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Abstract: This paper provides an analysis of time optimal con-
trol problem of motion of a material point in the plane outside the
given circle, without friction. The point is controlled by a force
whose absolute value is limited by one. The closure of exterior of
the circle plays the role of the state constraint. The analysis of the
problem is based on the minimum principle.
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1. Introduction

In Osmolovskii, Figura and Kośka (2013), we have analyzed the following op-
timization problem of mechanics: a material point (a spacecraft) of the mass
equal to one moves in the plane without friction. The point is controlled by a
force, whose absolute value is limited by one. The initial position of the point
and the initial vector of its velocity are fixed. The final position and the final
vector of velocity are fixed, too. The problem is to minimize the time of the
motion. In Osmolovskii, Figura and Kośka (2013), this problem was completely
solved. Namely, we have described all extremals of the problem.

In the present paper we study the problem posed by A. Milyutin in the
early 1970s: to minimize the time of the motion of a material point in the
plane, under a bounded force and in the presence of a forbidden area that has
the form of a circle |x| ≤ r (r > 0). Again, the initial position and velocity and
the final position and velocity are fixed. So, we consider the problem with state
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constraint: |x| ≥ r. We see that the state constraint is nonlinear and the set
of admissible positions is non-convex. Moreover, we will see that the order of
the state constraint is equal to two. All this leads to certain difficulties in the
problem. We offer here its partial solution.

The maximum principle for problems with state constraints was obtained by
A.Ya. Dubovitskii and A.A. Milyutin in the mid 1960s (see, e.g., Dubovitskii
and Milyutin, 1965). Its specificity is that the costate variable is a function
of bounded variation and can have jumps at the state boundary. The jumps
occur starting with the order of two, and certainly the discontinuity of the
costate variable essentially complicates the solution of the problem. Only a few
problems with state constraints have been analytically solved up to now.

We analyze the conditions of the maximum principle (we write it in the form
of minimum principle) and obtain analytical formulas for the interior and bound-
ary subarcs separately, and formulas for the first six derivatives of the function
ρ(t) = 〈x(t), x(t)〉 at the junction point of these subarcs. For the interior case we
present a complete description of all three possible types of extremals through
elementary functions (this description was given earlier in Osmolovskii, Figura
and Kośka (2013)). For the boundary case, only the rotation with a constant
angular speed is analyzed. It is shown that the first five derivatives of ρ(t) at the
junction point vanish, while the 6th right derivative is positive, and the trajec-
tory leaves the state boundary. Hence, when leaving the constraint, an extremal
is tangent up to order 5 (with variation of the expected sign at order 6). We
do not consider the question of ”landing” of the extremal on the boundary of
the set of admissible positions, since it is similar to the question of leaving the
boundary.

2. Statement of the problem

Now let us give a formal description of the problem. Let the position of the point
at time t be x(t) = (x1(t), x2(t)) ∈ IR2 and its velocity be y(t) = (y1(t), y2(t)) ∈
IR2. Denote by u(t) = (u1(t), u2(t)) ∈ IR2 the vector of force at time t. We call
u(t) the control. There is a control constraint |u(t)| ≤ 1, where |u| =

√

〈u, u〉.
As usual, by 〈x, x′〉 we denote the scalar product x1x

′
1 + x2x

′
2 of vectors x =

(x1, x2) and x′ = (x′
1, x

′
2) in IR2.

The trajectory (x(t), y(t)) must satisfy the endpoint constraints: at the ini-
tial time t = 0, the initial position x(0) should be equal to a given vector
x̂0 ∈ IR2, and the initial velocity y(0) should be equal to a given vector ŷ0 ∈ IR2;
at the final time t = T , the final position x(T ) and the final velocity y(T ) should
be equal to given vectors x̂T ∈ IR2 and ŷT ∈ IR2, respectively. The motion is
forbidden inside the circle |x| ≤ r (r > 0). Hence, the inequality |x(t)| ≥ r
should be fulfilled for all t. The problem is to minimize the time T of the con-
trol process (x(t), y(t), u(t)), t ∈ [0, T ]. Since the mass of the point is equal to
one, by Newton’s law we have u(t) = ẍ(t) = ẏ(t). Thus, the problem has the
form:
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min T, (1)

subject to the constraints

ẋ(t) = y(t), ẏ(t) = u(t), |u(t)| ≤ 1, |x(t)| ≥ r, t ∈ [0, T ],

x(0) = x̂0, y(0) = ŷ0, x(T ) = x̂T , y(T ) = ŷT ,
(2)

where x ∈ IR2, y ∈ IR2, u ∈ IR2, r > 0. We say that a triple of the functions
(x(t), y(t), u(t)) considered on the interval of time [0, T ] (T > 0) is an admissible
process if the functions x(t) and y(t) are absolutely continuous and the function
u(t) is measurable and essentially bounded on [0, T ], and all constraints (2) are
fulfilled. The minimum is sought among the admissible processes. We assume
that |x̂0| > r and |x̂T | > r.

3. Minimum principle in time optimal control problem

with state inequality constraint

3.1. Time optimal control problem

For the convenience of the reader, we formulate here the minimum principle
for a class of problems, containing problem (1)–(2). For problems with state
constraints, the full set of necessary conditions in the form of the maximum
principle was obtained by Dubovitskii and Milyutin in mid 1960s, see, e.g.,
Dubovitskii and Milyutin (1965). Later on, these conditions were published in
other papers and books, e.g. Girsanov (1972), Ioffe and Tikhomirov (1974),
Milyutin, Dmitruk, and Osmolovskii (2004). We will formulate them for the
following problem:

min T (3)

subject to

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, t ∈ [0, T ], (4)

x(0) = a, x(T ) = b, (5)

g(x(t)) ≤ 0, t ∈ [0, T ], (6)

where x ∈ IRn, u ∈ IRm, the functions f : IRn+m 7→ IRn and g : IRn 7→ IR
are continuously differentiable, U ⊂ IRm is an arbitrary set, and a, b ∈ IRn are
given vectors. Hence, we consider the problem with one state constraint (6).
We assume that

g(a) < 0, g(b) < 0. (7)

We say that (x(t), u(t)), t ∈ [0, T ] is an admissible process if the function x(t)
is absolutely continuous on [0, T ], the function u(t) is measurable and essentially
bounded on [0, T ], and all constraints (4)-(6) are satisfied. The differential
equation ẋ(t) = f(x(t), u(t)) and the condition u(t) ∈ U are assumed to be
fulfilled a.e. on [0, T ]. The minimum of T is sought among all admissible
processes. In view of (7), the ends of optimal trajectory do not belong to the
boundary of the set of admissible positions.



188 N.P. Osmolovskii, A. Figura, M. Kośka and M. Wojtowicz

3.2. Minimum principle

Denote by IRn∗ the space of n-dimensional row-vectors. To formulate the mini-
mum principle, we introduce the Pontryagin function (or the pre-Hamiltonian)

H(x, u, λ) = λf(x, u) (8)

and the augmented Pontryagin function (or the augmented pre-Hamiltonian)

Ha(x, u, λ, µ̇) = λf(x, u) + µ̇g(x), (9)

where λ ∈ IRn∗ and µ̇ ∈ IR. Note that here µ̇ is an arbitrary number, but later,
this notation will be used to denote the generalized derivative of the multiplier
µ(t) with respect to t.

Let (x(t), u(t)), t ∈ [0, T ] be an admissible process. Denote by λ(t) : [0, T ] 7→
IRn∗ an arbitrary function of bounded variation. By Varλ we denote the vari-
ation of λ, and by dλ the Radon measure, defined on [0, T ], which corresponds
to the function λ(t). Similarly, by µ(t) : [0, T ] 7→ IR we denote a function of
bounded variation, and by dµ the Radon measure, which corresponds to µ(t).
The conditions of the minimum principle for the process (x(t), u(t)), t ∈ [0, T ]
are as follows: there exist a constant α0, and functions of bounded variation
λ(t) and µ(t) such that

α0 ≥ 0, dµ(t) ≥ 0, t ∈ [0, T ], (10)

dµ(t)g(x(t)) = 0, t ∈ [0, T ], (11)

−dλ(t) = Hx(x(t), u(t), λ(t)) dt + dµ(t)gx(x(t)), t ∈ [0, T ], (12)

min
u∈U

H(x(t), u, λ(t)) = H(x(t), u(t), λ(t)) a.e. on [0, T ], (13)

H(x(t), u(t), λ(t)) = −α0 a.e. on [0, T ], (14)

Varµ+Var λ+ |λ(0)| > 0. (15)

We call (10) the non-negativity conditions, (11) the complementary slackness
condition, (12) the adjoint equation, (13) the minimality condition of the pre-
Hamiltonian, and (15) the non-triviality condition. Condition (14) unites the
condition of the constancy of the Hamiltonian (which holds for autonomous
problems) and the transversality condition.

Let us note that from the negativity condition dµ(t) ≥ 0 it follows that
µ(t) is a monotone nondecreasing function, and condition (11) implies that the
measure dµ is concentrated on the set {t ∈ [0, T ] : g(x(t)) = 0} of the boundary
points of the trajectory x(t). Finally, note that the adjoint equation (12) may
be considered as an equality between measures. Dividing it by dt, we get

−dλ(t)

dt
= Hx(x(t), u(t), λ(t)) +

dµ(t)

dt
gx(x(t)), t ∈ [0, T ], (16)
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where the derivatives dλ(t)
dt

and dµ(t)
dt

should be understood in the sense of the
theory of generalized functions. Using the notations

λ̇ =
dλ(t)

dt
, µ̇ =

dµ(t)

dt

and definition (9) of the augmented Pontryagin function, we rewrite the adjoint
equation (16) in a simple form

−λ̇(t) = Ha
x(x(t), u(t), λ(t), µ̇(t)), (17)

easy to remember. Without loss of generality we can assume that the functions
λ(t) and µ(t) are left-continuous.

The following theorem holds (see, e.g., Milyutin, Dmitruk, and Osmolovskii,
2004):

Theorem 3.1 Let a process (x(t), u(t)), t ∈ [0, T ] be a solution to the prob-
lem (3)–(6). Then there exist a constant α0 and left-continuous functions of
bounded variation λ(t) and µ(t) such that the conditions (10)–(15) of the mini-
mum principle hold.

3.3. Order of the state constraint

Suppose that the functions f and g are of class C2. We say that the state
constraint has the order one if the function

g(1)(x, u) := g′(x)f(x, u)

depends on u, i.e. g
(1)
u is not identically zero over IRn × IRm. Now, let g

(1)
u be

identically zero, i.e. g(1) = g(1)(x), and let the functions f and g be of class C3.
Define the function

g(2)(x, u) := g(1)x (x)f(x, u).

If this function depends on u (i.e. g
(2)
u is not identically zero over IRn × IRm),

then we say that the state constraint has the order two. Similarly, we can
inductively define the state constraint of any order q ∈ IN .

4. Minimum principle in the problem of the fastest obsta-

cle avoidance

We represent the state constraint |x| ≥ r in the form

g(x) :=
1

2
(r2 − 〈x, x〉) ≤ 0.

Since g(1) = −〈x, y〉 does not depend on u, and g(2) = −〈y, y〉 − 〈x, u〉 depends
on u explicitly, the order of the state constraint is equal to two.
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Let a process (x(t), y(t), u(t)), t ∈ [0, T ] be a solution to problem (1)-(2).
Let λx ∈ (IR2)∗, λy ∈ (IR2)∗, µ̇ ∈ IR. According to (8) and (9), the pre-
Hamiltonian (or the Pontryagin function) and the augmented pre-Hamiltonian
(or the augmented Pontryagin function) of the problem have the form (see, for
instance, Dubovitskii and Milyutin, 1981; Milyutin, Dmitruk, and Osmolovskii,
2004):

H = λxy + λyu, Ha = H +
µ̇

2
(r2 − 〈x, x〉),

respectively. Conditions (10)–(15) of the minimum principle for the solution
(x(t), y(t), u(t)), t ∈ [0, T ] are as follows:

α0 ≥ 0, dµ(t) ≥ 0, dµ(t)(r2 − 〈x(t), x(t)〉) = 0,

λ̇x(t) = −Ha
x = µ̇(t)x(t), λ̇y(t) = −Ha

y = −λx(t),

H(t) := λx(t)y(t) + λy(t)u(t) = −α0 a.e. on [0, T ],

min|u|≤1 λy(t)u = λy(t)u(t) a.e. on [0, T ],

(λx, λy, dµ) 6= (0, 0, 0),

(18)

where λx, λy , and µ are the functions of bounded variation (continuous from the
left), which define the measures dλx, dλy , and dµ, respectively. The derivatives

λ̇x, λ̇y, and µ̇ are understood in the sense of the theory of generalized functions,

so that the products λ̇x dt, λ̇y dt, and µ̇ dt are equal to the measures dλx, dλy,

and dµ, respectively. From the adjoint equation λ̇y(t) = −λx(t) it follows that
the function λy is Lipschitz continuous.

Obviously, the system (18) is equivalent to the following dual system :

dµ(t) ≥ 0, dµ(t)(r2 − |x(t)|2) = 0, (λx, λy, dµ) 6= (0, 0, 0),

dλx(t) = x(t) dµ(t), λ̇y(t) = −λx(t),

λx(t)y(t) + λy(t)u(t) ≡ −α0 ≤ 0,

u(t) = − λ∗
y(t)

|λy(t)|
if λy(t) 6= 0,

(19)

where λ∗ is the transposed vector. Let us add the conditions of the primal
system :

ẋ(t) = y(t), ẏ(t) = u(t), |x(t)| ≥ r, |x(0)| > r, |x(T )| > r. (20)

A triple (x, y, u) such that there exists a triple (λx, λy, dµ), satisfying (19) and
(20), will be called Pontryagin’s extremal. We will seek the Pontryagin’s ex-
tremals (with no account of boundary conditions).

Let us note that the last two conditions of system (19) imply

−λx(t)y(t) + |λy(t)| = α0 ≥ 0. (21)

This condition should be fulfilled for all t ∈ [0, T ], but, as is known, it suffices
to check the sign of (21) only at one point t ∈ [0, T ].



Problem of minimum time obstacle avoidance 191

Also note that the last condition in (19) can be obtained as follows. The
control constraint, written in the form ϕ(u) := 〈u, u〉−1 ≤ 0, can be included in
the augmented pre-Hamiltonian with multiplier ν ≥ 0. Then, the stationarity
condition with respect to the control Hu + νϕu = 0 gives λy + νu∗ = 0, whence
|λy|2 = ν2|u|2. This relation along with complementary slackness condition
ν(〈u, u〉 − 1) = 0 implies ν = |λy |. It follows that u(t) = −λ∗

y(t)/|λy(t)| if
λy(t) 6= 0.

5. Analysis of the interior arc

5.1. Analysis of conditions of the minimum principle

Let us consider an interval ∆ = (t′, t′′) such that, on this interval, the trajectory
x(t) belongs to the interior of the set of admissible positions: |x(t)| > r for all
t ∈ (t′, t′′). Such interval necessarily exists, at least at the beginning and at the
end of the motion, since we assume that |x(0)| > r and |x(T )| > r. Then the
complementary slackness condition dµ(r2−〈x, x〉) = 0 implies that the measure
dµ vanishes on the interval ∆. Additionally we assume that λy(·) does not
vanish on ∆. Then the extremality conditions on ∆ become

λ̇x = 0, λ̇y = −λx, λy(·) 6= 0,

−λxy + |λy | = α0 ≥ 0,

u(t) = − λ∗
y(t)

|λy(t)|
if λy(t) 6= 0,

ẋ = y, ẏ = u, |x| > r.

(22)

This system was analyzed in Osmolovskii, Figura and Kośka (2013). The first
two conditions imply that λx is a constant vector and λy is a linear function,
not equal to zero identically, i.e.,

−λ∗
y = kt+ b, λx = k, k2 + b2 > 0, (23)

where k, b ∈ IR2. The following three cases are possible.

(i) The vectors k and b are linearly independent. In this case the function
λy does not vanish. Consequently,

u(t) =
kt+ b

|kt+ b| (24)

is a continuous function, and the motion on ∆ is uniquely defined by the con-
ditions:

ẋ(t) = y(t), ẏ(t) = u(t) = kt+b
|kt+b| , |x(t)| > r, t ∈ (t′, t′′),

x(t0) = x0, y(t0) = y0,

−〈k, y0〉+ |kt0 + b| = α0 ≥ 0,

(25)
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where t0 ∈ (t′, t′′), k, b, x0, y0 ∈ IR2 are given point and vectors, respectively. In
order to find any of such extremals, one has to choose k, b, x0, y0 and t0 such
that the following conditions hold

−〈k, y0〉+ |kt0 + b| ≥ 0, k, b are linearly independent, |x0| > r, (26)

and then to solve the system

ẋ(t) = y(t), ẏ(t) = u(t) =
kt+ b

|kt+ b| , x(t0) = x0, y(t0) = y0, (27)

to the left and to the right from the point t0 until the following condition holds

|x(t)| > r. (28)

The interval ∆ can be chosen as the maximal open interval such that the con-
dition (28) is fulfilled. In the next section, we will give formulas for x(t) and
y(t) in the case (i).

(ii) k 6= 0 and b ‖ k, i.e. b is collinear to k. Then there is such τ that
b = −kτ and hence λy has the form λy = −k∗(t− τ). In this case

u(t) = k0 sgn(t− τ), where k0 =
k

|k| , (29)

i.e., the function u(t) is piecewise constant, taking only two values, k0 and −k0,
and having one possible switching at the point τ if τ ∈ (t′, t′′). Thus, in the
case (ii), we have the so-called generalized bang-bang control. In this case, the
condition H(t) := λx(t)y(t) + λy(t)u(t) = −α0 ≤ 0 on [0, T ] can be checked
at the point τ : H(τ) := λx(τ)y(τ) = −α0 ≤ 0 or kyτ ≤ 0, where yτ = y(τ).
In order to obtain an extremal corresponding to case (ii), one has to choose
arbitrary k0, xτ , yτ ∈ IR2 and τ such that the conditions

|k0| = 1, 〈k0, yτ 〉 ≤ 0, |xτ | > r, (30)

hold, and then to solve the system

ẋ(t) = y(t), ẏ(t) = u(t) = k0 sgn(t− τ), x(τ) = xτ , y(τ) = yτ (31)

finding an interval ∆ such that |x(t)| > r on this interval.

Consider a system of a more general form, with one switching of the control
at a point τ and with the initial data given at a point t0 (which may be different
from the point τ):

ẋ(t) = y(t), ẏ(t) = u(t) = k0 sgn(t− τ), x(t0) = x0, y(t0) = y0.(32)

System (32) is easily integrable. Consider any interval (t1, t2) such that τ /∈
(t1, t2). Obviously sgn(t − τ) is a constant on (t1, t2), and let it be equal to σ,
where σ = ±1. Let t0 ∈ (t1, t2). Conditions

ẏ = u = k0σ, y(t0) = y0
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imply

y = k0σ(t− t0) + y0, (33)

and then the conditions
ẋ = y, x(t0) = x0

yield

x =
σk0
2

(t− t0)
2 + y0(t− t0) + x0. (34)

(iii) Let k = 0, b 6= 0. In this case u = b0, where b0 = b/|b|, and for given
x0, y0, t0 we get a system

ẋ(t) = y(t), ẏ(t) = u(t) = b0, x(t0) = x0, y(t0) = y0, (35)

which is also easily integrable.
So, the cases (ii) and (iii), where k and b are linearly dependent, are quite

simple. Case (i) is not so simple, but again (as it was shown in Osmolovskii,
Figura and Kośka, 2013) x(t) and y(t) can be expressed using elementary func-
tions. We will show this below.

5.2. Integration of equations of motion in the Case of linearly inde-

pendent k and b.

Consider system of equations (27):

ẋ(t) = y(t), ẏ(t) = u(t) = − λ∗
y(t)

|λy(t)|
, −λ∗

y(t) = kt+ b, t ∈ (t′, t′′),

x(t0) = x0, y(t0) = y0,

where t0 ∈ (t′, t′′). We assume that k and b are linearly independent and then
(taking into account the possibility of multiplication of the pair (λx, λy) by a
positive constant) we can represent the function −λ∗

y = kt+ b in the form

−λ∗
y = β(t− t0)k0 + b0,

where
β ∈ IR, β 6= 0, b0 ∈ IR2, |b0| = 1, k0 = Ab0,

and A is the rotation matrix by the angle π/2 counterclockwise:

A =

(

0 −1
1 0

)

.

Note that
−λ∗

y(t0) = b0 = u(t0).

Denote u0 := u(t0). It is convenient to use the complex plane, so that the real
axis is u1 and the imaginary axis is u2. Then

u = u1 + iu2.
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Figure 1. The control inside the set of admissible positions

We hope that the same notation, used for the two-dimensional real vectors
and their representation by complex numbers, will not lead to confusion. In
this regard, we want to emphasize that the notation 〈x, y〉 is always used to
denote the scalar product of vectors x and y, while the product of corresponding
complex numbers is denoted by xy.

Let ω(t) be the angle between the real axis and the unit vector u(t), and ϕ(t)
be the angle between the unit vector b0 = u(t0) and the vector u(t). Finally, let
ω0 be the angle between the real axis and the unit vector b0. Then

ω(t) = ϕ(t) + ω0, −π

2
< ϕ(t) <

π

2
∀ t, ϕ(t0) = 0,

u0 = u(t0) = eiω0 = b0, u(t) = eiω(t) = ei(ϕ(t)+ω0) = u0e
iϕ(t).

It is clear (see Fig.1) that

tanϕ(t) = β(t− t0), and hence ϕ(t) = arctanβ(t− t0). (36)

Since

ẏ =
dy

dϕ

dϕ

dt
= u = u0e

iϕ,

we get from here
dy

dϕ
=

dt

dϕ
u0e

iϕ.
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Moreover, the condition tanϕ = β(t− t0) implies that

dt

dϕ
=

1

β cos2 ϕ
.

Thus,
dy

dϕ
=

u0

β cos2 ϕ
(cosϕ+ i sinϕ).

Consequently,

dy =
u0

β

(

1

cosϕ
+ i

sinϕ

cos2 ϕ

)

dϕ,

whence

y =
u0

β

(
∫

dϕ

cosϕ
+ i

∫

sinϕ

cos2 ϕ
dϕ

)

.

From the inequalities −π/4 < ϕ/2 < π/2 it follows that that

1 + tan ϕ
2

1− tan ϕ
2

> 0.

Therefore,
∫

dϕ

cosϕ
= ln

1 + tan ϕ
2

1− tan ϕ
2

+ C.

Moreover,
∫

sinϕ

cos2 ϕ
dϕ =

1

cosϕ
+ C.

Consequently,

y =
u0

β

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
i

cosϕ

)

+ C,

where C = C1 + iC2. Using the condition ϕ(t0) = 0, we obtain

y0 := y(t0) =
iu0

β
+ C,

whence

C = y0 −
iu0

β
.

Thus, we get

y =
u0

β

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+ i

(

1

cosϕ
− 1

))

+ y0.

Using the formula

1

cosϕ
− 1 =

2 tan2 ϕ
2

1− tan2 ϕ
2

= tan
ϕ

2
tanϕ, (37)
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we obtain

y =
u0

β

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+ i tan
ϕ

2
tanϕ

)

+ y0. (38)

Taking into account the fact that y = y1 + iy2, u0 = cosω0 + i sinω0, y0 =
y10+iy20, we get the following expressions for y1 and y2 in Cartesian coordinates

y1 =
1

β

(

cosω0 ln
1 + tan ϕ

2

1− tan ϕ
2

− sinω0 tan
ϕ

2
tanϕ

)

+ y10,

y2 =
1

β

(

sinω0 ln
1 + tan ϕ

2

1− tan ϕ
2

+ cosω0 tan
ϕ

2
tanϕ

)

+ y20.

Furthermore, the relation ẋ = y gives

dx

dϕ
=

dt

dϕ
y =

1

β cos2 ϕ
y.

This, combined with (38), implies

dx =
u0

β2 cos2 ϕ

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
i

cosϕ

)

dϕ+
βy0 − iu0

β2 cos2 ϕ
dϕ.

Consequently,

x =
u0

β2

{
∫

ln
1 + tan ϕ

2

1− tan ϕ
2

dϕ

cos2 ϕ
+ i

∫

dϕ

cos3 ϕ

}

+
βy0 − iu0

β2

∫

dϕ

cos2 ϕ
.(39)

For the integrals in (39), the following formulas hold (see Section. 8):

∫

dϕ

cos3 ϕ
=

1

2
ln

1 + tan ϕ
2

1− tan ϕ
2

+
1

2
· sinϕ

cos2 ϕ
+ C, (40)

∫

ln
1 + tan ϕ

2

1− tan ϕ
2

dϕ

cos2 ϕ
= ln

1 + tan ϕ
2

1− tan ϕ
2

tanϕ− 2

1− tan2 ϕ
2

+ C, (41)

Relations (39), (40), and (41) imply

x =
u0

β2

{

tanϕ ln
1 + tan ϕ

2

1− tan ϕ
2

− 2

1− tan2 ϕ
2

+
i

2

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
sinϕ

cos2 ϕ

)}

+

+
βy0 − iu0

β2
tanϕ+ C,

where C = C1 + iC2. Now, we use the initial condition x(t0) = x0. Taking into
account the fact that ϕ(t0) = 0, we obtain

x0 =
u0

β2
(−2) + C,
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whence

C = x0 +
2u0

β2
.

Consequently,

x =
u0

β2

{

tanϕ ln
1 + tan ϕ

2

1− tan ϕ
2

+ 2− 2

1− tan2 ϕ
2

+
i

2

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
sinϕ

cos2 ϕ

)}

+

+
βy0 − iu0

β2
tanϕ+ x0.

Using formula (37), we obtain

x =
u0

β2

{

tanϕ

(

ln
1 + tan ϕ

2

1− tan ϕ
2

− tan
ϕ

2

)

+
i

2

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
tanϕ

cosϕ
− 2 tanϕ

)}

+
y0
β

tanϕ+ x0, ϕ = arctanβ(t− t0). (42)

Finally, taking into account the fact that x = x1 + ix2, u0 = cosω0 + i sinω0,
x0 = x10+ix20, y0 = y10+iy20, we get the following expressions for the Cartesian
coordinates x1 and x2:

x1 =
1

β2
cosω0 tanϕ

(

ln
1 + tan ϕ

2

1− tan ϕ
2

− tan
ϕ

2

)

−

− sinω0

2β2

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
tanϕ

cosϕ
− 2 tanϕ

)

+
y10
β

tanϕ+ x10,

x2 =
1

β2
sinω0 tanϕ

(

ln
1 + tan ϕ

2

1− tan ϕ
2

− tan
ϕ

2

)

+

+
cosω0

2β2

(

ln
1 + tan ϕ

2

1− tan ϕ
2

+
tanϕ

cosϕ
− 2 tanϕ

)

+
y20
β

tanϕ+ x20,

where ϕ = arctanβ(t− t0).
It is interesting to express the dependence of coordinates on time in a more

direct way. To this end let us use (36) along with the following formulas:

1 + tan ϕ
2

1− tan ϕ
2

= tanϕ+

√

1 + tan2 ϕ = β(t− t0) +
√

1 + β2(t− t0)2,

tanϕ tan
ϕ

2
=

√

1 + tan2 ϕ− 1 =
√

1 + β2(t− t0)2 − 1,

1

cosϕ
=

√

1 + tan2 ϕ =
√

1 + β2(t− t0)2.

Then, formula (38) gives

y =
u0

β

{

ln
(

β(t−t0)+
√

1 + β2(t− t0)2
)

+i
(

√

1 + β2(t− t0)2−1
)}

+y0.(43)
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Consequently,

y1 =
cosω0

β
ln
(

β(t− t0) +
√

1 + β2(t− t0)2
)

− sinω0

β

(

√

1 + β2(t− t0)2 − 1
)

+ y10, (44)

y2 =
sinω0

β
ln
(

β(t− t0) +
√

1 + β2(t− t0)2
)

+
cosω0

β

(

√

1 + β2(t− t0)2 − 1
)

+ y20. (45)

And from (42) we obtain

x =
u0

β2

{[

β(t− t0) ln
(

β(t− t0) +
√

1 + β2(t− t0)2
)

−
√

1 + β2(t− t0)2 + 1
]

+
i

2

[

ln
(

(β(t− t0) +
√

1 + β2(t− t0)2
)

+β(t− t0)
(

√

1 + β2(t− t0)2 − 2
)]}

+ y0(t− t0) + x0. (46)

It follows, therefore, that

x1 =
cosω0

β2

[

β(t− t0) ln
(

β(t − t0) +
√

1 + β2(t− t0)2
)

−
√

1 + β2(t− t0)2 + 1
]

− sinω0

2β2

[

ln
(

(β(t − t0) +
√

1 + β2(t− t0)2
)

+β(t− t0)
(

√

1 + β2(t− t0)2 − 2
)]

+ y10(t− t0) + x10; (47)

x2 =
sinω0

β2

[

β(t− t0) ln
(

β(t− t0) +
√

1 + β2(t− t0)2
)

−
√

1 + β2(t− t0)2 + 1
]

+
cosω0

2β2

[

ln
(

(β(t − t0) +
√

1 + β2(t− t0)2
)

+β(t− t0)
(

√

1 + β2(t− t0)2 − 2
)]

+ y20(t− t0) + x20.(48)

6. Analysis of the boundary arc

6.1. General equations

Now, let ∆ = (t′, t′′) denote an interval such that the trajectory belongs to the
boundary of the set of admissible positions on this interval:

|x(t)| = r, t ∈ (t′, t′′).
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We assume that the measure dµ is absolutely continuous on the interval ∆. Let
µ̇(·) denote the density of the measure dµ on ∆. In this case, the system defining
an extremal on ∆ has the form:

λ̇∗
x = µ̇x, −λ̇y = λx,

µ̇ ≥ 0, −λxy + |λy | = α0 ≥ 0,

|x| = r, ẋ = y, ẏ = u = − λ∗
y

|λy|
if λy 6= 0.

(49)

Let λy(t) 6= 0 on ∆ . Then the latter condition implies

|u| = 1.

Let us analyze the conditions

|x| = r, |u| = 1.

Again, it is convenient to use the complex plane:

x(t) = reiθ(t), (50)

where θ(t) is the angle of rotation of vector x(t) at time t. We have

y = ẋ = ireiθ θ̇, (51)

u = ẍ = −reiθ(θ̇)2 + ireiθ θ̈. (52)

These conditions, together with the condition 〈u, u〉 = 1, imply

(θ̇)4 + (θ̈)2 =
1

r2
. (53)

The latter equation has obvious solutions such that

θ̈ = 0, (θ̇)2 =
1

r
. (54)

It follows that

θ̇ =
1√
r

or θ̇ = − 1√
r
, (55)

whence we obtain two families of solutions

θ(t) =
1√
r
(t− t0) and θ(t) = − 1√

r
(t− t0).

But of course, there are other solutions to equation (53), which correspond to
the case where the angular velocity θ̇ is not constant.
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6.2. Case of a constant angular velocity

Consider the case θ̈ = 0. In this case, conditions (50), (52), and (54) imply

ẍ = u = −eiθ = −1

r
x.

In other words, x(t) is a solution to the Cauchy problem

ẍ = −1

r
x, x(t0) = x0, ẋ(t0) = y0,

where

|x0| = r, y0 = ± 1√
r
Ax0,

and A is the rotation matrix by the angle π/2 counter-clockwise. Let us show
that this motion is a ”part” of Pontryagin’s extremal. Set

λx = −y∗, λy = x∗, µ̇ =
1

r
. (56)

Then we obtain

λ̇y = ẋ∗ = y∗ = −λx, λ̇∗
x = −ẏ = −u =

1

r
x = µ̇x, (57)

|λy| = |x| = r, u = −1

r
x = −1

r
λ∗
y = −

λ∗
y

|λy|
, (58)

α0 = −λxy + |λy| = |y|2 + |λy | = r + r = 2r > 0, (59)

since in view of (51) and (55) we have

|y| = r|θ̇| = r
1√
r
=

√
r

and hence |y|2 = r. Thus, all conditions of the minimum principle are satisfied.

In the sequel, we consider only extremals moving along the boundary of the
set of admissible positions with constant angular velocity. Moreover, it will be
convenient to assume that

λx = −1

r
y∗, λy =

1

r
x∗ = −u∗, µ̇ =

1

r2
. (60)

These multipliers are obtained from multipliers (56) by dividing them by r.
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6.3. Junction analysis

Let a point t′′ satisfy the following condition: to the left of this point there is
an interval ∆0 = [t′, t′′] (t′ < t′′) such that |x(t)| = r on this interval, and to
the right of this point there is an open interval ∆1 = (t′′, t′′ + ε) (ε > 0) such
that |x(t)| > r on ∆1. We call such a point the exit point from the boundary of
the set of admissible positions.

So, at this point, two regimes meet: the regime of motion along the boundary
of the set of admissible positions, considered in Section 6.2, and the regime of
motion inside the set of admissible positions, considered in Section 5. Define
the function

ρ(t) = 〈x(t), x(t)〉.

In the left half-neighborhood of the point t′′, this function is a constant equal to
r2, and hence all left derivatives of this function at the point t′′ are equal to zero.
In the next section we will calculate several right derivatives of the function ρ
at the point t′′. Here we make some preparations for these calculations.

✛ ✲
u(0)

x(0)

y(0)❄
✫✪
✬✩r

Figure 2. The exit point from the boundary of the set of admissible positions

Without loss of generality, we assume that

t′′ = 0, u(t′′) = (1, 0), y(t′′) = −
√
r(0, 1), x(t′′) = −r(1, 0)

(see Fig. 2). These conditions correspond to the case

x = reiθ(t), θ(t) =
t√
r
+ π. (61)

Hence

θ̇ =
1√
r
, x(t) = −re

i t√
r , y(t) = −i

√
re

i t√
r , u(t) = e

i t√
r , t ∈ (t′, t′′).(62)

The rotation of the vector u(t) is counter-clockwise. Recall that in a left half-
neighbourhood of the point t′′ = 0 the adjoint variables are defined by conditions
(60). Set e1 = (1, 0), e2 = (0, 1). Then we have

−λ∗
y(t

′′) = u(t′′) = (1, 0) = e1,
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λ̇∗
y(t

′′−) = −λ∗
x(t

′′−) =
1

r
y(t′′) = − 1√

r
(0, 1) = − 1√

r
e2.

We set
[λx] = λx(0+)− λx(0−), [µ] = µ(0+)− µ(0−).

Then the condition dλ∗
x = xdµ (see (19)) implies

[λ∗
x] = [µ]x(0) = −[µ]ru(0). (63)

Recall that in view of (19)

[λy ] = 0, [u] = 0.

Let, for t > t′′, the control be defined by the condition

u(t) = −
λ∗
y

|λy|
, −λ∗

y = kt+ b, (64)

where k and b are linearly independent. In view of (60)

−λ∗
y(0) = u(0) = b = e1.

Since, for t < 0,

λ∗
x = −1

r
y =

1√
r
ie

it√
r ,

we obtain

λ∗
x(0−) =

1√
r
e2.

Furthermore, in view of (63) we get

k = −λ̇∗
y(0+) = λ∗

x(0+) = λ∗
x(0−) + [λ∗

x] =
1√
r
e2 − [µ]ru(0).

Consequently, for t > 0,

−λ∗
y =

(

1√
r
e2 − [µ]re1

)

t+ e1. (65)

As in Section 5, set

u(t) = eiω(t), t > 0. (66)

From condition (64) it follows that

tanω =
(λy)2
(λy)1

,

where in view of (65)

−(λy)2 =
t√
r
, −(λy)1 = 1− [µ]rt.
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Consequently,

tanω =
t√

r(1− [µ]rt)
, t > 0, (67)

whence

ω = arctan
t√

r(1− [µ]rt)
, t > 0. (68)

6.4. Right derivatives of the function ρ = 〈x, x〉 at the exit point of

the set of admissible positions

Let us start the calculation of right derivatives of the function ρ(t) = 〈x(t), x(t)〉
at the point t′′ = 0.

(i) Differentiating (formally) this function with respect to t and taking into
account that ẋ = y, ẏ = u, we obtain:

dρ

dt
= 2〈x, ẋ〉 = 2〈x, y〉, (69)

d2ρ

dt2
= 2

(

〈ẋ, y〉+ 〈x, ẏ〉
)

= 2
(

〈y, y〉+ 〈x, u〉
)

, (70)

d3ρ

dt3
= 2

(

2〈y, ẏ〉+ 〈ẋ, u〉+ 〈x, u̇〉
)

= 2
(

2〈y, u〉+ 〈y, u〉+ 〈x, u̇〉
)

= 6〈y, u〉+ 2〈x, u̇〉. (71)

Since at the point t′′ we have 〈x, y〉 = 0, 〈y, y〉 + 〈x, u〉 = 〈y, y〉 − r〈u, u〉 =
r − r = 0, and 〈y, u〉 = 0, for the right derivatives at this point we get:

dρ

dt
= 0,

d2ρ

dt2
= 0,

d3ρ

dt3
= 2〈x, u̇〉, (72)

d4ρ

dt4
= 6〈u, u〉+ 8〈y, u̇〉+ 2〈x, ü〉, (73)

d5ρ

dt5
= 20〈u, u̇〉+ 10〈y, ü〉+ 2〈x, u(3)〉, (74)

d6ρ

dt6
= 20〈u̇, u̇〉+ 30〈u, ü〉+ 12〈y, u(3)〉+ 2〈x, u(4)〉. (75)

(ii) Recall that, according to (68), the following formulas hold for t > t′′ = 0:

u = eiω, ω = arctan
t√

r − st
, (76)
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where

s = r
3

2 [µ] ≥ 0 (77)

(again we use the complex plane). Consequently,

u̇ = ieiωω̇,

and then, for t > 0, we obtain

〈x, u̇〉 = 0, (78)

i.e.,
d3ρ

dt3
(0+) = 0.

(iii) Furthermore,

ü = eiω
(

−ω̇2 + iω̈
)

, u(3) = eiω
(

−iω̇3 − 3ω̇ω̈ + iω(3)
)

,

u(4) = eiω
(

ω̇4 − 6iω̇2ω̈ − 4ω̇ω(3) − 3ω̈2 + iω(4)
)

.

Moreover,

ω̇ =

√
r

(
√
r − st)2 + t2

, ω̈ =
2
√
r
(

s
√
r − (s2 + 1)t

)

((
√
r − st)2 + t2)

2 .

It follows, therefore, that

ω̇(0+) =
1√
r
, ω̈(0+) =

2s

r
= 2

√
r[µ].

Let us calculate the fourth right derivative of the function ρ at the point t′′ = 0.
Since

〈y, u̇〉 = −
√
r〈e2, e2〉ω̇(+0) = −1,

〈x, ü〉 = r〈−e1,−e1ω̇
2 + e2ω̈〉 = rω̇2,

we obtain

d4ρ

dt4
= 6〈u, u〉+ 8〈y, u̇〉+ 2〈x, ü〉 = 6− 8 + 2 = 0. (79)

Thus, first four right derivatives of the function ρ vanish at zero.

(iv) Let us proceed with calculation of the fifth right derivative of ρ at t′′ = 0.
According to (74), we have

d5ρ

dt5
= 20〈u, u̇〉+ 10〈y, ü〉+ 2〈x, u(3)〉.
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Since u = eiω and u̇ = ieiωω̇, we get 〈u, u̇〉 = 0. Since at t′′ = 0 the following is
true: y = −√

re2, ü = −ω̇2e1 + ω̈e2, and ω̈(0+) = 2
√
r[µ], we deduce from here

that 〈y, ü〉 = −2r[µ]. Let us calculate 〈x, u(3)〉. For t > t′′ = 0 we have

〈x, u(3)〉 = (−r)〈e1,−ω̇3e2 − 3ω̇ω̈e1 + ω(3)e2〉 = 3rω̇ω̈ = 6r[µ].

Consequently,

d5ρ

dt5
= −20r[µ] + 12r[µ] = −8r[µ] ≤ 0. (80)

If [µ] > 0, then d5ρ/dt5 < 0. The latter means that the extremal violates the
state constraint. Hence the following condition is nesessary for quitting the set
of admissible positions at t′′ = 0:

[µ] = 0,

i.e., the jump of µ at t′′ = 0 should be equal to zero. In what follows we assume
that this condition is fulfilled.

(v) Finally, let us calculate the sixth right derivative of ρ at t′′ = 0. To this
end, let us calculate the right derivative ω(3) at t′′ = 0. We have:

ω(3) = 2
√
r
d

dt

{

s
√
r − (s2 + 1)t

((
√
r − st)2 + t2)

2

}

=

= 2
√
r

{

−(s2 + 1)
(

(
√
r − st)2 + t2

)

+ 4
(

s
√
r − (s2 + 1)t

)2

((
√
r − st)2 + t2)

3

}

.

This implies that

ω(3)(+0) = 2
√
r

{−(s2 + 1)r + 4s2r

r3

}

= 2
√
r

{−r + 3s2r

r3

}

= 2
3s2 − 1

r
√
r

,

i.e.,

ω(3)(0+) = 2
3r3[µ]2 − 1

r
√
r

.

Since [µ] = 0, we get

ω(3)(0+) =
−2

r
√
r
.

Let us find 〈x, u(4)(0+)〉. We have

u(4) = e1(ω̇
4 − 4ω̇ω(3) − 3ω̈2) + e2(ω

(4) − 6ω̇2ω̈), x = −re1, [µ] = 0.

Consequently, for t > t′′ = 0 we get

〈x, u(4)〉 = (−r)
(

ω̇4 − 4ω̇ω(3) − 3ω̈2
)

= −9

r
.
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This and the relations

d6ρ

dt6
= 20〈u̇, u̇〉+ 30〈u, ü〉+ 12〈y, u(3)〉+ 2〈x, u(4)〉,

u̇ = e2ω̇, ω̇ =
1√
r
,

〈u, ü〉 = 〈e1, −e1ω̇
2 + e2ω̈〉 = −ω̇2 = −1

r
,

〈y, u(3)〉 = −
√
r〈e2, −e2ω̇

3 − 3e1ω̇ω̈ + e2ω
(3)〉

= −
√
r(−ω̇3 + ω(3)) =

3

r

imply

d6ρ

dt6
=

20

r
− 30

r
+ 12

3

r
+ 2(−9

r
) =

8

r
> 0. (81)

Hence, the extremal leaves the boundary of the set of admissible positions.

7. Conclusion

We have shown the following. According to (72), (78), and (79), the first four
right derivatives of ρ(t) = 〈x(t), x(t)〉 at t′′ are equal to zero:

dρ

dt
(t′′+) =

d2ρ

dt2
(t′′+) =

d3ρ

dt3
(t′′+) =

d4ρ

dt4
(t′′+) = 0, (82)

while, according to (80), the fifth right derivative is nonpositive:

d5ρ

dt5
(t′′+) = −8r[µ] ≤ 0. (83)

Hence, the condition [µ] = 0 (i.e. the absence of jump of µ at t′′) is necessary
for the existence of the extremal to the right of t′′. If this condition is fulfilled,
then the fifth right derivative is also equal to zero:

d5ρ

dt5
(t′′+) = 0. (84)

Finally, according to (81), the sixth right derivative at the exit point is positive:

d6ρ

dt6
(t′′+) =

8

r
> 0. (85)

The latter means that the extremal with a constant angular velocity of x(t) on
the boundary of the set of admissible positions and with zero jump of µ at the
exit point really leaves the boundary of the set of admissible positions. Similarly,
one can prove the possibility of ”landing” of the extremal on the boundary of
the set of admissible positions, i.e. the existence of entry point.
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So, we have shown that there exists an extremal with the following proper-
ties: 1) it has one entry point and one exit point and hence it has one boundary
interval ; 2) it moves along the boundary of the set of admissible positions with
constant angular velocity; 3) the Lagrange multiplier dµ, which corresponds
to the state constraint, is an absolutely continuous measure (hence, it has no
atoms) with a constant density µ̇ on the boundary.

Of course, there is a possibility that an interval of motion along the boundary
is absent, i.e. the extremal has no contacts with the boundary at all. Another
possibility is that this interval is a singleton, i.e. an extremal has exactly one
touch point on the boundary. It may happen that the measure has no atom
at the touch point, and then this case is quite similar to the case of extremal
having no boundary points. An interesting question is the following: are there
extremals with isolated touch point having a jump of the multiplier at this
point? This question needs careful investigation.

There is a more general question concerning a full description of all types of
extremals in the problem. Obviously, there are extremals with a richer structure
than the one discussed above (here we take into account the opinions of the three
anonymous referees of the paper). In particular, there are extremals with a non
constant angular velocity on the boundary of the set of admissible positions.
Probably, there are extremals with two touch points on the boundary. Are there
extremals with one touch point and one boundary subarc? Are there extremals
with two boundary subarcs? All these questions require further investigation.
Numerical experiments would be extremely useful in order to get some intuition
about the behavior of extremals.

8. Appendix

Here we prove formulas (40) and (41). We have
∫

dϕ

cos3 ϕ
=

∫

cosϕdϕ

cos4 ϕ
=

∫

d sinϕ

(1− sin2 ϕ)2
. (86)

In order to calculate the latter integral, let us find the integral
∫

dz
(z2−1)2 . Using

the method of of undetermined coefficients, we obtain

1

(z2 − 1)2
=

1

4

(

− 1

z − 1
+

1

(z − 1)2
+

1

z + 1
+

1

(z + 1)2

)

.

By integrating this function we get

∫

dz

(z2 − 1)2
=

1

4
ln

∣

∣

∣

∣

z + 1

z − 1

∣

∣

∣

∣

+
1

2
· z

1− z2
+ C.

Consequently,

∫

d sinϕ

(1− sin2 ϕ)2
=

1

4
ln

∣

∣

∣

∣

1 + sinϕ

1− sinϕ

∣

∣

∣

∣

+
1

2
· sinϕ

cos2 ϕ
+ C.
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This, combined with (86), implies

∫

dϕ

cos3 ϕ
=

1

4
ln

∣

∣

∣

∣

1 + sinϕ

1− sinϕ

∣

∣

∣

∣

+
1

2
· sinϕ

cos2 ϕ
+ C.

Since 1 + sinϕ = 1 + 2 sin ϕ
2 cos ϕ

2 = (sin ϕ
2 + cos ϕ

2 )
2 and similarly 1 − sinϕ =

(sin ϕ
2 − cos ϕ

2 )
2, formula (40) follows.

Formula (41) can be obtained by integrating by parts. Assume that 1 −
tan2 ϕ

2 > 0. Then

∫

ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

dϕ

cos2 ϕ
=

∫

ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

d tanϕ =

= ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

tanϕ−
∫

tanϕd

{

ln

(

1 + tan ϕ
2

1− tan ϕ
2

)}

=

= ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

tanϕ−
∫

tanϕ

(

1− tan ϕ
2

1 + tan ϕ
2

)

dϕ

cos2 ϕ
2

(

1− tan ϕ
2

)2

= ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

tanϕ−
∫

2 tan ϕ
2

(

1− tan2 ϕ
2

)2 · dϕ

cos2 ϕ
2

+ C

= ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

tanϕ−
∫

4 tan ϕ
2

(

1− tan2 ϕ
2

)2 d tan
ϕ

2

= ln

(

1 + tan ϕ
2

1− tan ϕ
2

)

tanϕ− 2

1− tan2 ϕ
2

+ C. ✷
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