
Control and Cybernetics
vol. 25 (1996) No. 1

Simulated annealing: a tutorial

by

Marc Pirlot* and Rene Victor Valqui Vidal**

*Faculte Polytechnique de Mons,
9, rue de Houdain,

B-7000 Mons, Belgium

**Institute of Mathematical Modelling,
Technical University of Denmark,

DK-2800 Lyngby, Denmark

Abstract: The main purpose of this paper is to provide an
overview of the ideas behind simulated annealing algorithms and to
outline guidelines for the construction of these algorithms. For the
sake of concreteness a simple example will be discussed to illustrate
both the process of designing a simulated annealing algorithm and
the achieved results. In addition, some current research problems
and current perspectives on the technique will be surveyed. Finally,
an outline of applications will be presented.

Keywords: Combinatorial optimization, simulated annealing,
applications.

1. Introduction

Simulated annealing (SA) is one of the recent meta-heuristic techniques deve
loped to solve combinatorial optimization problems. These problems can be
formulated as follows:

Consider a finite configuration space (space of configurations or solution
space) S = {x\x — (^1,^2, • • • , £m)}, where m is called the dimension of the
space, and a cost function C : S R which assigns a real number to each
configuration; to be specific, in a minimization problem, we want to find a
configuration x* G S, so that V?/ G S', C(£*) < C(y). Maximization problems
are similarly defined.

Interest in SA is intense because few important combinatorial optimization
problems can be solved exactly in a reasonable computer time. Most of these
problems arising in practice are NP-complete: all known techniques for ob
taining an exact solution require an exponentially increasing number of steps
as the problem becomes larger. Therefore, emphasis has been directed toward

10 M. PIRLOT & R.V.V. VIDAL

heuristic techniques, as SA, for solving these problems. The difference between
an heuristic approach and an (exact) algorithm is that the first is not guar
anteed to get an optimum solution; it is designed to give an acceptable solution
in reasonable time. In practice, however, the terms heuristic and algorithms are
often used interchangeably. In addition, SA is not an algorithm in the sense that
it gives a mechanical sequence of computations to solve a specific problem, e.g.,
in the sense that the simplex method is an algorithm to solve linear program
ming problems. Rather, SA is a strategy for solving combinatorial optimization
problems. Thus, the general statement about SA leaves several decisions which
have to be made in order to implement the method for a particular problem.

There has been an enormous amount of interest in the application of the
SA approach to combinatorial optimization problems following the relatively
recent work of Kirkpatrick et al. (1983) and Cerny (1985). This field has been
the object of intensive study, in what concerns theoretical, applied and prac
tical aspects, by mathematicians, statisticians, physicists, engineers, computer
scientists and operations researchers. Extensive bibliographies can be found
in Collins et al. (1988), van Laarhoven and Aarts (1987), and the recent paper
of Koulamas et al. (1994). Several books have also been devoted to SA: van
Laarhoven (1988), Aarts and Korst (1989), Siarry and Dreyfus (1989), Otten
and van Ginneken (1990), Azencott (1992), and Vidal (1993), where extensive
references are also given.

The main ideas behind SA can be introduced in three different ways. First,
by interpreting SA, like many other randomized algorithms, in terms of stochas
tic automata with or without learning capabilities, see further Shragowitz and
Lin (1990). This approach is not very well-known.

Second, by following the analogy between finding minimum energy states in
a physical system and finding minimum cost configurations in a combinatorial
optimization problem. This is the original approach dated back to the work
of Metropolis et al. (1953). To understand why such a physics problem is of
interest, consider how to coerce a solid into a low energy state. A low energy
state usually means a highly ordered state, such as a crystal lattice; a relevant
example here is the need to grow silicon in the form of highly ordered, defect-
free crystals for use in semi-conductor manufacturing. To accomplish this, the
material is annealed, i.e. heated to a temperature that permits many atomic
rearrangements, then cooled carefully, slowly, until the material “freezes” into a
regular good crystal. SA techniques use an analogous set of “controlled cooling”
operations for non-physical optimization problems, in effect transforming a poor,
unordered solution into a highly optimized, desirable solution. Thus, simulated
annealing offers an appealing physical analogy for the solution of optimization
problems, and more importantly, the potential to reshape mathematical insights
from the domain of physics into insights for combinatorial optimization prob
lems. Most of the books mentioned above use this analogy in the presentation
and design of the SA algorithm, and in the development of theoretical results
that insure the convergence of the SA algorithm to the optimal solution. This

Simulated annealing: a tutorial 11

analogy is also used by Lester Ingber in his paper, dealing with the adaptive
simulated annealing software, included in this special issue.

Third, by considering SA as one of the new meta-heuristic methods for
handling complex combinatorial optimization problems (four other ones are: ge
netic algorithms, neural networks, tabu search and target analysis), see further
Glover and Greenberg (1989) and Pirlot (1993). This algorithmic conceptu
alization is the prevailing one in the fields of mathematical programming and
operations research, see for instance Johnson et al. (1989, 1991). This algorith
mic approach is the one we will use in this paper and is the one used in most of
the papers of this special issue of Control and Cybernetics.

Anyone considering the uąe of SA today has access to a wide range of ref
erences covering both theoretical and practical aspects of this technique. This
paper aims to give some fundamental guidelines to the technique presenting
enough basic material to enable a beginner to get started. Other excellent tu
torials have been published, see for instance Eglese et al. (1990) and Dowsland
(1993), where more emphasis is given to theoretical aspects. Here, we will be
focusing primarily in design, implementation and practical aspects of this tech
nique.

In Section 2, the basic method will be presented. This will be done by
showing that SA is a (stochastic) modification of the well-known local search
algorithm, also known as steepest descent or greedy algorithm.

In Section 3, guidelines for the implementation of a SA algorithm are out
lined. Here, we will emphasize that to solve a particular combinatorial opti
mization problem by the SA technique, a number of decisions have to be made.
These decisions are usually divided in two groups. First, the generic decisions,
usually denominated as the annealing or cooling scheme (schedule, process).
Secondly, the problem-specific decisions which are closely related to the ac
tual problem to be solved.

For the sake of concreteness, a simple example will be presented to illustrate
the main points of the implementation process. This is done in Section 4, where
a family of problems related to partitions of a set with certain specific properties
are discussed.

In Section 5, we will present some enhancements and modifications to the
original algorithm based on our own and others published experiences. These
are rather important pieces of information because in practice the final design
and implementation of SA demands a lot of computer experimentation and
evaluation of alternative decisions to a given strategy.

SA is a powerful stochastic search technique applicable to a wide range of
problems which occur in a variety of disciplines. These include mathematics,
condensed matter physics, engineering problems, mathematical programming,
statistics, operations research, computer sciences, etc. In Section 6, we will
outline some applications of the SA algorithm specially focusing on the fields of
mathematical programming and operations research.

Finally, the conclusions will be presented in Section 7.

12 M. PIRLOT & R.V.V. VIDAL

2. Basic approaches

In this section we will show that the design process of a SA algorithm is easy
and it can be done very fast. In addition, SA is also a transparent approach,
i.e. non-specialists can easily understand its principles. Probably, the easiest
way of introducing SA is by showing that it is a stochastic modification of the
traditional local search heuristic.

2.1. Local search heuristics

From now on, we consider a minimization problem; of course maximization
problems are treated similarly. A local search strategy begins from an initial
solution .Ti E S', and at each iteration i, a new solution is chosen in
the neighborhood N(xi) of the current solution Xi. To each x E S', a subset
7V(.t) C S is defined as the neighborhood of x. For instance, if S is a set of
binary vectors, then a neighborhood N(x) of x may be the set of all solutions
x E S that can be obtained by swapping a single coordinate from 0 to 1 or
conversely. We assume that x A'(.r) , \/x 6 S, i.e. no solution is a neighbor of
itself. The evolution of the actual solution = 1,2,... depicts a trajectory
in S.

The best known local search strategy is the so-called steepest descent
algorithm. This is shown in Table 1. Here, a new solution x^ is found by
picking the best one in N(x7;), i.e. a solution E N(xi) so that C(.t7;+i) <
C(.t), \/x E N(xi). Then, becomes the next actual solution if it is not worse
than Xi, i.e. C(xi+1) < C(xi).

Procedure Descent algorithm
Begin

Initialize (x7, i — 1)
Repeat

Find best x E N(xi) ;
Calculate AC =.C(xi) - C(x)
if AC < 0 then Xi = x
else : stop.

End

Table 1. A local search strategy.

This strategy seems reasonable, is simple to implement and quick to execute,
but it has a serious problem: it is easily trapped in local minima, solutions that
look good in some small neighborhood of the total cost surface but are not
necessarily the global optimum. Standard iterative improvement is a downhill
only style, each new perturbation moves to a configuration downhill from the
previous one, thus, becoming trapped in a local minimum. In practice, one
scheme to overcome this is simply to try many random initial solutions, improve

Simulated annealing: a tutorial 13

each, and use the best configuration found. However, for very large problems,
the computational expense is great here, the number of random starts needed
to adequately sample the cost surface is unreasonable, and we will have no
guarantee of finding a good answer. SA is a local search strategy explicitly
designed to avoid the above mentioned situations.

2.2. The SA algorithm

SA offers a strategy very similar to steepest descent, with one major difference:
annealing allows perturbations to move uphill in a controlled fashion. A move
can now transform a configuration into a worse one; it is then possible to
jump out of local minima and potentially fall into a more promising downhill
trajectory. By following, some uphill moves in a controlled manner, SA offers a
way of leaving a local minimum. SA is similar to a random descent method in
which one does not search for the best solution in TV’(.'r^), but one simply draws
a solution x at random in N(xi). It differs in that a neighbor giving rise to
an increase in the cost function may be accepted. This acceptance will depend
on a control parameter (temperature), and the size of the increase of the cost
function.

The idea of SA comes from thermodynamics and metallurgy related to phys
ical annealing of a solid. To coerce some material into a low energy state, we
heat it, then cool it very slowly allowing it to come to thermal equilibrium at
each temperature. Simulating this process is very similar to a combinatorial op
timization task. For this physical system the goal is to find some arrangement
of atomic particles (a configuration) which minimizes the energy (cost) of the
system. The basic demand for simulating this process is the ability to simulate
how the system reaches thermodynamic equilibrium at each fixed temperature
in the schedule of decreasing temperatures used to anneal it.

SA works after the following principle: at the beginning (high “tempera
ture”) almost all moves (that is all updating of the current solution by a so
lution x randomly chosen in its neighborhood) are accepted. This permits the
exploration of the solution space. Then gradually, the control parameter (tem
perature) is decreased which means that the algorithm becomes more and more
selective in accepting new solutions. At the end, only the moves that decrease
C are accepted.

In SA the probability of accepting a transition which causes an increase,
AC, in the cost is usually called the acceptance function and is set to
e.7?p(—AC/T), where T is the control parameter which corresponds to the tem
perature in the analogy with the physical annealing process. In the SA algo
rithm, at the beginning, T has a relatively high value, to have a better chance
to avoid being prematurely trapped in a local minimum. The control parameter
is lowered in steps until it approaches zero. After termination the final “frozen”
configuration is taken as the solution of the combinatorial problem at hand. In
other words, SA can be conceptualized as a generalization of the local search

14 M. PIRLOT & R.V.V. VIDAL

Procedure Inhomogeneous SA algorithm
Begin

Initialize (k^Tk^i)]
Repeat

Generate configuration (z —> j);
Calculate AC^- = C(z) - C(J)
if /\Cij < 0 then i := j] else
if exp(—ACij/Tk) > random [0,1] then i := J;
k := k + 1;
Update (Tfc);

Until stop;
End;

Table 2. The Inhomogeneous SA Algorithm.

algorithm.
The SA algorithm is illustrated in pseudo-code in Table 2 and Table 3 in

its inhomogeneous and homogeneous versions, respectively. These two different
versions of the SA algorithms represent two different ways of decrementing the
control parameter T (annealing scheme, cooling strategy or annealing schedule):

i. the inhomogeneous SA algorithm, where T is decreased after each move
and which, therefore, can be described theoretically by a single inhomo
geneous Markov chain, and

ii. The homogeneous SA algorithm, where T is decreased after a number
of moves, L, and which, therefore, can be described by a sequence of
homogeneous Markov chains, each generated at a fixed value of T. L is
usually denominated as Markov chain length or length of plateau.

The analysis of the mathematical models of the stochastic processes gener
ated by the SA algorithm will provide necessary and sufficient conditions derived
to ensure that asymptotically the algorithms find a globally optimal solution
with probability 1, see further Aarts and Korst (1989), and van Laarhoven and
Aarts (1987). Unfortunately, these conditions cannot be satisfied in finite time.
Therefore, one has to specify values of both a finite number of moves at each
value of T, and a finite sequence of values of T. This means that in practice
the SA algorithm will only generate near-optimal solutions which might be the
global one. In addition, the way the temperature is cooled in practice is not
in accordance with the hypothesis which guarantee the convergence to an opti
mal solution. The cooling schemes used in practice are much faster than those
required by theory and hence, one may not even guarantee near-optimality.
This conflict between theory and pragmatism is always present in any practical
application of SA.

Simulated annealing: a tutorial 15

Procedure Homogeneous SA algorithm
Begin

Initialize (&, Z^, ż, Z^);
Repeat

For i :=1 to Lk do
Begin
Generate configuration (i —> j);
Calculate ACij = Ufy) -
if ACij < 0 then i := j; else
if exp(—ACij/Tk) > random [0,1] then i := j;

End;
k := k + 1;
Update (Lfc);
Update (Zfc);

Until stop;
End;

Table 3. The Homogeneous SA Algorithm.

2.3. Additional remarks

SA algorithms are not deterministic and will produce different answers each
time they are run, even on the same problem. This is because of the probabilistic
nature of choosing moves and accepting uphill moves. In particular, there is no
guarantee of getting precisely the optimum solution in any annealing algorithm
or even of getting the same answer on multiple runs. What SA really offers is
some probability of getting out of some local minima; this is not the same as
a guarantee of finding the optimal solution. In practice, it is recommended to
select the seed of the random generator in order to be able to make repeatable
experiments.

A major open question is to characterize the sorts of problems amenable to
annealing. Not all combinatorial optimization problems can be annealed to give
satisfactory solutions, e.g. the time taken to get a good solution may prove to be
unreasonable. It is widely believed that something about the basic structure
of a particular configuration space - its landscape of multi-dimensional hills and
valleys - determines whether annealing is viable. Consider a mostly flat land
scape with numerous, densely packed gopher holes, each of widely varying depth,
but some of which lead to the very best solutions. Such a problem is probably
impossible to anneal since moves will keep falling into these dead-end holes, and
as the temperature cools, it will become impossible to climb out of them, thus
trapping the solution in a bad local minimum. Thus, just as some materials
resist physical annealing, some problems resist SA. Moreover, there are even
applications where SA gives reasonable results but is outperformed my more
conventional heuristic approaches. In fact, SA is simply another technique for

16 M. PIRLOT &; R.V.V. VIDAL

solving combinatorial optimization problems, superior to some approaches for
some problems, inferior to others. But practice has shown the wide applicability
of SA, see for instance Vidal (1993).

3. Implementation

To solve a particular combinatorial optimization problem by the SA technique,
a number of decisions have to be made in order to design a suitable algorithm.
These are presented in Table 4, where these decisions are divided into two
groups. First, the generic ones that must be made for any implementation of
SA. They are usually denominated as the annealing or cooling scheme (schedule,
process, etc.). Secondly, the problem-specific decisions which are closely re
lated to the actual problem to be solved. The design of a SA algorithm demands
both a suitable use of all the knowledge (theoretical and practical) available on
the actual problem at hand and a suitably selected set of parameters, the “tun
ing” of the algorithm.

Table 4. Designing the SA Algorithm.

Decisions
Generic (Cooling Scheme) Problems-Specific

®TO (initial temperature)
®Lk (number of iterations, “length of plateau”)
®Tk (temperature function)
• Stopping criteria

•io (initial solution)
• Neighbor generation
• Evaluation of A (7^

3.1. Generic decisions

The generic decisions basically involve the cooling schedule, including the initial
(To) and the final temperature (T/), and the rate at which it must be reduced
(the temperature function). The rate at which the temperature parameter is
reduced is vital to the success of any SA algorithm. The most popular and sim
plest cooling schedule is the so-called geometric cooling scheme (Kirkpatrick
et al, 1985). This involves a geometric temperature function of the form

Tfe+i = oiTk > 0 < a < 1

Practice has shown that relatively high values of a perform best, 0.8 < a <
0.99, with a bias to the higher end of the range. This corresponds to slow
geometric cooling.

In the implementation of the inhomogeneous SA algorithm, the parameters
to be fixed in the cooling scheme are then To,Tf and a. In the homogeneous

Simulated annealing: a tutorial 17

version, we have also to fix the length of the plateau Z&, where the temperature
Tk will be kept constant for Lk consecutive steps. Then the temperature will be
decreased following the geometric cooling rule. When the homogeneous version
is implemented in practice usually the length of the plateau is set to = L ,\/k.

In the implementation of the homogeneous SA algorithm it is important
to be aware that L and a are positively correlated: increasing L or a tend to
increase the number of iterations (slow cooling) and should also improve the final
solution. When a and/or L are increased beyond a certain point, improvement
of Ć7* becomes so slow that better results are obtained by allocating the available
computing time to several shorter runs of the algorithm rather than to a single
very long run. For some examples, there is some evidence that for a fixed amount
of computing time, there exists an optimal compromise between the number of
runs and their lengths.

There is not a single and universal rule for selecting L and a. However, it is
usually the case that some preliminary experimentation quickly yields accept
able and robust values.

Another simple and popular cooling scheme, usually used in connection with
implementation of the inhomogeneous version of the SA technique, is the so-
called Lundy-Mees scheme (1986). This cooling scheme is regulated by the
formula

rp __

fc+1 ~ l + (3Tk

where (3 (a small value) is defined as

To-Tf
M-To-Tf

and M is the total number of neighbor generations.
Many others, more complicated, cooling schemes based on the thermody

namic analogy to the annealing process have been suggested in the literature.
For a complete review, see Collins et al. (1988). Most of these approaches are
based on the idea that quasi-equilibrium in the Markov chain should be reached
before temperature is varied and, in addition, the change in temperature should
be slow enough to allow to quickly reach a new quasi-equilibrium state for the
new temperature.

Empirical evidence suggests that the manner of cooling is not as important
as the rate. This means that there are not much to choose from, say, the
geometric and the Lundy-Mees scheme, as long as they cool over the same
range of temperatures at approximately the same rate. Therefore, based on the
experiments reported in the literature, when using SA for a new application it
is probably best to start off with one of the simple schedules and only consider
the more complicated ones if these fail to provide satisfactory results. In what
concerns the fixing of the values of the parameters for the schedule chosen,

18 M. PIRLOT & R.V.V. VIDAL

there is no easy way of achieving this and almost all the successful applications
published in the literature state that the best parameters were determined after
much experimentation. Note that one of the main assumptions in SA is that
the cooling scheme is basically independent of the problem on hand, in some
complex situations this might not be true. Therefore, either a modification of
the cooling scheme has to be done or another approach has to be selected.

The initial temperature To has to be selected high in order to permit bad
moves at the initial steps of the algorithm but on the other hand too high values
will increase the total computation time. Usually, To is generally determined
in order that the initial probability for accepting bad moves be approximately
equal to a prescribed value yo. This can be done by running the algorithm with
a tentative initial temperature, the acceptance rate of bad moves is computed
and To recalculated. Then, the algorithm is restarted with a modified value
of To and so on until an acceptance rate near %o is found. Dekkers and Aarts
(1991) have presented a more elaborated way to determine the initial value of To
which ensures that the algorithm converges faster because it is better adapted
to the actual problem at hand.

Theoretically, the temperature should be allowed to decrease to zero before
the stopping condition is satisfied, but in practice there is no need to decrease
the temperature this far. As the temperature approaches zero the probability of
accepting uphill moves will be indistinguishable from zero. Thus, the criterion
for stopping can be expressed either in terms of a minimum value of the tem
perature parameter, or in terms of the “freezing55 of the system at the current
solution, some rules attempt to define freezing as the number of iterations or
temperatures that must have passed without an acceptance. To accelerate the
process this condition is sometimes weakened so that the process stops when
the proportion of accepted moves drops below a given value. The simplest and
most popular rule is to specify the total number of iterations and stop when
this number is completed. Obviously, this simple rule has to be carefully tuned
with the other parameters to ensure that it corresponds with a sufficiently low
temperature to ensure convergence. More specific some stop rules are:

• If C* has not been improved by at least 61% after K± consecutive series
of L steps, or

• If the number of accepted moves is less than €2% of L for K% consecutive
series of L steps.

The values of 61 and 62 (usually between 1 and 5 %), and K± and K% should
be fixed by experimentation.

In the experimentation process necessary to fix the parameters it is proved
very useful to use the plot of Ck versus k (the number of iterations) as a graph
ical tool. At the beginning slow improvements are achieved (not necessarily'
monotonically). Similarly, at the end it is advisable to wait for a clear signal
showing that the annealing process has converged.

Simulated annealing: a tutorial 19

3.2. Problem-specific decision

Obviously, only some general comments can be made at this point. If for a
given combinatorial optimization problem it is possible to design a local search
heuristic approach, then, it is rather easy to modify it to a SA algorithm as we
have seen in Section 2.

In many applications an initial solution is rather easy to generate. Then,
this initial solution can be varied as a parameter in order to generate different
solutions. But in some problems it is difficult to find an initial solution be
cause of the fact that many constraints have to be satisfied. In such situations,
excellent results have been found by modelling some (difficult) constraints as
soft constraints, e.g. through penalty terms added to the objective function.
Such penalties are functions of the degree of violation of the constraints and
vanish when the constraints are satisfied. This modification of the model has an
incidence on the solution space as illegal or unfeasible solutions are considered.

Another main reason for using soft constraints is to get simpler or smoother
neighborhood structures. If, we restrict to generate only feasible solutions it
might be complicated and time consuming to (randomly) generate a feasible
neighbor to the actual solution.

In other types of applications where it is possible to achieve some theoreti
cal results about the problem structure, then a neighbor solution can be easily
generated having the adequate properties (feasible, near-optimal) and experi
ences have shown that in such situation the SA algorithm can be considerably
improved.

Another important aspect to be taken into consideration is the fact that
AC has to be calculated at each iteration. It is, therefore, important that the
cost function and the neighborhood structure are chosen in such a way that
the calculation can be carried out quickly and efficiently. It is often the case,
in well-designed SA algorithms that this does not necessitate recalculation of
the complete cost function for the new solution, and any shortcuts should be
considered when deciding forms of the costs and neighborhoods.

The determination of suitable problem-specific decisions demand a great
deal of experimentation and suitable use of the available knowledge about the
problem in question. It is in this sense that we can stipulate that the design of
a suitable SA algorithm is both an art and hard engineering work. Looking at
examples is certainly the best way for getting some feeling in these matters. In
the next section, we describe a family of examples and then concentrate on one
of them.

4. A family of problems

As we have seen above a main specific decision in building a SA algorithm is to
define neighbors in order to get an efficient exploration of the solution space, i.e.
to ensure that the “good regions” be visited at reasonable computing cost. In

20 M. PIRLOT & R.V.V. VIDAL

general, the choice of the solution space, objective function and neighborhood
structure are interrelated decisions. An important feature of the moves from a
solution to a neighbor is to be able to transform any solution into any other one
in the solution space in a finite number of steps.

Our aim in the present section is to illustrate these points with some exam
ples. We discuss a family of problems where solutions are partitions of a set with
certain specific properties. Two types of transformations suggest themselves:
moves of a point from a class of the partition to another one and exchanges
of two points belonging to different classes of the partition. A typical exam
ple is clustering. Consider a set of vectors in 1ZN which describe individuals
w.r.t. N characteristics. Clustering is a technique in data analysis which aims
at partitioning the individuals in subsets according to their similarities. Usually
classes are built which minimize the distances between individuals belonging to
the same class and maximize the distances between classes (with an appropriate
definition of the word “distance”). The problem of minimizing the sum of intra
class distances even with an a priori fixed number of classes, is a difficult one
(NP-hard). In this situation one can think of using SA. The search space is the
set of all partitions in K classes, K being determined by inspection, intuition or
previous knowledge. A neighbor of the current solution may be obtained either
by moving an individual from a class to another or exchanging two individuals
which belong to different classes (see for instance the paper by Dzemyda in this
special issue).

It can happen that the above obvious suggestions are not appropriate or raise
some problems. It is the case e.g. in graph coloring which is an important tool
for solving time-tabling problems . A solution (“legal” coloring) is a partition
of the vertices with no edge linking vertices assigned to the same class. The
goal is to find a legal coloring with the minimal number of classes. Moving
from a legal coloring to another legal coloring is in general a rather complicated
transformation. In Ghams, Hertz and de Werra’s (1987) application of SA
to this problem, the search proceeds in the space of all partitions with fixed
number of classes by moving one bad vertex from a class to another one (“bad
vertex” means a vertex which is linked to at least another vertex of the same
class). The goal of the search is to minimize the number of illegal edges i.e.
the number of edges linking vertices belonging to the same class. If a partition
without any illegal edge can be reached then a legal coloring has been found
which needs as many colors as there are classes in the partition. The search
is then restarted in a space of partitions with fewer classes. The process halts
when no legal coloring can be found with the allowed number of colors. Note
that more complicated neighborhood structures were experimented with on the
same problem by Johnson et al. 1991 (the so-called Kempe chain approach,
where moves preserve the legality of the coloring)

Simulated annealing: a tutorial 21

4.1. Homogeneous grouping of nuclear fuel cans

Let us now describe in more detail the implementation of a SA algorithm for
another partitioning problem which was raised by a company producing nuclear
fuel. Full detail about this application can be found in Tuyttens et al. 1994
or Liegeois et al. 1992. The feed material is stored in small cans and the cans
must be grouped in batches before being used. Each can is characterised by 7
quantities, its weight and its content in 6 isotopes of an element. The goal is to
assign the cans to batches in such a way that the batches are as homogeneous as
possible w.r.t. the seven characteristics. The objective function C measures the
lack of homogeneity of an assignment. As the range of variation of the weights
is not very large, the number of cans in a batch is almost always the same (say
4 or 5) and an assignment (a solution) can be described by a matrix with 5
columns and as many rows as necessary; each row is associated to a batch and
contains the identifiers of the cans associated to it (with possibly a dummy can
in case the batch comprises only 4 cans).

Starting with an initial assignment, we draw at random two batches and two
cans in these batches; if exchanging these cans results in a lower value of the
objective function G, we do the exchange. Else we compute exp[—AC/T]. If a
random number drawn in the [0,1] interval is smaller than this value we accept
the move, otherwise we try another exchange. The initial temperature Tq is
chosen in order to accept about 50% of the bad moves (i.e. moves which don’t
improve C). The temperature is decreased by a factor a = 0.95 after each series
of L steps. The algorithm is stopped after we have observed 50 consecutive
series of L steps with improvement of C by less than 1% in each step.

Except for L the parameters have been set in a fairly standard way. Only
L is adjusted according to the size of the problem instance, i.e. the number of
cans. In our case we do not select any form of functional dependency linking L
and the number of cans; as the goal is to be able to deal with lists of about 150
to 200 cans, we just selected a value of L which yields. satisfactory results for
problems of this size. A crucial issue is to define what is a “satisfactory” result.
In the present application we were lucky enough to benefit from previous work
done in the firm. Indeed a local search algorithm of the steepest descent type
based on the same neighborhood structure was used in the firm. This algorithm
could only deal with lists of up to 50 cans; larger lists resulted in unbearable
computing times. As a feasibility test for the SA approach, we began to work
on a 50 cans example which could be treated by the local search algorithm. We
were readily able to find better results with much less use of computer time.
For these preliminary trials we set arbitrarily the value of L to 250 iterations.
In our subsequent trials on full-size instances (170 cans) we tried the values
L = 250, 500, 750,1000 and obtained results which were considered satisfactory
by the managers of the firm as soon as L was as large as 500. In this case,
computing times are almost proportional to L.

In the sequel, we tried to find “optimal” values for the parameters. Obviously

22 M. PIRLOT & R.V.V. VIDAL

this is a multicriteria problem (and even an ill-posed one); in particular one has
to tradeoff between quality of solution and computing times. Usually there is a
point were progress in quality becomes extremely slow and can only be obtained
at the expense of heavy computing times. In order to explore the parameter
space around the point where the first satisfactory values had been reached, we
made further experimentation with all combinations of the following values for
the parameters.

To = 50,100, 200(50 is the initially chosen value)
a = 0.90,0.95,0.975
L = 250,500,750,1000

. In order to take into account the variability due to the choice of the initial
solution, the algorithm has been run with each set of parameter values on the
same sample of 100 randomly generated initial solutions. The original set of
parameters (with L = 750) was found to be the best one; of course slightly
better values of C were obtained with L=1000, but the improvement was not
judged to be worth the (linear) increase in computing time. The trials made with
this parameter setting are summarized in Table 5 by the following quantities:
minimal, maximal and mean values of C over 100 runs, standard deviation of
C, average computing time in seconds (on a DECstation 5000/133), mean total
number of series of L iterations and mean number of series of L iterations at
which the best value of C was met.

I Alg.l (S.A.) |
Tq a L Cmin Cmax ('mean Std UlTlC tot_.it Opt_it
50 0.95 750 || 109.08 145.48 126.74 7.92 19 175 147

Table 5. Best empirical values of the parameters and results for SA being applied
to a problem with 170 cans

A general remark which is confirmed by this particular example is that per
formances of a SA algorithm are rather robust w.r.t. parameter setting. Note
also that variants of the basic SA algorithm were tried on the same problem.
We shall come back to this in subsequent sections.

5. Variants and technical improvements

Several alternatives for choosing the solution space, the objective function and
the neighborhood structures generally exist and making a good choice is of
course a decision of crucial importance. This fact was already suggested in the
previous section and it will be further emphasized in the next section by means
of selected examples.

tot_.it

Simulated annealing: a tutorial 23

In the present section, we briefly review possible technical improvements
and some sophisticated variants of SA which hopefully are representative of
the evolution of practice among SA users. Note that our viewpoint is purely
pragmatic. We believe that the link between the theoretical results about SA
and what is actually observed are rather weak and it is an area that deserves
more research.

5.1. Choice of a cooling schedule

Recall that only very slow cooling schedules guarantee theoretical convergence
to the optimum. In view of this and current practice, which in contrast uses
geometric cooling, Johnson et al. (1989) experimented with a variety of cool
ing schedules on the graph partitioning problem. Namely, they compare the
behaviour of the algorithm under the following schedules:

- the usual geometric schedule;
- the logarithmic schedule (which is in agreement with theoretical conver

gence requirements)
T. = C

k 1 + log(fc)
where k = 1, 2,... is indexing the series of L steps done at temperature k]

- a schedule where To is decreased linearly with k\
- a schedule where the probability of accepting a bad move decreases linearly

with k.
In their experiments with graph partitioning, Johnson et al.did not see any

advantage in using schedules different from the usual geometric one. They ob
serve in addition a “lack of robustness with other schedules”. For instance, the
quality of the final solution is more sensitive to the choice of the initial temper
ature. This conclusion, formulated in the particular case of graph partitioning,
should of course be taken with the usual grain of salt; the statement of Johnson
et al. (1989, p. 869) applies here: “Although experiments are capable of 'demon
strating that the approach performs well, it is impossible for them, to prove that
it performs poorly. Defenders of SA can always say that we made the wrong
implementation choices”.

There is another category of schedules, called adaptive, where the tempera
ture is monitored after the evolution of the cost function. Most of these schedules
are based on the idea that “quasi-equilibrium” should be reached at a given tem
perature before it is decreased . This consideration generally results in tuning
dynamically the length L of the “plateau”. For example, Johnson et al.(1989)
experimented with a simple adaptive schedule bn graph partitioning (repeating
a series of L steps without temperature change if either the best value or the
average value has improved during the last series of L steps) This particular
schedule did not result in any significant improvement, but as the variety of
adaptive schedules is virtually unlimited, one can hope that other approaches
could be more fruitful. More sophisticated attempts which in general rely on the

24 M. PIRLOT & R.V.V. VIDAL

thermodynamic analogy were made by several authors among which we point
out Lam and Delosme (1986), Huang et al. (1986), Pedersen (1990) (for further
references see also van Laarhoven and Aarts (1987)). All those approaches are
based on the idea that quasi-equilibrium should be reached before temperature
is varied and the change in temperature should be slow enough to allow to reach
quickly a new quasi-equilibrium state for the new temperature. In another pa
per in this special issue, L. Ingber presents his experiments with his adaptive
simulated annealing code (ASA) that has been publicly available for over two
years.

An alternative attempt is based on the idea of “strategic oscillation” which
belongs to the arsenal of another well-known general heuristic called “Tabu
Search. This idea has been investigated by Osman in a series of problems
such as for instance vehicle routing (Osman, 1993) and capacitated clustering
(Osman and Christofides, 1994).

In Osman’s approach, the system is cooled in a non-monotonic way. Starting
from an initial temperature Too, the cooling process begins in the usual manner.
When progress becomes slow, due to freezing, temperature is raised to a higher
value Toi, e.g. half the previous initial temperature Too- Again the system is
cooled in the usual manner until slow progress is reached. The kth “oscillation”
consists in a cooling which starts at an initial temperature

Tok = ^To(fc-i),

a fraction /3 < 1 of the initial temperature of oscillation (k — 1).
For a description of elaborated versions of this idea, the reader is e.g. re

ported to the paper by Osman and Christofides (1994).

5.2. Possible technical improvements

We only mention very briefly a few suggestions which have been proposed in the
literature for improving the efficiency of the basic SA algorithm. For more detail
and evaluation on the graph partitioning problem, see Johnson et al. (1989).
Cutoffs: Stop the series of trials of a plateau (of the temperature schedule)
as soon as a fixed proportion of moves have been accepted. This may result in
time savings at high temperature.
Approximate exponentiation: Reading approximate values of the exponen
tial function in tables instead of using the usual formula for the Boltzmann
distribution, may lead to non-negligible time savings (up to | according to
Johnson et al. (1989)).
Starting from better than random solutions: There may be some advan
tage to start with good initial solutions (e.g. obtained by a conventional fast
heuristic). This is the case when good solutions are characterized by a very par
ticular structure which is difficult to find through a guided random search such
as SA (see Johnson et al. (1989) who experimented with the graph partitioning

Simulated annealing: a tutorial 25

problem on special geometric graphs). In case better than random initial solu
tions are used, the starting temperature should not be too high in order not to
destroy the structure of the initial solution. This however may prevent sufficient
exploration of the search space and multiple starts (with different better than
random initial solution) may be advisable.
More efficient choice of the moves: Much time is lost in SA due to the
random choice of a move. Here are several suggestions.

• In the special case of graph partitioning, select a random permutation of
the set V of vertices and, in a series of | V| consecutive trials, consider each
vertex exactly once for exchanging. In the case there are few solutions in
the neighborhood which improve the current one, this may avoid missing
them.

• Rejection free annealing (Green and Supowit (1986)) is an appealing
idea for a more efficient search at low temperature. Implementation of
this idea is problem- dependent and it will often be difficult to apply it in
practice.

• Locally optimized SA. Instead of selecting a solution at random in the
neighborhood of the current one, it seems more efficient to take the best
solution in a stz&neighborhood. In the example of nuclear fuel cans group
ing described in section 4.1, we implemented such a variant of SA. The
subneighborhood is a random sample of solutions obtained by exchanging
pairs of cans. At each step, we generate and evaluate such a subneigh
borhood and we apply the usual decision rule to the best solution found
in the subneighborhood. This leads to substantial improvement both in
computer time and solution quality as can be seen by comparing Table 5
with Table 6 below.

Table 6. Best empirical values of the parameters and results for Locally opti
mized SA

Alg.l’ Locally optimized S.A.
To a L Cmin Cmax Cmean Std time tot.it opt.it

a 50 0.90 100 97.82 143.96 113.91 8.13 11 71 71
b 50 0.90 200 96.73 162.05 109.59 8.05 23 70 69

5.3. Mixed approaches

The experiments briefly reported above show that the reasons for strictly ap
plying the original principles of SA are rather weak. Indeed neither theoretical
considerations nor the analogy with the cooling process of a physical system
are able to explain the successes and failures of SA. In addition, it is pretty
clear that importing other heuristic ideas may prove useful for improving the
results. This trend is much in the spirit of “Tabu Search” which is described

26 M. PIRLOT & R.V.V. VIDAL

by F. Glover et al. (1993) as a technique based on “selected concepts of arti
ficial intelligence”. So, in modern heuristics, there are no reasons for a priori
rejecting any idea. Conversely, legitimising an idea or an approach requires
careful, honest and extensive experimentation. In particular,' it is advisable to
examine whether some of the ideas implemented in Tabu Search and Genetic
Algorithms could not be fruitfully integrated in a SA algorithm. This path is
currently explored by a growing number of researchers among which we point
out for example, Osman and Christofides (1994), Moscato (1993), Andersen et
al.(1993).

6. Applications

SA has been applied to such a rich variety of problems that it would be too
long to mention them all. The reader is referred to the papers and books
cited in the introduction and in particular to van Laarhoven and Aarts (1987),
Collins et al. (1988), Vidal (1993) and Koulamas et al. (1994). Among the most
important applications let us mention image processing (pattern recognition)
and computer-aided circuit design (VLSI). Note that for large scale problems,
a good parallel implementation is usually crucial but we will not treat the issue
of parallelism in this introduction (see e.g. Aarts & Korst, 1989). Note also
that SA has not only been applied to solve optimization problems on a discrete
set but also on a continuous space of solutions. This is however done through
discretization.

Our goal in this section is to outline applications of simulated annealing to
a few combinatorial optimization problems. These were selected in order to
further illustrate some points already mentioned in the previous chapters and
give examples of more subtle implementations.

6.1. The Traveling Salesman Problem (TSP)

This is the problem to which SA was first applied. In the euclidean version of
the problem, One has to find the shortest circuit which passes once and only
once in each point of a set of points spread in the unit square of the plane.
Although the- results were encouraging at first glance, it soon became evident
that the basic version of SA was outperformed by specialized heuristics like the
well-known Lin-Kernighan algorithm. The basic version of SA for the TSP is
based on the 2-exchange neighborhood: a tour can be described as an ordered
list of the cities (= points) and the neighbors of the current tour can be obtained
by selecting 2 cities in the tour and reversing the order in which all the cities in
between are visited. . ' '

Bonomi and Lutton (1984) built a specialized version of SA for the euclidean
TSP on n cities drawn uniformly at random in the unit square. Probabilistic
analysis shows, when n is large, that the distance between consecutive cities in
an optimal tour are small as compared to 1, the unit square side length. Hence

Simulated annealing: a tutorial 27

the square is divided in disjoint sub-regions whose size has the same order of
magnitude as the average step of the optimal tour. The initial tour crosses each
subregion only once and all cities of a subregion are visited consecutively in a
certain order; 2-exchanges are performed only on pairs of points belonging to the
same subregion or neighboring ones. In this way crucial structural properties
of good tours are maintained throughout (by using relatively moderate initial
temperature) and no time is lost with aberrant tours. For a number of cities
above 400, it seems that the approach performs well as the length of the best
tour found is within a few percents of the theoretical optimal value (which
can be predicted by probabilistic considerations). This is an example where
theoretical knowledge about a problem has been used to reinforce the efficiency
of. an algorithm.

6.2. Graph coloring

Hertz and de Werra (1987) proposed a combined Tabu Search algorithm for
coloring large graphs. Their proposal is equally valid in a SA approach. First
use SA for finding a large independent set (i.e. a set of nodes, no pair of which
is linked by an arc of the graph). This can be done by an “annealed?’ version
of an improvement procedure which aims at enlarging the size of the set and
diminishing the number of “interior” arcs. Once a large independent set has
been found, all its nodes are colored with a single color and one tries to find
a large independent set in the set of not yet colored nodes. The procedure
continues in this way until the number of not yet colored nodes falls below
some- threshold. Then the remaining nodes are colored using the SA coloring
algorithm described in section 4. The Tabu Search version of the approach yields
good results (near to the theoretically estimated optimal value) for randomly
generated graphs. This illustrates the potentialities of combined approaches.

6.3; Jobshop scheduling

In a Jobshop problem each job consists in several operation to be performed in a
prescribed order on a specific machine in the shop. The goal is e.g. to minimize
the makespan i.e. the earliest time on which all operations of all jobs can be
accomplished. Scheduling a jobshop amounts to specify for each machine the
order of succession (sequencing) of the operations on this machine as well as
the beginning of the processing period (scheduling) of each operation. Jobshop
scheduling is a particularly (NP-) hard optimization problem; there are many
test examples of moderate size (less than 50 jobs) for which an optimal schedule
is not known despite the efforts devoted to their solving.

Van Laarhoven and Aarts (1987) have proposed and tested an approach
based on the disjunctive graph model due to Roy and Sussmann (1964). In the
disjunctive graph, each operation is represented by a vertex with two additional
vertices representing the starting and finishing times of the schedule. Directed

28 M. PIRLOT R.V.V. VIDAL

arcs link consecutive operations in a job; undirected edges link all pairs of op
erations to be done on the same machine. A feasible schedule is associated to
any orientation without cycle of the non directed edges. Each vertex is assigned
a weight equal to the duration of the corresponding operation. Solving the
scheduling problem amounts to find an acyclic orientation of the non directed
edges in which the length of the critical paths (i.e. the paths of maximal weight
from the initial to the final vertex) is minimal. Van Laarhoven and Aarts have
shown that reversing the orientation of one arc of a critical path results in a
new feasible solution and a sequence of such transformations allows to reach a
global optimum. So, the neighborhood of a solution is defined as the set of all
solutions that can be obtained by reversing the orientation of an arc of a critical
path in the oriented graph.

With this approach, using very carefully tuned cooling schedules, the authors
were able to solve difficult test problems to optimality (among others the famous
Fisher and Thompson’s problem with 10 jobs of 10 operations each). It should be
noticed that it is not very easy to reproduce the claimed results; the frequency
with which we find the optimal solution when starting with different initial
solutions or different initializations of the random sequence is not very high.
This means that there could be a certain lack of robustness of the suggested
cooling schedules. But the most important drawback is not there. Quite often,
in practical situations, one is not dealing with a purely classical jobshop problem.
Almost always, there are additional constraints specific to the treated case. It
is then essential that the algorithm for the classical situation could be flexible
enough to take into account some kinds of additional constraints. This is not
the case with the disjunctive graph approach in a jobshop scheduling problem
with additional due date constraints (each job should be completed before a
specified “due” date).

For the jobshop problem, another algorithm can be implemented which al
lows for more flexibility. Associated with each machine, a priority list of the
operations to be performed on the machine is held. This list does not specify
the exact order in which the operations will be executed but an order of priority.
The algorithm roughly runs as follows. One looks at the first time a machine
becomes idle and the first operation in the priority list associated to the ma
chine is considered for being loaded on the machine. If the operation may not
be executed immediately due to anteriority constraints, one looks at the second
operation in the priority list and so on. SA is used for modifying (through 2-
exchanges) the order of operations in each of the priority lists. This procedure
of course does not give as good results as the previous one but it is easy to take
into account additional constraints. In particular due dates can be managed
by adding to the objective function a penalty term proportional to the degree
of violation of the date. This example illustrates that some approaches (and it
is usually the case with SA) allow to take additional constraints into account
while other do not and this is often of crucial importance in applications.

Simulated annealing: a tutorial 29

7. Conclusions

In the present paper we tried to provide some guidelines for implementing a
metaheuristic approach, i.e. to adapt the general ideas to a particular optimiza
tion context. A traditional warning has been exposed by Johnson et al.(1991,
p. 405): “SA is not a panacea but a potentially useful toof. It is clear that
either exact algorithms or specialized heuristics or either other metaheuristics,
like Tabu Search or Genetic Algorithms, may be better suited in specific situ
ations. However SA has now its place as a tool in the arsenal of optimization
techniques.

The main advantages of SA are a relative ease of implementation and a
good flexibility. The strategic and tactical choices (choice of a neighborhood
structure, parameter, ...) to be made for adapting the approach to a particu
lar problem are rather few and one can imagine to implement SA for quickly
obtaining the first estimation of a good solution. If better solutions are needed,
the initial approach can be refined or one may turn to other approaches. Also,
constraints specific to the problem, often additional constraints not known from
the beginning, can be implemented without fundamental change either in a hard
or a soft manner (either by restricting the solution space or adding penalties in
the objective function).

The main drawback of SA is its inefficiency (long computing times, or inap
plicability in very large size problems). We have seen that this inefficiency can
be corrected by several types of change in the basic strategy (strategic oscilla
tion, selection of the best solution in a subneighborhood; nested approach like
in the coloring problem, restricted neighborhoods in the TSP, ...).

For summarizing, we believe that SA has become and remains a useful tool.
It is especially the case in practical problems where ease of implementation and
flexibility are more important than absolute performance either in computing
times or solution quality. This is the case for decision support systems where the
users are usually non-specialists in optimization but are experts on the concrete
problem to be solved.

References

Aarts, E. and Korst, J. (1989) Simulated Annealing and Boltzman Machi
nes: a stochastic approach to combinatorial optimization and neural com
puting. Wiley.

Andersen, K. et al. (1993) Design of a teleprocessing communication net
work using simulated annealing. In: Vidal, R.V.V. (ed.), Applied Simu
lated Annealing, Lecture Notes in Economics and Mathematical Systems,
Springer, Berlin, 201-216.

Azencott, R. (ed.) (1992) Simulated Annealing. Parallelization Techniques.
Wiley.

BONOMI, E. and LUTTON, J.L. (1984) The N-city travelling salesman prob-

30 M. PIRLOT & R.V.V. VIDAL

lem: Statistical mechanics and the Metropolis algorithm. SIAM Review,
26, 551-568.

Cerny, V. (1985) A thermodynamical approach to the travelling salesman
problem: an efficient simulation algorithm. Journal of Optimization The
ory and Applications, 45, 41-55.

Chams, M., Hertz, A. and de Werra, D. (1987) Some experiments with
simulated annealing for coloring graphs. Eur.J.Op.Res., 32, 260-266.

COLLINS, N.E. et al. (1988) Simulated Annealing - an annotated bibliography.
AJMMS, 8, 209-507.

DEKKERS, A. and A ARTS, E. (1991) Global optimization and simulated an
nealing. Math. Progr., 50, 367-393.

DOWSLAND, K.A. (1993) Simulated Annealing. In Reeves, C.R. (ed.), Modern
Heuristic Techniques for Combinatorial Problems, Blackwell, Oxford, 20-
65.

Eglese, R.W. (1990) Simulated Annealing: a tool for operational research,
EJOR, 46, 271-281.

Fisher, H. and Thompson, G.L. (1963) Probabilistic learning combinations
of local job-shop scheduling rules. In Muth, J. and Thompson, G. L. (eds.),
Industrial Scheduling, Prentice Hall, Englewood Cliffs, N.J., 225-251.

Glover, F. and Greenberg, H.J. (1989) New approaches for heuristic
search: a bilateral link with artificial intelligence. EJOR, 39, 119-130.

Glover, F., Taillard, E. and de Werra, D. (1993) A user’s guide to tabu
search. Annals of Operations Research, 41, 3-28.

Green, J.M. and Supowit, K.J. (1986) Simulated annealing without rejec
ted moves. IEEE Trans. Computer-Aided Design CAD-5, 221-228.

HERTZ, A. and DE Werra, D. (1987) Using tabu search techniques for^graph
coloring. Computing, 29, 345-351.

Huang, M.D,, Romeo, F. and Sangiovanni-Vincentelli, A. (1986) An
efficient general cooling schedule for simulated annealing. Proc. IEEE
Int. Conf, on CAD (ICCAD 86), 381-384, Santa Clara, Calif.

JOHNSON, D.S. et al. (1989) Optimization by Simulated Annealing: an exper
imental evaluation - Part I (Graph Partitioning). Operations Research, 37,
865-892.

Johnson, D.S. et al. (1991) Optimization by Simulated Annealing: an exper
imental evaluation - Part II (Graph Coloring and Number Partitioning).
Operations Research, 39, 378-406.

KIRKPATRICK, S. et al. (1983) Optimization by Simulated Annealing. Sci
ence, 220, 671-680.

KOULAMAS, C. et al. (1994) A survey of Simulated Annealing applications to
Operations Research problems. Omega, 22, 41-56.

EAARHOVEN VAN, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing:
Theory and Applications. Reidel.

LAARHOVEN VAN, P.J.M. (1988) Theoretical and Computational Aspects of
Simulated Annealing. Centre for Mathematics and Computer Science,

Simulated annealing: a tutoi’ial 31

Amsterdam.
Lam, J. and Delosme, J. M. (1986) Logic minimization using simulated an

nealing. Proc. IEEE Int. Conf, on CAD (ICCAD 86), 348-351, Santa
Clara, Calif.

Liegeois, B., Pirlot, M., Teghem, J., Trauwaert, E., and Tuyttens,
D. (1992) Balanced grouping through simulated annealing. In Vidal,
R.V.V. (ed.), Applied Simulated Annealing, Lecture Notes in Economics
and Mathematical Systems, Springer, Berlin, 275-290.

LUNDY, M. and Mees, A. (1986) Convergence of an annealing algorithm,
Math. Prog., 34, 111-124.

METROPOLIS, N. et al. (1953) Equation of state. Calculation by fast comput
ing machines. Journal of Chem. Phys., 21, 1087-1092.

MOSCATO, P. (1993) An introduction to population approaches for optimiza
tion and hierarchical objective functions: A discussion of the role of tabu
search. Annals of Operations Research, 41, 85-123.

Osman, I.H. (1993) Metastrategy simulated'annealing and tabu search algo
rithms for the vehicle routing problem. Annals of Operations Research,
41, 421-453.

OSMAN, I. H. and Christofides, N. (1994) Capacitated clustering problems
by hybrid simulated annealing and tabu search. Int. Trans. Oper. Res.,
1, 317-337.

Otten, R.H.J.M. and van Ginneken, L.P.P.P. (1990) Annealing Algo
rithm. Kluwer.

PEDERSEN, J.M. (1990) Simulated Annealing and Finite-Time Thermody
namics. Ph.D. Thesis, University of Copenhagen, Denmark.

PlRLOT, M. (1993) General Local Search Heuristics in Combinatorial Opti
mization: a tutorial. Belgian Journal of Operations Research, Statistics
and Computer Science, 32, 7-67.

Roy, B. and Sussmann, B. (1964) Les problemes d’ordonnancement avec con-
traintes disjonctives, Note DS 9 bis. SEMA, Paris.

SHRAGOWITZ, E. and Lin, R.B. (1990) Combinatorial Optimization by Sto
chastic Automata, Annals of Operations Research, 22, 293-324.

SlARRY, J. and Dreyfus, G. (1989) La methode du Recuit Simule (in
French), Paris, IDSET.

Tuyttens, D., Pirlot, M., Teghem, J., Trauwaert, E. and Liegeois,
B. (1994) Homogeneous grouping of nuclear fuel cans through simulated
annealing and tabu search. Annals of Operations Research, 50, 575-607.

Vidal, R.V.V. (ed.) (1993) Applied Simulated Annealing, Lecture Notes in
Economics and Mathematical Systems. Springer, Berlin.

