 =

∫ l

0

ψ(ψ′)⊤, A3[z] =

∫ l

0

zψψ⊤,

Ā1 =

∫ l

0

ηη⊤, Ā2 =

∫ l

0

η(η′)⊤, Ā3[z] =

∫ l

0

zηη⊤,

where ψ = (ψ1, ψ2, · · · , ψNx
)⊤ and η = (η1, η2, · · · , ηNx

)⊤. The matrix form of
Eq. 37 can be written as

−Ks,1Z −MCL(z)Z + ē1M̄P = ē1F̂ ,

Ks,2P −MG(z)P − M̄Z = −Ẑ,
(38)

i.e.,

(
−Ks,1 ē1M̄
−M̄ Ks,2

)(
Z
P

)
−

(
MCL(z)

MG(z)

)(
Z
P

)
=

(
ē1F̂

−Ẑ

)
, (39)

where ē1 = diag(INx
,ONx

,ONx
,ONx

,ONx
,ONx

). ONx
is the matrix of zeros.

Furthermore, the vectors Z and P are defined as:

Z = (Z1,1, · · · , Z1,Nx
, · · · , Z6,1, · · · , Z6,Nx

)
⊤
,

P = (P1,1, · · · , P1,Nx
, · · · , P6,1, · · · , P6,Nx

)
⊤
.

Similarly,

Ẑ =
(
Ẑ1,1, · · · , Ẑ1,Nx

, · · · , Ẑ6,1, · · · , Ẑ6,Nx

)⊤

,

F̂ =
(
F̂1, · · · , F̂Nx

,ONx
,ONx

,ONx
,ONx

,ONx

)⊤

,

where Ẑi,j represents the value of z∗i at the basis function ψj and F̂j represents
the value of f∗ at the basis function ηj .
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The other matrices are defined by:

Ks,1 =




A2

A2

A2

A2

A1 A2

−A1 A2



,

Ks,2 =




Ā2

Ā2

Ā2

Ā2

−Ā1 Ā2

Ā1 Ā2



,

MG(z)=




0 c6Ā3(z6) −c5Ā3(z5) 0 −c5Ā3(z3) c6Ā3(z2)
−c6Ā3(z6) 0 c4Ā3(z4) c4Ā3(z3) 0 −c6Ā3(z1)

c5Ā3(z5) −c4Ā3(z4) 0 −c4Ā3(z2) c5Ā3(z1) 0

0 (c3 − c2)Ā3(z3) (c3 − c2)Ā3(z2) 0 (c6 − c5)Ā3(z6) (c6 − c5)Ā3(z5)

(c1 − c3)Ā3(z3) 0 (c1 − c3)Ā3(z1) (c4 − c6)Ā3(z6) 0 (c4 − c6)Ā3(z4)

(c2 − c1)Ā3(z2) (c2 − c1)Ā3(z1) 0 (c5 − c4)Ā3(z5) (c5 − c4)Ā3(z4) 0




,

MCL(z)=




0 0 0 0 −c5A3(z3) c6A3(z2)
0 0 0 c4A3(z3) 0 −c6A3(z1)
0 0 0 −c4A3(z2) c5A3(z1) 0

0 −c2A3(z3) c3A3(z2) 0 −c5A3(z6) c6A3(z5)
c1A3(z3) 0 −c3A3(z1) c4A3(z6) 0 c6A3(z4)
−c1A3(z2) c2A3(z1) 0 −c4A3(z5) c5A3(z4) 0



,

M̄ = diag(A1, A1, A1, A1, A1, A1).

Denote

A =

(
−Ks,1 ē1M̄
−M̄ Ks,2

)
, NL(z) =

(
MCL(z)

MG(z)

)
,

W =

(
Z
P

)
, F =

(
ē1F̂

−Ẑ

)
.

So, Eq. (39) becomes:

AW −NL(z)W = F, (40)
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where NL(z) represents the nonlinear component. The iterative process is gov-
erned by the equation:

AW [n+1] −NL(z[n])W [n+1] = F,

where the superscript [n] denotes the n-th iteration. With an auxiliary function
Sn:

Sn(ζ) = Aζ −NL(z[n])ζ − F,

equation (40) becomes Sn(W [n+1]) = 0. To find an approximate solution to
Sn(ζ) = 0, we employ the Newton-Raphson method, i.e., finding ζ such that
Sn(ζ) = 0, by means of the scheme:

ζn+1 = ζn − (JacSn (ζn))
−1
Sn (ζn) ,

where JacSn = A−NL(z[n]).

For our problem, the initial data is set to zero. The following Algorithm 1
outlines the steps taken to approximate the solution to Eq. (37). The results
of this iterative scheme are visually presented in Fig. 4. The diagrams in Fig.
4 demonstrate that the optimal state and control closely approach z∗ and f∗,
respectively, when l = l∗. Furthermore, Fig. 5 illustrates the fact that the cost
is convex with respect to the length of beam with the unique minimizer. The
optimal design corresponds to the length l = l∗ = 1.

Algorithm 1: Solve the obtained ODE for W

Set C, f∗, z∗ ;
Given initial guesses z0 ;
while convergence do

ζn+1 = ζn − (JacSn (ζn))
−1
Sn (ζn) ;

end

W = ζn+1

5. Network modeling: optimal control problem P

5.1. Statment of problem P

Consider now the following optimal control problem that arises in network mod-
eling. Let zi(xi) be state variables, fi(xi) be controls, where xi ∈ [0, li], li > 0,
i = 1, . . . ,m. Here zi = (zi1, . . . , zin)⊤ ∈ R

n, fi ∈ R, i = 1, . . . ,m. We assume
that zi(xi) are continuously differentiable functions and fi(xi) are continuous
functions, i = 1, . . . ,m.
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Figure 4. Optimal state z(top) and optimal force f(bottom) (l = l∗)
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Figure 5. Cost with respect to l

Problem P : The control system has the form

dzi(xi)

dxi
= ϕ(zi(xi)) + e1fi(xi), xi ∈ [0, li], i = 1, . . . ,m, (41)

where e1 = (1, 0, . . . , 0)⊤ ∈ R
n, ϕ : Rn → R

n is a twice continuously differen-
tiable function.

Additionally, there is a constraint:

K(z1(0), z1(l1) . . . , zm(0), zm(lm)) = 0, (42)

where K = (K1, . . . ,Kr) ∈ R
r.

The cost to be minimized is:

J =

m∑

i=1

∫ li

0

Fi(xi, zi(xi), fi(xi)) dxi, (43)

where

Fi(xi, zi, fi) =
1

2
|zi − z∗i (xi)|

2 +
1

2
(fi − f∗i (xi))

2, xi ∈ [0, li],

z∗i (·) and f∗i (·) are given twice continuously differentiable functions, i = 1, . . . ,m.
The lengths of the intervals li satisfy the constraints

li ∈ [a, b], where 0 < a < b.
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We assume that z∗i and f∗i are given on [0, b], i = 1, . . . ,m.

We will be interested in optimality conditions in problem P for an admissible
process

(zi(xi), fi(xi) | xi ∈ [0, li])
m
i=1. (44)

This is not a standard optimal control problem, since it has many indepen-
dent variables xi, and each independent variable changes over its own interval
[0, li]. Now our goal is to represent this problem as a standard problem with
one independent variable.

5.2. Change of independent variables xi. Problem P̃ on the inter-

val [0, 1]

We shall rewrite this problem on the interval [0, 1]. Let t ∈ [0, 1] be a new
independent variable. We set xi = x̃i(t) = li · t, t ∈ [0, 1], i = 1, . . . ,m. Then
x̃i(t) ∈ [0, li], i = 1, . . . ,m. We consider each xi = x̃i(t) as a new state variable,
i = 1, . . . ,m. Moreover, we treat each li = l̃i(t) also as a new state variable,
that is constant on [0, 1], i = 1, . . . ,m.

Therefore, we have

dl̃i(t)

dt
= 0,

dx̃i(t)

dt
= l̃i(t), t ∈ [0, 1], x̃i(0) = 0, i = 1, . . . ,m.

Further, we set z̃i(t) = zi(x̃i(t)) = zi(lit), f̃i(t) = fi(x̃i(t)) = fi(lit), t ∈
[0, 1], i = 1, . . . ,m. Then

dz̃i
dt

=
dzi
dxi

l̃i, i = 1, . . . ,m.

Also, note that

J :=

m∑

i=1

∫ li

0

Fi(xi, zi(xi), fi(xi)) dxi =

m∑

i=1

∫ 1

0

l̃i(t)Fi(x̃i(t), z̃i(t), f̃i(t)) dt.

In what follows, we will continue to use the tilde for the variables in the interval
[0, 1].
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Thus, we get a Problem P̃ on [0,1]:

dl̃i(t)

dt
= 0,

dx̃i(t)

dt
= l̃i(t), t ∈ [0, 1], i = 1, . . . ,m, (45)

dz̃i(t)

dt
= l̃i(t)

(
ϕ(z̃i(t)) + e1f̃i(t)

)
, t ∈ [0, 1], i = 1, . . . ,m, (46)

x̃i(0) = 0, −l̃i(0) + a ≤ 0, l̃i(0) − b ≤ 0, i = 1, . . . ,m, (47)

K(z̃1(0), z̃1(1) . . . , z̃m(0), z̃m(1)) = 0, (48)

J =

m∑

i=1

∫ 1

0

l̃i(t)Fi(x̃i(t), z̃i(t), f̃i(t)) dt→ min . (49)

5.3. Local minimum principle for Problem P̃

The endpoint Lagrange function is:

L̃ =
∑m

i=1 αai(−l̃i(0) + a) +
∑m

i=1 αbi(l̃i(0) − b)

+
∑m

i=1 βxix̃i(0) + βK(z̃1(0), z̃1(1) . . . , z̃m(0), z̃m(1)),

where αai, αbi, βxi are numbers, β ∈ R
r⊤ is a row vector of dimension r. The

Hamiltonian is:

H̃ =
m∑

i=1

p̃xi l̃i +
m∑

i=1

p̃zi l̃i
(
ϕ(z̃i) + e1f̃i

)
+ α0

m∑

i=1

l̃iFi(x̃i, z̃i, f̃i),

where α0, p̃xi are numbers and pzi are row vectors of dimension n. It is conve-
nient to introduce

H̃i := l̃i
(
p̃xi + p̃zi

(
ϕ(z̃i) + e1f̃i

)
+ α0Fi(x̃i, z̃i, f̃i)

)
, i = 1, . . . ,m.

Then H̃ =
m∑
i=1

H̃i.

Let us write down the necessary first-order optimality conditions at an ad-
missible point

(l̃i(·), x̃i(·), z̃i(·), f̃i(·))
m
i=1, (50)

which corresponds to the process (44).
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The partial derivatives of H̃ with respect to l̃i, x̃i, z̃i, f̃i have the form

H̃l̃i
= p̃xi + p̃zi

(
ϕ(z̃i) + e1f̃i

)
+ α0Fi(x̃i, z̃i, f̃i) = H̃i

l̃i
,

H̃x̃i
= α0 l̃iFix̃i

(x̃i, z̃i, f̃i)

= −α0 l̃i
(
z̃i − z∗i (x̃i)

)⊤
(z∗i )′(x̃i) − α0 l̃i(f̃i − f∗i (x̃i))(f

∗
i )′(x̃i),

H̃z̃i = p̃zi l̃iϕ
′(z̃i)

T + α0 l̃i
(
z̃i − z∗i (x̃i)

)⊤
,

H̃f̃i
= p̃zi l̃ie1 + α0 l̃iFf̃i

(x̃i, z̃i, f̃i) = p̃zi l̃ie1 + α0 l̃i(f̃i − f∗i (x̃i)).

We use these formulas below. In what follows we remember that l̃i(t) = li =
const.

The LMP conditions at the point (50) in problem (45) -(49) are as follows.

(a) The nonnegativity conditions: α0 ≥ 0, αai ≥ 0, αbi ≥ 0, i = 1, . . . ,m.

(b) The nontriviality condition: α0 +
m∑
i=1

αai +
m∑
i=1

αbi +
m∑
i=1

|βxi| + |β| > 0,

(c) The complemantarity conditions: αai(l̃i(0)−a) = 0, αbi(l̃i(0)−b) = 0, i =
1, . . . ,m.

(d) The adjoint equations:

−
dp̃li(t)

dt
= p̃xi(t) + p̃zi(t)

(
ϕ(z̃i(t)) + e1f̃i(t)

)
+ α0F (x̃i(t), z̃i(t), f̃i(t)),

(51)

−
dp̃xi(t)

dt
= −α0li

(
z̃i(t) − z∗i (x̃i(t))

)⊤
(z∗i )′(x̃i(t))

−α0li
(
f̃i(t) − f∗i (x̃i(t))

)
(f∗i )′(x̃i(t)), (52)

−
dp̃zi(t)

dt
= p̃zi(t)liϕ

′(z̃i(t)) + α0li
(
z̃i(t) − z∗i (x̃i(t))

)⊤
, (53)

t ∈ [0, 1], i = 1, . . . ,m.

(e) The transversality conditions:

−p̃li(0) = −αai + αbi, p̃li(1) = 0,
−p̃xi(0) = βxi

, p̃xi(1) = 0,
−p̃zi(0) = βKzi(0), p̃zi(1) = βKzi(1), i = 1, . . . ,m.
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By integrating equation (51) over [0, 1] and using the first two transver-
sality conditions, we obtain

αai−αbi =

∫ 1

0

(
p̃xi(t)+p̃zi(t)

(
ϕ(z̃i(t))+e1f̃i(t)

)
+α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
dt.

Multiplying this equality by li, we get

(αai − αbi)li =

∫ 1

0

H̃i(t) dt, i = 1, . . . ,m,

where H̃i(t) := li

(
p̃xi(t)+p̃zi(t)

(
ϕ(z̃i(t))+e1f̃i(t)

)
+α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
.

(f) The conditions H̃f̃i
= p̃zi(t)lie1 +α0li

(
f̃i(t)−f

∗
i (x̃i(t))

)
= 0, i = 1, . . . ,m.

Since li > 0 and p̃zi(t)e1 = p̃zi1 (t), we get

p̃zi1 (t) + α0

(
f̃i(t) − f∗i (x̃i(t))

)
= 0, t ∈ [0, 1], i = 1, . . . ,m.

(g) Finally, the condition H̃(t) = const has the form: there exists a constant
ĉH such that

m∑

i=1

li

(
p̃xi(t) + p̃zi(t)

(
ϕ(z̃i(t)) + e1f̃i(t)

)
+ α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
= c̃H

∀ t ∈ [0, 1].

By integrating equation (g) over [0, 1] and using the condition H̃ =
m∑
i=1

H̃i, we

get

c̃H =

m∑

i=1

∫ 1

0

H̃i(t) dt.

Equations

dl̃i
dt

= 0,
dx̃i
dt

= H̃i
p̃xi ,

dz̃i
dt

= H̃i
p̃zi , −

dp̃xi

dt
= H̃i

x̃i
, −

dp̃zi

dt
= H̃i

z̃i
, H̃i

f̃i
= 0,

imply d
dt
H̃i(t) = 0, whence it follows that H̃i(t) = const ∀ t ∈ [0, 1], i =

1, . . . ,m. We set

H̃i(t) = c̃Hi , t ∈ [0, 1], i = 1, . . . ,m.

Then ∫ 1

0

H̃i(t) dt = c̃Hi , i = 1, . . . ,m.
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Consequently,

c̃H =

m∑

i=1

c̃Hi , H̃(t) = c̃H , t ∈ [0, 1].

Using the relation (αai − αbi)li =
∫ 1

0
H̃i(t) dt, we obtain

c̃Hi = (αai − αbi)li, i = 1, . . . ,m.

From these relations, together with the complementary slackness conditions (c),
the following statements follow: for any i = 1, . . . ,m we have

(1) if a < li < b, then αai = αbi = 0 and, therefore, c̃Hi = 0,
(2) if li = a, then αbi = 0 and, therefore, c̃Hi = αaili ≥ 0,
(3) if li = b, then αai = 0 and, therefore, c̃Hi = −αbili ≤ 0,
(4) moreover, if c̃Hi > 0, then αai > 0, and, therefore, li = a; if c̃Hi < 0, then

αbi > 0, and, therefore, li = b.

Thus, we obtain the following result.

If (l̃i(·), x̃i(·), z̃i(·), f̃i(·))
m
i=1 is a local minimum in problem P̃ , then there

exist a number α0 ≥ 0, a row vector β ∈ R
r⊤ and continuously differentiable

functions p̃xi(t), p̃zi(t), t ∈ [0, 1], i = 1, . . . ,m such that the following system of
optimality conditions holds:

dl̃i(t)

dt
= 0, dx̃i(t)

dt
= l̃i(t), t ∈ [0, 1], i = 1, . . . ,m,

dz̃i(t)

dt
= l̃i(t)

(
ϕ(z̃i(t)) + e1f̃i(t)

)
, t ∈ [0, 1], i = 1, . . . ,m,

x̃i(0) = 0, −l̃i(0) + a ≤ 0, l̃i(0) − b ≤ 0, i = 1, . . . ,m,

K(z̃1(0), z̃1(1) . . . , z̃m(0), z̃m(1)) = 0,

− dp̃xi (t)

dt
= −α0li

(
z̃i(t) − z∗i (x̃i(t))

)⊤
(z∗i )′(x̃i(t))

−α0li
(
f̃i(t) − f∗i (x̃i(t))

)
(f∗i )′(x̃i(t)), t ∈ [0, 1], p̃xi(1) = 0, i = 1, . . . ,m,

− dp̃zi (t)

dt
= p̃zi(t)liϕ

′(z̃i(t)) + α0li
(
z̃i(t) − z∗i (x̃i(t))

)⊤
, t ∈ [0, 1], i = 1, . . . ,m,

−p̃zi(0) = βKzi(0), p̃zi(1) = βKzi(1), i = 1, . . . ,m,

p̃zi1 (t) + α0

(
f̃i(t) − f∗i (x̃i(t))

)
= 0, t ∈ [0, 1], i = 1, . . . ,m.

Further, each function

H̃i(t) := li

(
p̃xi(t) + p̃zi(t)

(
ϕ(z̃i(t)) + e1f̃i(t)

)
+ α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
,

i = 1, . . . ,m

is constant on [0, 1]. Set

c̃Hi := H̃i(t), t ∈ [0, 1], i = 1, . . . ,m. (54)
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Then, for every i = 1, . . . ,m the following is true:

if a < li < b, then c̃Hi = 0,
if li = a, then c̃Hi ≥ 0,
if li = b, then c̃Hi ≤ 0.

Moreover, if c̃Hi > 0, then li = a; if c̃Hi < 0, then li = b.

Note that the equation (52) for p̃xi and the transversality conditions for p̃xi

imply

p̃xi(t) = −α0li

∫ 1

t

((
z̃i(τ) − z∗i (x̃i(τ))

)⊤
(z∗i )′(x̃i(τ)) +

(
f̃i(τ)

−f∗i (x̃i(τ))
)
(f∗i )′(x̃i(τ))

)
dτ,

where t ∈ [0, 1]. This is a complete information following from the LMP for
Problem P̃ .

The adjoint variable p̃xi can be excluded from the system of optimality
conditions. For this, we can use the formula c̃Hi = H̃i(1), i = 1, . . . ,m, following
from (54). Since p̃xi(1) = 0, we get

c̃Hi = H̃i(1) := li

(
p̃zi(1)

(
ϕ(z̃i(1)) + e1f̃i(1)

)
+ α0Fi(x̃i(1), z̃i(1), f̃i(1))

)
,

i = 1, . . . ,m.

This allows us to define the sign of c̃Hi (only that sign is important) without
using p̃xi .

Let us represent the above conditions using independent variables xi ∈ [0, li],
i = 1, . . . ,m.

Fix any i ∈ {1, . . . ,m}. Recall that xi = li · t, t ∈ [0, 1], z̃i(t) = zi(lit),
f̃i(t) = fi(lit). We set pxi(xi) = p̃xi(t), pzi(xi) = p̃zi(t), where t = xi/li,
xi ∈ [0, li]. Then, it is easy to see that for a given i we get a system on [0, li],
where a ≤ li ≤ b:

dzi(xi)

dxi

= ϕ(zi(xi)) + e1fi(xi), xi ∈ [0, li],

K(z1(0), z1(l1) . . . , zi(0), zi(li), . . . , zm(0), zm(lm)) = 0,

− dpxi (xi)

dxi

=−α0

(
zi(xi)−z

∗
i (xi)

)⊤
(z∗i )′(xi(xi))−α0

(
fi(xi)−f

∗
i (xi)

)
(f∗i )′(xi(t)),

xi ∈ [0, li],

pxi(li) = 0,

− dpzi (xi)

dxi

= pzi(xi)ϕ
′(zi(xi)) + α0

(
zi(xi) − z∗i (xi)

)⊤
, xi ∈ [0, li],

−pzi(0) = βKzi(0), pzi(li) = βKzi(li),

pzi1 (xi) + α0

(
fi(xi) − f∗i (xi)

)
= 0, xi ∈ [0, li].
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Moreover, the function

Hi(xi) := pxi(xi) + pzi(xi)
(
ϕ(zi(xi)) + e1fi(xi)

)
+ α0Fi(xi, zi(xi), fi(xi))

is constant on [0, li], where

pxi(xi) = −α0

∫ li

xi

((
zi(x) − z∗i (x)

)⊤
(z∗i )′(x) +

(
fi(x) − f∗i (x)

)
(f∗i )′(x)

)
dx,

xi ∈ [0, li].

Set cHi := Hi(xi), xi ∈ [0, li]. Then, for every i = 1, . . . ,m the following is true:
if a < li < b, then cHi = 0; if li = a, then cHi ≥ 0; if li = b, then cHi ≤ 0.
Moreover, if cHi > 0, then li = a; if cHi < 0, then li = b.

It is convenient to use formulas

cHi = Hi(li) = pzi(li)
(
ϕ(zi(li))+e1fi(li)

)
+α0Fi(li, zi(li), fi(li)), i = 1, . . . ,m,

which does not require calculations of pxi(xi).

Note that only the constraint

K(z1(0), z1(l1) . . . , zi(0), zi(li), . . . , zm(0), zm(lm)) = 0

and the corresponding transversality conditions

−pzi(0) = βKzi(0), p
zi(li) = βKzi(li), i = 1, . . . ,m

do not break up and unite system of necessary conditions for Problem P .

5.4. Problem Pi and its relation to Problem P

Let (l̃0i (·), x̃0i (·), z̃0i (·), f̃0i (·))mi=1 be a solution to Problem P̃ . Set ζ̃i = (z̃i(0), z̃i(1)),
ζ̃0i = (z̃0i (0), z̃0i (1)), i = 1, . . . ,m. Fix any i and define the function

Ki(ζ̃i) := K(ζ̃01 , . . . , ζ̃
0
i−1, ζ̃i, ζ̃

0
i+1, . . . , ζ̃

0
m).

Consider the following Problem P̃i on [0,1]:

dl̃i(t)

dt
= 0, dx̃i(t)

dt
= l̃i(t),

dz̃i(t)

dt
= l̃i(t)

(
ϕ(z̃i(t)) + e1f̃i(t)

)
, t ∈ [0, 1],

x̃i(0) = 0, −l̃i(0) + a ≤ 0, l̃i(0) − b ≤ 0,

Ki(z̃i(0), z̃i(1)) = 0,

Ji =
∫ 1

0
l̃i(t)Fi(x̃i(t), z̃i(t), f̃i(t)) dt→ min .

The following assertion holds for any i = 1, . . . ,m.
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Lemma 1 If a point (l̃0i (·), x̃0i (·), z̃0i (·), f̃0i (·))mi=1 is a solution to Problem P̃ , then
the point (l̃0i (·), x̃0i (·), z̃0i (·), f̃0i (·)) is a solution to Problem P̃i.

The proof is trivially carried out by contradiction.

The necessary first-order optimality conditions for Problem P̃i are given in
Section 3.2. Sufficient second-order optimality conditions for Problem P̃i are
given in Sections 3.3–3.5.

Similar relations between problems can be formulated on intervals [0, li]. Let

(l0i , z
0
i (·), f0i (·))mi=1

be a solution to Problem P .

Set ζi = (zi(0), zi(li)), ζ
0
i = (z0i (0), z0i (li)), i = 1, . . . ,m. Fix any i and define

the function Ki(ζi) := K(ζ01 , . . . , ζ
0
i−1, ζi, ζ

0
i+1, . . . , ζ

0
m). Consider the following

Problem Pi on [0, li]:

dzi(xi)

dxi

= ϕ(zi(xi)) + e1fi(xi), xi ∈ [0, li],

a ≤ li ≤ b, Ki(zi(0), zi(li)) = 0,

Ji =
∫ li

0
Fi(xi, zi(xi), fi(xi)) dxi → min .

For any i = 1, . . . ,m, the following assertion holds.

Lemma 2 If (l0i , z
0
i (·), f0i (·))mi=1 is a solution to Problem P , then (l0i , z

0
i (·), f0i (·))

is a solution to Problem Pi.

First and second order optimality conditions in Problem Pi are given in Sec-
tions 3.2, 3.3–3.5.

5.5. Example

Consider the following control system, described by second-order differential
equations for a three-star network:

d2zi(xi)

dx2i
= ϕi(zi(xi), fi(xi)), xi ∈ [0, li], i = 1, 2, 3.

The endpoint conditions are as follows:

z1(0) = 0, z2(l2) = 0, z3(l3) = 0,

z1(l1) − z2(0) = 0, z2(0) − z3(0) = 0,
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z′1(l1) − z′2(0) − z′3(0) = 0.

Here zi(xi) are one-dimensional state variables, fi(xi) are one-dimensional con-
trols. We assume that fi(·) are continuous functions, and zi(·) are twice contin-
uously differentiable functions, i = 1, 2, 3. We refer to Fig. 6 for visualization.

x = 0

x = l3 x = l2

x = l1

Figure 6. The three-star graph

Let us represent this system in an equivalent way as a system of first-order
differential equations, introducing new one-dimensional state variables yi(xi):

dzi(xi)

dxi
= yi(xi),

dyi(xi)

dxi
= ϕi(zi(xi), fi(xi)), xi ∈ [0, li], i = 1, 2, 3, (55)

z1(0) = 0, z2(l2) = 0, z3(l3) = 0, (56)

z1(l1) − z2(0) = 0, z2(0) − z3(0) = 0, (57)

y1(l1) − y2(0) − y3(0) = 0. (58)

In addition to this system, there is a constraint on the length of the intervals

l1 + l2 + l3 = µ, (59)

where li > 0, i = 1, 2, 3, µ > 0 is a given number. The cost that needs to be
minimized is:

J =

3∑

i=1

∫ li

0

(1

2
(zi(xi) − z∗i (xi))

2 +
1

2
(fi(xi) − f∗i (xi))

2
)

dxi → min, (60)
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where z∗i (·) are given twice continuously differential functions, f∗i (·) are given
continuous functions, and ϕi(·, ·) are given Lipschitz continuous functions, i =
1, 2, 3. Problem (55)-(60) will be called Problem PE .

This problem is not a special case of problem P studied in this section,
but we will show that the method of reduction to a standard optimal control
problem used in this section can also be applied to problem PE . Thus, this
method has a much broader application than it was shown in Section 5. Here,
we restrict ourselves to first-order optimality conditions only.

Problem P̃E on the interval [0, 1] has the form

˙̃
li(t) = 0, ˙̃xi(t) = l̃i(t), ˙̃zi(t) = l̃i(t)ỹi(t), ˙̃yi(t) = l̃i(t)ϕi(z̃i(t), f̃i(t)), i = 1, 2, 3,

x̃1(0) = 0, x̃2(0) = 0, x̃3(0) = 0,

z̃1(0) = 0, z̃2(1) = 0, z̃3(1) = 0,

z̃1(1) − z̃2(0) = 0, z̃2(0) − z̃3(0) = 0,

ỹ1(1) − ỹ2(0) − ỹ3(0) = 0,

l̃1(0) + l̃2(0) + l̃3(0) = µ,

J =
3∑

i=1

∫ 1

0

(
1
2 (z̃i(t) − z∗i (x̃i(t)))

2 + 1
2 (f̃i(t) − f∗i (x̃i(t)))

2
)
l̃i(t) dt→ min .

Let (l0i , z
0
i (·), y0i (·), f0i (·))i=1,2,3 be an optimal solution of problem PE . Set

l̃0i = l0i , x̃0i (t) = l̃0i t, z̃0i (t) = z0i (l0i t), ỹ0i (t) = y0i (l0i t), f̃0i (t) = f0i (l0i t).

Then, (l̃0i , x̃
0
i (·), z̃0i (·), ỹ0i (·), f̃0i (·))i=1,2,3 is an optimal solution of Problem P̃E .

Let α0 ≥ 0 be the cost Lagrange multiplier for this solution. Recall that α0 = 1
in the normal case and α0 = 0 in the abnormal case.

Let us write down the LMP conditions. Here,

L̃ = γ1x̃1(0) + γ2x̃2(0) + γ3x̃3(0) + β1z̃1(0) + β2z̃2(1) + β3z̃3(1)

+β4(z̃1(1) − z̃2(0)) + β5(z̃2(0) − z̃3(0)) + β6(ỹ1(1) − ỹ2(0) − ỹ3(0))

+δ(l̃1(0) + l̃2(0) + l̃3(0) − µ),

H̃ =

3∑

i=1

p̃xi
l̃i +

3∑

i=1

p̃zi l̃iỹi +

3∑

i=1

p̃yi
l̃iϕi(z̃i, f̃i) + α0

3∑

i=1

l̃iFi(x̃i, z̃i, f̃i),

where

Fi(x̃i, z̃i, f̃i) =
1

2
(z̃i − z∗i (x̃i))

2 +
1

2
(f̃i − f∗i (x̃i))

2.
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Set
H̃i = p̃xi

l̃i + p̃zi l̃iỹi + p̃yi
l̃iϕi(z̃i, f̃i) + α0 l̃iFi(x̃i, z̃i, f̃i),

Then H̃ =
3∑

i=1

H̃i.

The adjoint system and the condition Hi
fi

= 0 have the form:

− ˙̃pli(t) = p̃xi
(t) + p̃zi(t)ỹ

0
i (t) + p̃yi

(t)ϕi(z̃
0
i (t), f̃0i (t)) + α0Fi(x̃

0
i (t), z̃0i (t), f̃0i (t)),

− ˙̃pxi
(t) = −α0 l̃

0
i

(
z̃0i (t) − z∗i (x̃0i (t))

)
(z∗i )′(x̃0i (t))

−α0 l̃
0
i

(
f̃0i (t) − f∗i (x̃0i (t))

)
(f∗i )′(x̃0i (t))

− ˙̃pzi(t) = p̃yi
(t)l̃0iϕiz̃i(z̃

0
i (t), f̃0i (t)) + α0 l̃

0
i (z̃0i (t) − z∗i (x̃0i (t)))

− ˙̃pyi
(t) = p̃zi(t)l̃

0
i ,

pyi
(t)l̃0iϕif̃i

(z̃0i (t), f̃0i (t)) + α0 l̃
0
i

(
f̃0i (t) − f∗i (x̃0i (t))

)
= 0

for all i = 1, 2, 3.

Moreover, there exist constants c̃Hi such that

H̃i(t) :=

l̃0i
(
p̃xi

(t) + p̃zi(t)ỹ
0
i (t) + p̃yi

(t)ϕi(z̃
0
i (t), f̃0i (t)) + α0Fi(x̃

0
i (t), z̃0i (t), f̃0i (t))

)
= c̃Hi

for all t ∈ [0, 1], i = 1, 2, 3.

The transversality conditions are:

−p̃l1(0) = δ, p̃l1(1) = 0,

−p̃x1
(0) = γ1, p̃x1

(1) = 0,

−p̃z1(0) = β1, p̃z1(1) = β4,

−p̃y1
(0) = 0, p̃y1

(1) = β6,

−p̃l2(0) = δ, p̃l2(1) = 0,

−p̃x2
(0) = γ2, p̃x2

(1) = 0,

−p̃z2(0) = −β4 + β5, p̃z2(1) = β2,

−p̃y2
(0) = −β6, p̃y2

(1) = 0,

−p̃l3(0) = δ, p̃l3(1) = 0,

−p̃x3
(0) = γ3, p̃x3

(1) = 0,

−p̃z3(0) = −β5, p̃z3(1) = β3,

−p̃y3
(0) = −β6, p̃y3

(1) = 0.
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This implies that

p̃l1(0) = p̃l2(0) = p̃l3(0) = −δ,

p̃l1(1) = p̃l2(1) = p̃l3(1) = 0,

p̃x1
(1) = 0, p̃x2

(1) = 0, p̃x3
(1) = 0

p̃y1
(0) = 0, p̃y2

(1) = 0, p̃y3
(1) = 0,

p̃y1
(1) = p̃y2

(0) = p̃y3
(0),

p̃z1(1) − p̃z2(0) − p̃z3(0) = 0.

It follows from the condition of the constancy of the Hamiltonian H̃i and the
transversality conditions for p̃li that c̃Hi = −δ, i = 1, 2, 3. Consequently,

c̃H1 = c̃H2 = c̃H3 .

The nontriviality condition means that α0 = 1 or not all adjoint variables are
equal to zero.

Let us reformulate these conditions in the intervals [0, l0i ]. We set

pxi
(xi) = p̃xi

(t), pyi
(xi) = p̃yi

(t), pzi(xi) = p̃zi(t), where t =
xi
l0i
, xi ∈ [0, l0i ].

Then it is easy to see that for a given i we get a system on the intervals [0, l0i ]:

−(pxi
)′(xi) = −α0

(
z0i (xi) − z∗i (xi)

)
(z∗i )′(xi) − α0

(
f0i (xi) − f∗i (xi)

)
(f∗i )′(xi),

−(pzi)
′(xi) = pyi

(xi)ϕizi(z
0
i (xi), f

0
i (xi)) + α0(z0i (xi) − z∗i (xi))

−(pyi
)′(xi) = pzi(xi),

pyi
(xi)ϕifi(z

0
i (xi), f

0
i (xi)) + α0

(
f0i (xi) − f∗i (xi)

)
= 0,

where xi ∈ [0, l0i ], i = 1, 2, 3. Moreover,

pxi
(l0i ) = 0, i = 1, 2, 3, py1

(0) = 0, py2
(l02) = py3

(l03) = 0,
py1

(l01) = py2
(0) = py3

(0), pz1(l01) − pz2(0) − pz3(0) = 0.

}
(61)

Set
pi(xi) := pyi

(xi), xi ∈ [0, l0i ], i = 1, 2, 3.

Then
p′i(xi) = −pzi(xi), xi ∈ [0, l0i ], i = 1, 2, 3.

Thus, we obtain

(pi)
′′(xi) = pi(xi)ϕizi(z

0
i (xi), f

0
i (xi)) + α0(z0i (xi) − z∗i (xi)),

pi(xi)ϕifi(z
0
i (xi), f

0
i (xi)) + α0

(
f0i (xi) − f∗i (xi)

)
= 0,
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where xi ∈ [0, l0i ], i = 1, 2, 3.

The condition of the constancy of the Hamiltonian H̃i becomes

Hi(xi) :=

pxi
(xi) + pzi(xi)y

0
i (xi) + pyi

(xi)ϕi(z
0
i (xi), f

0
i (xi)) + α0Fi(xi, z

0
i (xi), f

0
i (xi)).

whence it follows that

Hi(xi) = pxi
(xi)−p

′

i(xi)y
0
i (xi)+pi(xi)ϕi(z

0
i (xi), f

0
i (xi))+α0Fi(xi, z

0
i (xi), f

0
i (xi)),

and there exists a constant cHi such that

Hi(xi) = cHi ∀xi ∈ [0, l0i ], i = 1, 2, 3.

In particular, for xi = l0i we get

cHi = Hi(l0i ) = −p′i(l
0
i )y0i (l0i ) + pi(l

0
i )ϕi(z

0
i (l0i ), f0i (l0i )) +α0Fi(l

0
i , z

0
i (l0i ), f0i (l0i )),

i = 1, 2, 3.

Here,

pi(l
0
i ) = pyi

(l0i ) = 0, i = 1, 2.

Moreover,

cH1 = cH2 = cH3 .

Note that the adjoint equation for p̃xi
and the condition pxi

(l0i ) = 0 give

pxi
(xi) = −

∫ l0
i

xi

(
α0

(
z0i (x) − z∗i (x)

)
(z∗i )′(x) + α0

(
f0i (x) − f∗i (x)

)
(f∗i )′(x))

)
dx.

To the resulting system of necessary optimality conditions, we have to add the
transversality conditions (61), which are equivalent to the system

p1(0) = p2(l02) = p3(l03) = 0, p1(l01) = p2(0) = p3(0), p′1(l0i )−p′2(0)−p′3(0) = 0.

Moreover, α0 = 1 or not all of p1, p2, p3 are equal to zero.

To conclude this section, we write Problem PE
i for each beam. It has the

form:

dzi(x)

dx
= yi(x), dyi(x)

dx
= ϕi(zi(x), fi(x)), x ∈ [0, li],

Ki(li, zi(0), yi(0), zi(li), yi(li)) = 0,

Ji =
∫ li

0

(
1
2 (zi(x) − z∗i (x))2 + 1

2 (fi(x) − f∗i (x))2
)

dx→ min,
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where li > 0 is not fixed. Here K1 = 0 means

z1(0) = 0, z1(l1) − z02(0) = 0, y1(l1) − y02(0) − y03(0) = 0, l1 + l02 + l03 = µ,

K2 = 0 means

z2(l2) = 0, z01(l01)−z2(0) = 0, z2(0)−z03(0) = 0, y01(l01)−y2(0)−y03(0) = 0,

l01 + l2 + l03 = µ,

and K3 = 0 means

z3(l3) = 0, z02(0) − z3(0) = 0, y01(l01) − y02(0) − y3(0) = 0, l01 + l02 + l3 = µ,

We know that (l0i , z
0
i (·), y0i (·), f0i (·)) is the optimal solution to problem PE

i ,
i = 1, 2, 3.

6. Conclusion

We consider the optimal control problem combined with the optimum design
problem in an optimization problem for networks. The analysis of steady state
model is useful for dynamic models with the so-called control systems with turn-
pike property. We refer the reader to the optimum design of the linear wave
equation on networks in the forthcoming paper entitled Network design and
control. The turnpike property for wave equation, by Martin Gugat, Meizhi
Qian and Jan Sokolowski, where the bilevel optimization problems are consid-
ered. The results were presented at MMAR 2023 (Gugat, Qian and Soko lowski,
2023). The numerical analysis of the optimum design for nonlinear control sys-
tems on networks is still to be performed. Two main examples of such systems
are networks of nonlinear elastic beams and gas transportation networks.
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Miȩdzyzdroje, Poland, 2023, 320–325 doi: 10.1109/MMAR58384.2023.102
42484.

Leugering, G., Rodriguez, Ch. and Wang, Y. (2011) Nodal profile con-
trol for networks of geometrically exact beams. Journal de Mathématiques
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