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Abstract: In this paper, we establish formulae for inner and
outer evaluation of the second-order contingent derivative of index
γ of the efficient point multifunction in parametric vector optimiza-
tion problems. The results contained in this paper extend the results
of Chuong (2013a) to the second-order sensitivity analysis case. On
the other hand, examples are provided for purposes of analyzing and
illustrating the obtained results. Concerning the potential domain of
application, the functioning of the majority of economic systems de-
pends on a set of indicators (criteria), i.e., the substance of economic
systems includes multiple criteria and only the lack of mathemat-
ical methods in solving the problems of vector optimization is an
obstacle to the effective use of the respective models. Therefore, the
study of vector optimization problems is necessary and has practical
significance.

Keywords: parametric vector optimization, efficient point mul-
tifunction, second-order contingent derivative of index γ, sensitivity
analysis

1. Introduction

In parametric vector optimization problems, sensitivity analysis is the analysis
of behavior of the efficient point multifunction. There are two main approaches
in sensitivity analysis: the dual space approach and the primal space approach.

In the dual space approach, many important results in sensitivity analysis
for parametric vector optimization problems via the coderivatives were given in
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Chuong and Yao (2009, 2013a) and the books by B.S. Mordukhovich (2006a,b;
2018).

Concerning the primal space approach, the first-order derivatives of the
perturbation maps/the efficient solution maps have been studied in Chuong
and Yao (2010, 2013b), Chuong (2013a), Kuk, Tanino and Tanaka (1996), Shi
(1991, 1993), Tanino (1988a,b), and Tung and Pham (2020a,b). Some results in
second-order sensitivity analysis for vector optimization problem have been con-
sidered in Li, Sun and Zhai (2012), Sun and Li (2014), Tung (2017), and Wang
and Li (2011, 2012). Recently, new results in higher-order sensitivity analysis
in parametric vector optimization problems/parametric set-valued optimization
problems have been obtained in Anh and Khanh (2013), Anh (2017a,b), Diem,
Khanh and Tung (2014), Sun and Li (2011), Thung (2017b), as well as Wang,
Li and Teo (2010).

Another important topic in the primal space approach is the study of the
protodifferentiability of perturbation maps. The important results on the first-
order proto-differentiability/semi-differentiability of the perturbation maps/the
efficient solution maps have been obtained in Huy and Lee (2007, 2008), Lee
and Huy (2006), Levy and Rockafellar (1994), Luc, Soleimani-damaneh and
Zamani (2018), and, first of all, Rockafellar (1989). Some results on the second-
order proto-differentiability/second-order semi-differentiability of the perturba-
tion maps/the efficient solution maps have been provided in Li and Liao (2012),
Pham (2022), Pham and Nguyen (2022), and Tung (2018, 2021b). The higher-
order proto-differen-tiability/higher-order semi-differentiability properties of the
perturbation maps/ the proper perturbation maps/the weak perturbation maps
have been investigated in Pham (2023) and Tung (2020, 2021a).

On the other hand, in the framework of the primal space approach, Chuong
investigated first-order sensitivity analysis in parametric vector optimization
problems via first-order S-derivative, see Chuong (2023a). In the present paper,
we provide some new results for second-order sensitivity analysis in parametric
vector optimization problems in terms of second-order contingent derivative of
index γ.

The plan of the present paper is as follows. In Section 2, we recall several
concepts of the derivatives of multifunctions and their properties, which are
needed in the sequel. In Section 3, we establish formulae for inner and outer
estimation of the second-order contingent derivative of index γ of the efficient
point multifunction. An application to parametric vector optimization problem
with finite constraints is given in Section 4. Finally, conclusions are given in
Section 5.
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2. Preliminaries

Throughout this paper, let P,X and Y be Euclidean spaces Rn, equipped with
the usual norms, where the space Y is partially ordered by closed convex pointed
cone K ⊆ Y with nonempty interior intK and apex at the origin. The norms
of all Euclidean spaces are denoted by || · ||. Index γ ∈ {0, 1}. The origins of
all Euclidean spaces are denoted by 0. BX , BY stands for the closed unit balls
in, respectively, X,Y . Closure and boundary of A ⊆ X are denoted by clA and
∂A, respectively. Furthermore, coneA = {ka|k ≥ 0, a ∈ A}. N,R,R− and R+

are used for the sets of natural numbers, real numbers, negative real numbers,
and nonnegative real numbers, respectively.

In this paper, we consider the second-order sensitivity analysis of parame-
terized vector optimization problems. Firstly, some notations and definitions
are recollected. Let f : P × X → Y be a vector function and C : P ⇒ X be
a multifunction. We consider the following parameterized vector optimization
problem

minKf(x, p) subject to x ∈ C(p),

where C is the constraint map and minK indicates the minimum with respect
to the ordering, induced by K. The cone K induces a partial order �K on Y ,
i.e.,

y �K y′ ⇔ y′ − y ∈ K, y, y′ ∈ Y.

Let F : P ⇒ Y be a multifunction defined by

F (p) := f(p, C(p)) = {y ∈ Y | ∃x ∈ C(p), y = f(p, x)}. (1)

Definition 1 (See Chuong, 2013a) We say that y ∈ Y is an efficient point
of a subset A ⊂ Y with respect to K if and only if (y − K) ∩ A = {y}. The
set of efficient points of A is denoted by EffKA. We stipulate that EffK∅ = ∅.
When K has a nonempty interior, read intK 6= ∅, an element y ∈ A is called a
weakly efficient point of A with respect to K, denoted by Effw

KA, if and only if
(y− intK)∩A = ∅. We stipulate that Effw

K∅ = ∅. From now on, when speaking
of weakly efficient points, we always assume that intK 6= ∅.

We consider the following parametric vector optimization problem:

EffK{y ∈ Y | ∃x ∈ C(p), y = f(p, x)} = EffKF (p), (2)

where x is the decision variable, p is the perturbation parameter, f is the objec-
tive map, C is the constraint map and F is the feasible set map in the objective
space.

The multifunction F : P ⇒ Y assigns to p the set of efficient points of (2),
i.e.,

F(p) := EffK{y ∈ Y | ∃x ∈ C(p), y = f(p, x)} = EffKF (p), (3)
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is called the efficient point multifunction of (2).

Definition 2 (See Aubin and Frankowska, 1990; Bonnans and Shapiro, 2000)
Let f : X → Y be a vector-valued map. f is said to be twice Fréchet differentiable
at x̄ ∈ X, if there exist two linear continuous operators ∇f(x̄) : X → Y and
∇2f(x̄) : X ×X → Y such that

f(x) = f(x̄) +∇f(x̄)(x− x̄) +
1

2
∇2f(x̄)(x− x̄, x− x̄) + o

(

||x− x̄||2
)

,

where o(||x− x̄||2) satisfies
o(||x− x̄||2)
||x− x̄||2 → 0 when x → x̄. ∇f(x̄) and ∇2f(x̄)

are the Fréchet derivative and the second-order Fréchet derivative, respectively.
f is said to be twice Fréchet differentiable on X if f is twice Fréchet differen-
tiable at any x ∈ X. If ∇f(x̄) and ∇2f(x̄) are continuous at x̄ then f is said
to be twice continuously Fréchet differentiable at x̄.

Let H : P ⇒ Y be a multifunction. The effective domain, graph, and
epigraph of H are defined by

domH := {p ∈ P | H(p) 6= ∅} ,
gphH := {(p, y) ∈ P × Y | y ∈ H(p)} ,
epiH := {(p, y) ∈ P × Y | p ∈ domH, y ∈ H(p) +K} .

Definition 3 (See Aubin and Frankowska, 1990) Let M ⊆ Y, ȳ, v̄ ∈ Y and
index γ ∈ {0, 1}. The second-order contingent set of index γ of M at (ȳ, v̄) is

T 2
γ (M, ȳ, v̄) := {y ∈ Y | ∃tn → 0+, ∃rn → 0+,

tn
rn

→ γ, ∃yn → y, ∀n ∈ N,

such that ȳ + tnv̄ +
1

2
tnrnyn ∈ M}.

Definition 4 (See Aubin and Frankowska, 1990) Let H : P ⇒ Y be a set-
valued map, (p̄, ȳ) ∈ gphH and (ū, v̄) ∈ P × Y and index γ ∈ {0, 1}. The
second-order contingent derivative of index γ of H at (p̄, ȳ) in the direction
(ū, v̄) ∈ P × Y is the set-valued map D2

γH(p̄, ȳ, ū, v̄) : P ⇒ Y , defined by

D2
γH(p̄, ȳ, ū, v̄)(p) := {y ∈ Y | ∃tn → 0+, ∃rn → 0+,

tn
rn

→ γ, ∃(pn, yn) → (p, y),

∀n ∈ N, such that ȳ + tnv̄ +
1

2
tnrnyn ∈ H(p̄+ tnū+

1

2
tnrnpn)}, ∀p ∈ P.

Definition 5 (See Pham, 2023a) Let H : P ⇒ Y be the set-valued map,
(p̄, ȳ) ∈ gphH and (ū, v̄) ∈ P × Y, γ ∈ {0, 1}. H is said to be second-order
directionally compact with index γ at (p̄, ȳ) with respect to (ū, v̄) in the direction

p ∈ P if for all sequences tn → 0+, rn → 0+,
tn
rn

→ γ and pn → p, and every
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sequence {yn} with ȳ + tnv̄ +
1

2
tnrnyn ∈ H(p̄ + tnū +

1

2
tnrnpn), there exists a

convergent subsequence of {yn}.

Definition 6 (See Chuong, 2013a)

(i) The set Ω ⊂ Y is said to satisfy the domination property if

Ω ⊂ EffKΩ+K.

(ii) We say that the domination property holds for H : P ⇒ Y around p̄ ∈ P
if there exists a neighborhood U of p̄ such that

H(p) ⊂ EffKH(p) +K, ∀p ∈ U.

Proposition 1 Let H : P ⇒ Y be the set-valued map, (p̄, ȳ) ∈ gphH and
(ū, v̄) ∈ P×Y, γ ∈ {0, 1}. Suppose that H is said to be second-order directionally
compact with index γ at (p̄, ȳ) with respect to (ū, v̄) in the direction p ∈ P . Then,
one has

D2
γ(H +K)(p̄, ȳ, ū, v̄)(p) = D2

γH(p̄, ȳ, ū, v̄)(p) +K, ∀p ∈ P.

Proof Firstly, we prove that

D2
γ(H +K)(p̄, ȳ, ū, v̄)(p) ⊆ D2

γH(p̄, ȳ, ū, v̄)(p) +K, ∀p ∈ P.

Let y ∈ D2
γ(H +K)(p̄, ȳ, ū, v̄)(p). Then, there exist

tn → 0+, rn → 0+,
tn
rn

→ γ, (pn, yn) → (p, y), kn ∈ K

for all n ∈ N such that

ȳ + tnv̄ +
1

2
tnrn(yn − kn) ∈ H(p̄+ tnū+

1

2
tnrnpn).

Denote ȳn := yn − kn. Because H is second-order directionally compact with
index γ at (p̄, ȳ) with respect to (ū, v̄) in the direction p ∈ P , we can assume
that ȳn → y′ ∈ Y . Then, we have y′ ∈ D2

γH(p̄, ȳ, ū, v̄)(p). Together with
kn = yn − ȳn → y − y′ and with K being closed, we have kn → y − y′ = k ∈ K
and y′ = y − k, which implies that y − k = y′ ∈ D2

γH(p̄, ȳ, ū, v̄)(p). Therefore,
y ∈ D2

γH(p̄, ȳ, ū, v̄)(p) +K, ∀p ∈ P .

Secondly, we prove that

D2
γH(p̄, ȳ, ū, v̄)(p) +K ⊆ D2

γ(H +K)(p̄, ȳ, ū, v̄)(p), ∀p ∈ P.
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Let y ∈ D2
γH(p̄, ȳ, ū, v̄)(p) + K. Then, there exist ŷ ∈ D2

γH(p̄, ȳ, ū, v̄)(p) and
k ∈ K such that y = ŷ + k. Thus, there exist

tn → 0+, rn → 0+,
tn
rn

→ γ, (pn, yn) → (p, ŷ)

such that

ȳ + tnv̄ +
1

2
tnrnyn ∈ H(p̄+ tnū+

1

2
tnrnpn), ∀n ∈ N.

Upon setting y′n := yn + k, one has y′n → ŷ + k and

ȳ+tnv̄+
1

2
tnrny

′

n = ȳ+tnv̄+
1

2
tnrnyn+tnrnk ∈ H(p̄+tnū+

1

2
tnrnpn)+K, ∀n ∈ N.

Therefore, y = ŷ + k ∈ D2
γ(H +K)(p̄, ȳ, ū, v̄)(p).

In Proposition 1, if H is not second-order directionally compact with index
γ at (p̄, ȳ) with respect to (ū, v̄) in the direction p ∈ P , then Proposition 1 may
not hold. The following example shows the case.

Example 1 Let P = R
2, Y = R,K = R+, γ ∈ {0, 1} and H : P ⇒ Y be defined

by

H(p) =

{

{p21 + p1,−1}, if p1 = p2 ≥ 0,
{−2}, otherwise,

where p = (p1, p2) ∈ R
2. Let (p̄, ȳ) = ((0, 0), 0) ∈ gphH and (ū, v̄) = ((1, 0), 1).

We have, for all p = (p1, p2) ∈ P ,

D2
γH(p̄, ȳ, ū, v̄)(p) =

{

{y ∈ R | y = 2γ + p1}, if p1 = p2 ≥ 0,
∅, otherwise,

and

(H +K)(p) =

{

{y ∈ R | y ≥ −1}, if p1 = p2 ≥ 0,
{y ∈ R | y ≥ −2}, otherwise.

Thus, for all p = (p1, p2) ∈ P ,

D2
γ(H +K)(p̄, ȳ, ū, v̄)(p) = R.

Hence, for all p = (p1, p2) ∈ P ,

D2
γ(H +K)(p̄, ȳ, ū, v̄)(p) 6= D2

γH(p̄, ȳ, ū, v̄)(p) +K.

The reason is that the condition of being second-order directionally compact
with index γ for H does not hold. Indeed, for the direction p = (1, 1), for every
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tn → 0+, rn → 0+,
tn
rn

→ γ for pn = (p1n, p2n) → (p1, p2) → p = (1, 1). Suppose

that there exists a sequence {yn} with

ȳ + tnv̄ +
1

2
tnrnyn = −1 ∈ H(p̄+ tnū+

1

2
tnrnpn).

This implies that

yn = − 2

tnrn
− 2

rn
,

which has no convergent subsequence.

3. Second-order contingent derivative of index γ of the

efficient point multifunction

Firstly, we obtain inner and outer estimates of the second-order contingent
derivative of index γ of the efficient point multifunction F defined in (3) at the
reference point via the set of efficient/weakly efficient points of the second-order
contingent derivative of index γ of F in (1) at the corresponding point.

Theorem 1 Let (p̄, ȳ) ∈ gphF . Suppose that the domination property holds for
F defined in (1) around x̄. Assume that F is said to be second-order directionally
compact with index γ at (p̄, ȳ) with respect to (ū, v̄) in the direction p ∈ P . Then,
one has

D2
γF(p̄, ȳ, ū, v̄)(p) ⊃ EffKD2

γF (p̄, ȳ, ū, v̄)(p), ∀p ∈ P. (4)

Proof Since F(p) ⊂ F (p) for all p ∈ P and the domination property holds for
F around b̄, there exists a neighborhood U of p̄ such that

F(u) +K = F (u) +K, ∀u ∈ U.

Thus, one has

D2
γ(F +K)(p̄, ȳ, ū, v̄)(p) = D2

γ(F +K)(p̄, ȳ, ū, v̄)(p), ∀p ∈ P. (5)

Since F is second-order directionally compact with index γ at (p̄, ȳ) with
respect to (ū, v̄) in the direction p ∈ P , so, one deduces that F is second-order
directionally compact with index γ at (p̄, ȳ) with respect to (ū, v̄) in the direction
p ∈ P . This implies, by Proposition 1, that

D2
γ(F +K)(p̄, ȳ, ū, v̄)(p) = D2

γ(F +K)(p̄, ȳ, ū, v̄)(p), ∀p ∈ P. (6)

On the other hand, using Proposition 1 again, one has

D2
γ(F +K)(p̄, ȳ, ū, v̄)(p) = D2

γ(F +K)(p̄, ȳ, ū, v̄)(p), ∀p ∈ P. (7)
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By combining now (5) with (6) and (7), we obtain

D2
γ(F +K)(p̄, ȳ, ū, v̄)(p) = D2

γ(F +K)(p̄, ȳ, ū, v̄)(p), ∀p ∈ P.

Hence,
D2

γF(p̄, ȳ, ū, v̄)(p) ⊃ EffKD2
γF(p̄, ȳ, ū, v̄)(p)

= EffK

(

D2
γF(p̄, ȳ, ū, v̄)(p) +K

)

= EffK

(

D2
γF (p̄, ȳ, ū, v̄)(p) +K

)

= EffKD2
γF (p̄, ȳ, ū, v̄)(p), ∀p ∈ P.

The following example demonstrates the importance of the domination prop-
erty of F in Theorem 1, namely the inclusion in (4) may fail to hold if the
assumption on the existence of the domination property of F around the point
under consideration is omitted.

Example 2 Let P = R, Y = R
2,K = R

2
+, γ ∈ {0, 1} and let F : P ⇒ Y be

given as follows:

F (p) =

{

(y1, y2) ∈ R
2 | 1

2
p2 ≤ y1 ≤ p2,−y1 + p2 ≤ y2 ≤ p2

}

∪
{

(y1, y2) ∈ R
2 | 0 < y1 ≤ 1

2
p2, y2 =

1

2
p2
}

.

For any p ∈ P ,

F(p) =







{

(y1, y2) ∈ R
2 | 1

2
p2 < y1 ≤ p2, y2 = −y1 + p2

}

if p 6= 0,

{(0, 0)}, if p = 0.

Let (p̄, ȳ) = (0, (0, 0)) ∈ gphF and (ū, v̄) = (1, (0, 0)). By a simple computation,
for all p ∈ P ,

D2
γF (p̄, ȳ, ū, v̄)(p) =

{

(y1, y2) ∈ R
2 | γ ≤ y1 ≤ 2γ,−y1 + 2γ ≤ y2 ≤ 2γ

}

∪
{

(y1, y2) ∈ R
2 | 0 ≤ y1 ≤ γ, y2 = γ

}

and

D2
γF(p̄, ȳ, ū, v̄)(p) =

{

(y1, y2) ∈ R
2 | γ ≤ y1 ≤ 2γ, y2 = −y1 + 2γ

}

.

Thus, one has

EffKD2
γF (p̄, ȳ, ū, v̄)(p) 6⊂ D2

γF(p̄, ȳ, ū, v̄)(p), ∀p ∈ P.

The reason is that the domination property does not hold for F around p̄.
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The next example proves that if F is not second-order directionally compact
with index γ at (p̄, ȳ) with respect to (ū, v̄) in the direction p ∈ P , then Theorem
1 may not hold.

Example 3 Let P = Y = R,K = R+, γ ∈ {0, 1} and F : P ⇒ Y be defined by

F (p) =

{

{0}, if p ≤ 0,
{p,−√

p}, otherwise.

For any p ∈ R,

F(p) =

{

{0}, if p ≤ 0,
{−√

p}, otherwise.

Let (p̄, ȳ) = (0, 0) ∈ gphF and (ū, v̄) = (1, 1). We have, for all p ∈ P ,

D2
γF (p̄, ȳ, ū, v̄)(p) =

{

R, if p ≤ 0,
{p}, if p > 0,

and

D2
γF(p̄, ȳ, ū, v̄)(p) =

{

R, if p ≤ 0,
∅, if p > 0.

It is easy to see that the domination property holds for F around p̄. Meanwhile,

EffKD2
γF (p̄, ȳ, ū, v̄)(p) 6⊂ D2

γF(p̄, ȳ, ū, v̄)(p), ∀p > 0.

The reason is that the condition of being second-order directionally compact
with index γ for F does not hold. Indeed, for the direction p = 1, for every

tn → 0+, rn → 0+,
tn
rn

→ γ for pn → p = 1. Suppose that there exists a

sequence {yn} with

ȳ + tnv̄ +
1

2
tnrnyn = −√

p = −1 ∈ F (p̄+ tnū+
1

2
tnrnpn).

This implies that

yn = − 2

tnrn
− 2

rn
,

which has no convergent subsequence.

Theorem 2 Let (p̄, ȳ) ∈ gphF and (ū, v̄) ∈ P × Y . Suppose that for each
(p, y) ∈ T 2

γ (gphF , (p̄, ȳ), (ū, v̄)) such that

D2
γF (p̄, ȳ, ū, v̄)(p) ∪ (y − intK) ⊂ {v ∈ Y | ∀tn → 0+, ∀rn → 0+,

tn
rn

→ γ,

∀pn → p, ∃yn → v, ∀n ∈ N, ȳ + tnv̄ +
1

2
tnrnyn ∈ F (p̄+ tnū+

1

2
tnrnpn)}. (8)

We have

D2
γF(p̄, ȳ, ū, v̄)(p) ⊂ Effw

KD2
γF (p̄, ȳ, ū, v̄)(p), ∀p ∈ P. (9)
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Proof Take any p ∈ P and let y ∈ D2
γF(p̄, ȳ, ū, v̄)(p). Then, there exist

tn → 0+, rn → 0+,
tn
rn

→ γ and (pn, yn) → (p, y) such that

ȳ + tnv̄ +
1

2
tnrnyn ∈ F(p̄+ tnū+

1

2
tnrnpn).

Assume, to the contrary, that y /∈ Effw
KD2

γF (p̄, ȳ, ū, v̄)(p). Then, there is y ∈
D2

γF (p̄, ȳ, ū, v̄)(p) such that

y − y′ ∈ intK.

Since y ∈ D2
γF (p̄, ȳ, ū, v̄)(p), one deduces that there exist

tn → 0+, rn → 0+,
tn
rn

→ γ and (pn, yn) → (p, y)

such that

ȳ + tnv̄ +
1

2
tnrnyn ∈ F(p̄+ tnū+

1

2
tnrnpn) ⊆ F (p̄+ tnū+

1

2
tnrnpn).

It follows by (2) that for any ∀tn → 0+, ∀rn → 0+,
tn
rn

→ γ and for all pn → p

there exists y′n → y′ such that

ȳ + tnv̄ +
1

2
tnrny

′

n ∈ F (p̄+ tnū+
1

2
tnrnpn), ∀n ∈ N.

It follows from

y′n − yn → y′ − y ∈ −intK

and −intK being an open cone that

ȳ + tnv̄ +
1

2
tnrny

′

n −
(

ȳ + tnv̄ +
1

2
tnrnyn

)

1

2
tnrn

= y′n − yn → y′ − y ∈ −intK,

for all n ∈ N sufficiently large. Thus, it results that

ȳ + tnv̄ +
1

2
tnrny

′

n −
(

ȳ + tnv̄ +
1

2
tnrnyn

)

∈ −intK,

for all n ∈ N sufficiently large. Consequently,

ȳ + tnv̄ +
1

2
tnrnyn /∈ F

(

p̄+ tnū+
1

2
tnrnpn

)

,
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for all n ∈ N sufficiently large, which is impossible. Therefore,

y ∈ Effw
KD2

γF (p̄, ȳ, ū, v̄)(p), ∀p ∈ P.

The proof is complete.

Note that relation (2) in Theorem 2 is essential for having (9). To see this, let
us recall Example 3. Let (p̄, ȳ) = (0, 0) ∈ gphF and (ū, v̄) = (1, 1). Observe that
relation (2) does not hold for (p, y) = (0, 0) ∈ T 2

γ (gphF , (p̄, ȳ), (ū, v̄)). Indeed,
choose

v = −1 ∈ (−∞, 0) = D2
γF (p̄, ȳ, ū, v̄)(0) ∪ (0− intK)

and

tn =
γ

n
, rn =

1

n
,
tn
rn

= γ, pn =
1

n2
, ∀n ∈ N.

Then, tn → 0+, rn → 0+,
tn
rn

= γ and (pn → p = 0. Since F (pn) =

{

1

n2
,− 1

n

}

for all n ∈ N, it follows that for any sequence {yn} such that yn → v there is

ȳ + tnv̄ +
1

2
tnrnyn /∈ F (p̄+ tnū+

1

2
tnrnpn), ∀n ∈ N.

Thus, (9) does not hold. Indeed, one has

R = D2
γF(p̄, ȳ, ū, v̄)(0) 6⊂ Effw

KD2
γF (p̄, ȳ, ū, v̄)(0) = ∅.

The following auxiliary result gives a formula for computing the second-order
contingent derivatives of index γ of F in (1) at a given point via the second-
order contingent derivatives of index γ of the constraint mapping C and the
second-order Fréchet derivative of the objective function f at the corresponding
points.

Proposition 2 Let p̄ ∈ P, x̄ ∈ C(p̄), γ ∈ {0, 1} and ȳ = f(p̄, x̄), (ū, w̄, v̄) ∈
P ×X × Y . Suppose that the following conditions hold:

(i) C is second-order directionally compact with index γ at (p̄, x̄) with respect
to (ū, w̄) in the direction p ∈ P ;

(ii) f is twice continuously Fréchet differentiable at (p̄, x̄) and v̄ = ∇f(p̄, x̄)(ū, w̄).

Then, for all p ∈ P ,

D2
γF (p̄, ȳ, ū, v̄)(p) = {y ∈ Y | x ∈ D2

γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x)
+γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

(10)

Proof Firstly, we will prove that

D2
γF (p̄, ȳ, ū, v̄)(p) ⊂ {y ∈ Y | x ∈ D2

γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x)

+γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}, ∀p ∈ P. (11)
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Let y ∈ D2
γF (p̄, ȳ, ū, v̄)(p). Then, there exist tn → 0+, rn → 0+,

tn
rn

→ γ and

(pn, yn) → (p, y) such that

ȳ + tnv̄ +
1

2
tnrnyn ∈ F (p̄+ tnū+

1

2
tnrnpn).

Then, there exists a sequence {xn} ⊆ X such that xn ∈ C(p̄+ tnū+
1

2
tnrnpn)

and

ȳ + tnv̄ +
1

2
tnrnyn = f(p̄+ tnū+

1

2
tnrnpn, xn).

By setting x′

n :=
xn − x̄− tnw̄

1

2
tnrn

, we get

ȳ + tnv̄ +
1

2
tnrnyn = f

(

p̄+ tnū+
1

2
tnrnpn, x̄+ tnw̄ +

1

2
tnrnx

′

n

)

(12)

and

xn = x̄+ tnw̄ +
1

2
tnrnx

′

n ∈ C(p̄+ tnū+
1

2
tnrnpn).

By combining this with (i), we can suppose that x′

n → x′. Then,

x′ ∈ D2
γC(p̄, x̄, ū, w̄)(p).

Moreover, since f is twice continuously Fréchet differentiable at (p̄, x̄), ȳ =
f(p̄, x̄), v̄ = ∇f(p̄, x̄)(ū, w̄), and (12), we obtain

yn → y := ∇f(p̄, x̄)(p, x′) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄)).

Therefore, it follows that (3) holds.

Now, we will prove that

{y ∈ Y | x ∈ D2
γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}

⊂ D2
γF (p̄, ȳ, ū, v̄)(p), ∀p ∈ P.

(13)

Take any p ∈ P and let x ∈ D2
γC(p̄, x̄, ū, w̄)(p). Upon putting

y := ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄)),

we have to show that y ∈ D2
γF (p̄, ȳ, ū, v̄)(p). Since x ∈ D2

γC(p̄, x̄, ū, w̄)(p), there
exist

tn → 0+, rn → 0+,
tn
rn

→ γ and (pn, xn) → (p, x)
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such that

x̄+ tnw̄ +
1

2
tnrnxn ∈ C(p̄+ tnū+

1

2
tnrnpn),

which implies that,

f(p̄+ tnū+
1

2
tnrnpn, x̄+ tnw̄ +

1

2
tnrnxn) ∈ F (p̄+ tnū+

1

2
tnrnpn). (14)

We set

yn :=

f

(

p̄+ tnū+
1

2
tnrnpn, x̄+ tnw̄ +

1

2
tnrnxn

)

− f(p̄, x̄)− tnv̄

1

2
tnrn

. (15)

Then, by (14), one has,

ȳ + tnv̄ +
1

2
tnrnyn ∈ F (p̄+ tnū+

1

2
tnrnpn).

Since f is twice continuously Fréchet differentiable at (p̄, x̄), ȳ = f(p̄, x̄), v̄ =
∇f(p̄, x̄)(ū, w̄), and (15), one has

yn → y := ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄)).

Thus, there exist tn → 0+, rn → 0+,
tn
rn

→ γ and (pn, yn) → (p, y) such that

ȳ + tnv̄ +
1

2
tnrnyn ∈ F (p̄+ tnū+

1

2
tnrnpn).

Consequently, y ∈ D2
γF (p̄, ȳ, ū, v̄)(p). It follows that (13) holds. The proof is

complete.

Our first main result in this section provides an inner estimate for evalu-
ating the second-order contingent derivatives of index γ of the efficient point
multifunction F via the second-order contingent derivatives of index γ of the
constraint mapping C and the second-order Fréchet derivative of the objective
function f .

Theorem 3 Let p̄ ∈ P, x̄ ∈ C(p̄), γ ∈ {0, 1} and ȳ = f(p̄, x̄), (ū, w̄, v̄) ∈ P ×
X × Y . Suppose that the following conditions hold:

(i) C is second-order directionally compact with index γ at (p̄, x̄) with respect
to (ū, w̄) in the direction p ∈ P ;

(ii) f is twice continuously Fréchet differentiable at (p̄, x̄) and v̄ = ∇f(p̄, x̄)(ū, w̄);
(iii) The domination property holds for F defined in (1) around p̄ and (10)

holds true.
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Then, for all p ∈ P ,

D2
γF(p̄, ȳ, ū, v̄)(p) ⊃ EffK{y ∈ Y | x ∈ D2

γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x)
+γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

Proof By applying Theorem 1 and (10), we obtain the desired result.

Next, we provide an outer estimate for evaluating the second-order contin-
gent derivative of index γ of the efficient point multifunction F via the second-
order contingent derivative of index γ of the constraint mapping C and the
second-order Fréchet derivative of the objective function f .

Theorem 4 Let p̄ ∈ P, x̄ ∈ C(p̄), γ ∈ {0, 1} and ȳ = f(p̄, x̄), (ū, w̄, v̄) ∈ P ×
X ×Y . Suppose that f is twice continuously Fréchet differentiable at (p̄, x̄) and
v̄ = ∇f(p̄, x̄)(ū, w̄). Assume further that (2) and (10) hold true. Then, for all
p ∈ P ,

D2
γF(p̄, ȳ, ū, v̄)(p) ⊂ Effw

K{y ∈ Y | x ∈ D2
γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x)

+γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

Proof The proof follows from Theorem 2 and (10).

Now, we present an example to explain the results given in Theorem 3 and
Theorem 4.

Example 4 Let P = R, X = Y = R
2,K = R

2
+, γ ∈ {0, 1} and f : P × X →

Y,C : P ⇒ X be defined by:

f(p, x) = (2p+ x1, x2), ∀p ∈ R, x = (x1, x2) ∈ R
2,

C(p) = {(x1, x2) ∈ R
2 | −p+ x1 − 2x2 ≤ 0, 2p− 2x1 + x2 ≤ 0}.

Taking (p̄, x̄) = (0, (0, 0)), (ū, w̄) = (0, (0, 0)) and (ȳ, v̄) = ((0, 0), (0, 0)), we
obtain

D2
γC(p̄, x̄, ū, w̄)(p) = {(x1, x2) ∈ R

2 | −p+ x1 − 2x2 ≤ 0, 2p− 2x1 + x2 ≤ 0}.

We have ȳ = f(p̄, x̄) = (0, 0),

∇f(p, x) = (∇pf(p, x),∇xf(p, x)) =

([

2
0

]

,

[

1 0
0 1

])

,∇2f(p, x) = 0,

∇f(p̄, x̄) =

([

2
0

]

,

[

1 0
0 1

])

,∇2f(p̄, x̄) = 0,

and v̄ = ∇f(p̄, x̄)(ū, w̄) =

([

2
0

]

,

[

1 0
0 1

])

(0, (0, 0)) = (0, 0). By direct calcula-

tion, for any p ∈ P ,

F (p) = {(y1, y2) ∈ R
2 | −3p+ y1 − 2y2 ≤ 0, 6p− 2y1 + y2 ≤ 0},
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F(p) = {(y1, y2) ∈ R
2 | y1 = 3p, y2 = 0}.

It is easy to prove that the conditions of Theorem 3 and Theorem 4 are satisfied.
One has, for any p ∈ P

D2
γF (p̄, ȳ, ū, v̄)(p) = {(y1, y2) ∈ R

2 | 3p+ y1 − 2y2 ≤ 0, 6p− 2y1 + y2 ≤ 0},
and

D2
γF(p̄, ȳ, ū, v̄)(p) = {(y1, y2) ∈ R

2 | y1 = 3p, y2 = 0} = {(3p, 0)}.
On the other hand, we have,

∇f(p̄, x̄)(p, x) +
1

2
∇2f(p̄, x̄)((ū, w̄), (ū, w̄)) = (2p+ x1, x2),

EffK{y ∈ Y | x ∈ D2
γC(p̄, x̄, ū, w̄)(p),

y = ∇f(p̄, x̄)(p, x) +
1

2
∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}

= EffK{(y1, y2) ∈ R
2 | 3p+ y1 − 2y2 ≤ 0, 6p− 2y1 + y2 ≤ 0}

= {(y1, y2) ∈ R
2 | 3p+ y1 − 2y2 = 0, 6p− 2y1 + y2 = 0}

= {(y1, y2) ∈ R
2 | y1 = 3p, y2 = 0}

= {(3p, 0)},

Effw
K{y ∈ Y | x ∈ D2

γC(p̄, x̄, ū, w̄)(p),

y = ∇f(p̄, x̄)(p, x) +
1

2
∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}

= EffK{(y1, y2) ∈ R
2 | 3p+ y1 − 2y2 ≤ 0, 6p− 2y1 + y2 ≤ 0}

= {(y1, y2) ∈ R
2 | 3p+ y1 − 2y2 = 0, 6p− 2y1 + y2 = 0}

= {(y1, y2) ∈ R
2 | y1 = 3p, y2 = 0}

= {(3p, 0)}.
Finally, by applying Theorem 3 and Theorem 4, we obtain, respectively, that

D2
γF(p̄, ȳ, ū, v̄)(p) ⊃ {(3p, 0)} and D2

γF(p̄, ȳ, ū, v̄)(p) ⊂ {(3p, 0)}, ∀p ∈ P.

Hence, one has,
D2

γF(p̄, ȳ, ū, v̄)(p) = {(3p, 0)}, ∀p ∈ P.

4. Application to optimization problems with finite con-

straints

In this section, we apply the results obtained in the previous section to the
consideration of problem (2) with the constraint mapping C : P ⇒ X being
defined by

C(p) := {x ∈ X | gi(p, x) ≤ 0, i ∈ I} , (16)
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where I := {1, 2, · · · ,m} is an arbitrary index set and, for each i ∈ I, gi : P ×
X → R is a twice continuously Fréchet differentiable map. Constraints of type
(16) are known as finite inequality constraints. Denote by T (p̄, x̄, ū, w̄) := {i ∈
I | gi(p̄, x̄) = 0 and ∇gi(p̄, x̄)(ū, w̄) = 0} the index set of all active constraints
at (p̄, x̄) ∈ P ×X in direction (ū, w̄) ∈ P ×X.

In the line of Definition 4.1 (see Chuong, 2013a), we propose the following
definition:

Definition 7 Let C be defined as in (16) and let (p̄, x̄) ∈ gphC and (ū, w̄) ∈
P ×X, γ ∈ {0, 1}. We say that C satisfies the second-order constraint qualifi-
cation (CQ) at (p̄, x̄) in the direction (ū, w̄) if

T 2
γ (gphC, (p̄, x̄), (ū, w̄)) ⊃ {(p, x) ∈ P ×X | ∇gi(p̄, x̄)(p, x)

+γ∇2gi(p̄, x̄)((ū, w̄), (ū, w̄)) ≤ 0, ∀i ∈ T (p̄, x̄, ū, w̄)}.
(17)

The following proposition gives us a criterion for computing the second-order
contingent derivative of index γ of the constraint mapping C in (16).

Proposition 3 Let (p̄, x̄) ∈ gphC and (ū, w̄) ∈ P ×X, γ ∈ {0, 1}. Suppose that
C in (16) satisfies the condition (CQ) at (p̄, x̄) in the direction (ū, w̄) (see (17))
and, for each i ∈ I, gi is twice continuously Fréchet differentiable at (p̄, x̄).
Then

D2
γC(p̄, x̄, ū, w̄)(p) =

{

x ∈ X | ∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x̄)((ū, w̄), (ū, w̄)) ≤ 0,

∀i ∈ T (p̄, x̄, ū, w̄)} , ∀p ∈ P.

Proof Let p ∈ P and x ∈ D2
γC(p̄, x̄, ū, w̄)(p). Then, there exist

tn → 0+, rn → 0+,
tn
rn

→ γ and (pn, xn) → (p, x)

such that

x̄+ tnw̄ +
1

2
tnrnxn ∈ C(p̄+ tnū+

1

2
tnrnpn), ∀n ∈ N,

leading to

gi(p̄+ tnū+
1

2
tnrnpn, x̄+ tnw̄ +

1

2
tnrnxn) ≤ 0, ∀n ∈ N, ∀i ∈ I. (18)
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We deduce from the twice continuously Fréchet differentiability of gi that

gi(p̄+ tnū+
1

2
tnrnpn, x̄+ tnw̄ +

1

2
tnrnxn) = gi(p̄, x̄) + tn∇gi(p̄, x̄)(ū, w̄)

+
1

2
tnrn∇gi(p̄, x̄)(pn, xn)

+
1

2
t2n∇2gi(p̄, x̄)

((

ū+
1

2
rnpn, w̄ +

1

2
rnxn

)

,

(

ū+
1

2
rnpn, w̄ +

1

2
rnxn

))

+o

(

∥

∥

∥

∥

(

tnū+
1

2
tnrnpn, tnw̄ +

1

2
tnrnxn

)
∥

∥

∥

∥

2
)

, ∀n ∈ N, ∀i ∈ I. (19)

From (18) and (4), one has

gi(p̄, x̄) + tn∇gi(p̄, x̄)(ū, w̄) +
1

2
tnrn∇gi(p̄, x̄)(pn, xn)

+
1

2
t2n∇2gi(p̄, x̄)

((

ū+
1

2
rnpn, w̄ +

1

2
rnxn

)

,

(

ū+
1

2
rnpn, w̄ +

1

2
rnxn

))

+o

(

∥

∥

∥

∥

(

tnū+
1

2
tnrnpn, tnw̄ +

1

2
tnrnxn

)
∥

∥

∥

∥

2
)

≤ 0, ∀n ∈ N, ∀i ∈ I.

Since gi(p̄, x̄) = 0 and ∇gi(p̄, x̄)(ū, w̄) = 0 for all i ∈ T (p̄, x̄, ū, w̄), we deduce
that

1

2
tnrn∇gi(p̄, x̄)(pn, xn)

+
1

2
t2n∇2gi(p̄, x̄)

((

ū+
1

2
rnpn, w̄ +

1

2
rnxn

)

,

(

ū+
1

2
rnpn, w̄ +

1

2
rnxn

))

+o

(

∥

∥

∥

∥

(

tnū+
1

2
tnrnpn, tnw̄ +

1

2
tnrnxn

)∥

∥

∥

∥

2
)

≤ 0, ∀n ∈ N, ∀i ∈ T (p̄, x̄, ū, w̄).

Consequently,

∇gi(p̄, x̄)(pn, xn)

+
tn
rn

∇2gi(p̄, x̄)

((

ū+
1

2
rnpn, w̄ +

1

2
rnxn

)

,

(

ū+
1

2
rnpn, w̄ +

1

2
rnxn

))

+

o

(

∥

∥

∥

∥

(

tnū+
1

2
tnrnpn, tnw̄ +

1

2
tnrnxn

)∥

∥

∥

∥

2
)

1

2
tnrn

≤ 0, ∀n ∈ N, ∀i ∈ T (p̄, x̄, ū, w̄).

Let n → ∞, one obtains

∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x)((ū, w̄), (ū, w̄)) ≤ 0, ∀i ∈ T (p̄, x̄, ū, w̄).
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Hence,

D2
γC(p̄, x̄, ū, w̄)(p) ⊂

{

x ∈ X | ∇gi(p̄, x̄)(p, x) +∇2gi(p̄, x)((ū, w̄), (ū, w̄)) ≤ 0,
∀i ∈ T (p̄, x̄, ū, w̄)} , ∀p ∈ P.

This, together with condition (CQ), implies that

D2
γC(p̄, x̄, ū, w̄)(p) =

{

x ∈ X | ∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x̄)((ū, w̄), (ū, w̄)) ≤ 0,
∀i ∈ T (p̄, x̄, ū, w̄)} , ∀p ∈ P.

The proof is complete.

The first result in this section provides an inner estimate for evaluating the
second-order contingent derivative of index γ of the efficient point multifunction
F in (3) via the second-order Fréchet derivative of the objective function f and
of the constraint functions gi, i ∈ I, given by (16) at the reference point.

Theorem 5 Let F be the efficient point multifunction of (2) with the con-
straint mapping C given by (16). Let p̄ ∈ P, x̄ ∈ C(p̄), γ ∈ {0, 1} and ȳ =
f(p̄, x̄), (ū, w̄, v̄) ∈ P ×X × Y . Suppose that the following conditions hold:

(i) C is second-order directionally compact with index γ at (p̄, x̄) with respect
to (ū, w̄) in the direction p ∈ P ;

(ii) f is twice continuously Fréchet differentiable at (p̄, x̄) and v̄ = ∇f(p̄, x̄)
(ū, w̄);

(iii) The domination property holds for F defined in (1) around p̄ and (10)
holds true;

(iv) C satisfies the second-order constraint qualification (CQ) at (p̄, x̄) in the
direction (ū, w̄) in (17).

Then, for all p ∈ P ,

D2
γF(p̄, ȳ, ū, v̄)(p)⊃EffK{y ∈ Y | ∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x̄)((ū, w̄),

(ū, w̄)) ≤ 0,

∀i ∈ T (p̄, x̄, ū, w̄),

y = ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

Proof By Theorem 3, one has

D2
γF(p̄, ȳ, ū, v̄)(p) ⊃ EffK{y ∈ Y | x ∈ D2

γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x)
+γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

It follows from Proposition 3 that

D2
γF(p̄, ȳ, ū, v̄)(p) ⊃ EffK{y ∈ Y | ∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x̄)((ū, w̄),

(ū, w̄)) ≤ 0,

∀i ∈ T (p̄, x̄, ū, w̄),

y = ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.
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This concludes the proof.

As an immediate consequence of Theorem 4 and Proposition 3, we have the
following result, which gives an outer estimate for evaluating the second-order
contingent derivative of index γ of the efficient point multifunction F in (3)
via the second-order Fréchet derivative of the objective function f and of the
constraint functions gi, i ∈ I, given by (16) at the point under consideration.

Theorem 6 Let F be the efficient point multifunction of (2) with the con-
straint mapping C given by (16). Let p̄ ∈ P, x̄ ∈ C(p̄), γ ∈ {0, 1} and ȳ =
f(p̄, x̄), (ū, w̄, v̄) ∈ P × X × Y . Suppose that f is twice continuously Fréchet
differentiable at (p̄, x̄) and v̄ = ∇f(p̄, x̄)(ū, w̄). Assume that (2) and (10) hold
true. C satisfies the second-order constraint qualification (CQ) at (p̄, x̄) in the
direction (ū, w̄) in (17). Then, for all p ∈ P ,

D2
γF(p̄, ȳ, ū, v̄)(p) ⊂

Effw
K{y ∈ Y | ∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x̄)((ū, w̄), (ū, w̄)) ≤ 0,

∀i ∈ T (p̄, x̄, ū, w̄), y = ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

Proof By Theorem 4, one has

D2
γF(p̄, ȳ, ū, v̄)(p) ⊂ Effw

K{y ∈ Y | x ∈ D2
γC(p̄, x̄, ū, w̄)(p), y = ∇f(p̄, x̄)(p, x)

+γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

It follows from Proposition 3 that

D2
γF(p̄, ȳ, ū, v̄)(p) ⊂ Effw

K{y ∈ Y | ∇gi(p̄, x̄)(p, x) + γ∇2gi(p̄, x̄)((ū, w̄),

(ū, w̄)) ≤ 0,

∀i ∈ T (p̄, x̄, ū, w̄),

y = ∇f(p̄, x̄)(p, x) + γ∇2f(p̄, x̄)((ū, w̄), (ū, w̄))}.

5. Conclusion

In this paper, we have investigated the second-order sensitivity in vector op-
timization problems. We have established the formulae for inner and outer
evaluation of the second-order contingent derivative of index γ of the efficient
point multifunction of parametric vector optimization problems. These estimat-
ing formulae have been presented via the set of efficient/weakly efficient points
of the second-order contingent derivative of index γ of a composite multifunc-
tion of the objective function and the constraint mapping. An application to
vector optimization problems with finite constraints has also been given.
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C, Analyse non linéaire, 6, 449–482.
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