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Abstract: The main purpose of this paper is to provide an 
overview of the ideas behind simulated annealing algorithms and to 
outline guidelines for the construction of these algorithms. For the 
sake of concreteness a simple example will be discussed to illustrate 
both the process of designing a simulated annealing algorithm and 
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1. Introduction

Simulated annealing (SA) is one of the recent meta-heuristic techniques deve­
loped to solve combinatorial optimization problems. These problems can be 
formulated as follows:

Consider a finite configuration space (space of configurations or solution 
space) S = {x\x — (^1,^2, • • • , £m)}, where m is called the dimension of the 
space, and a cost function C : S R which assigns a real number to each 
configuration; to be specific, in a minimization problem, we want to find a 
configuration x* G S, so that V?/ G S', C(£*) < C(y). Maximization problems 
are similarly defined.

Interest in SA is intense because few important combinatorial optimization 
problems can be solved exactly in a reasonable computer time. Most of these 
problems arising in practice are NP-complete: all known techniques for ob­
taining an exact solution require an exponentially increasing number of steps 
as the problem becomes larger. Therefore, emphasis has been directed toward 
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heuristic techniques, as SA, for solving these problems. The difference between 
an heuristic approach and an (exact) algorithm is that the first is not guar­
anteed to get an optimum solution; it is designed to give an acceptable solution 
in reasonable time. In practice, however, the terms heuristic and algorithms are 
often used interchangeably. In addition, SA is not an algorithm in the sense that 
it gives a mechanical sequence of computations to solve a specific problem, e.g., 
in the sense that the simplex method is an algorithm to solve linear program­
ming problems. Rather, SA is a strategy for solving combinatorial optimization 
problems. Thus, the general statement about SA leaves several decisions which 
have to be made in order to implement the method for a particular problem.

There has been an enormous amount of interest in the application of the 
SA approach to combinatorial optimization problems following the relatively 
recent work of Kirkpatrick et al. (1983) and Cerny (1985). This field has been 
the object of intensive study, in what concerns theoretical, applied and prac­
tical aspects, by mathematicians, statisticians, physicists, engineers, computer 
scientists and operations researchers. Extensive bibliographies can be found 
in Collins et al. (1988), van Laarhoven and Aarts (1987), and the recent paper 
of Koulamas et al. (1994). Several books have also been devoted to SA: van 
Laarhoven (1988), Aarts and Korst (1989), Siarry and Dreyfus (1989), Otten 
and van Ginneken (1990), Azencott (1992), and Vidal (1993), where extensive 
references are also given.

The main ideas behind SA can be introduced in three different ways. First, 
by interpreting SA, like many other randomized algorithms, in terms of stochas­
tic automata with or without learning capabilities, see further Shragowitz and 
Lin (1990). This approach is not very well-known.

Second, by following the analogy between finding minimum energy states in 
a physical system and finding minimum cost configurations in a combinatorial 
optimization problem. This is the original approach dated back to the work 
of Metropolis et al. (1953). To understand why such a physics problem is of 
interest, consider how to coerce a solid into a low energy state. A low energy 
state usually means a highly ordered state, such as a crystal lattice; a relevant 
example here is the need to grow silicon in the form of highly ordered, defect- 
free crystals for use in semi-conductor manufacturing. To accomplish this, the 
material is annealed, i.e. heated to a temperature that permits many atomic 
rearrangements, then cooled carefully, slowly, until the material “freezes” into a 
regular good crystal. SA techniques use an analogous set of “controlled cooling” 
operations for non-physical optimization problems, in effect transforming a poor, 
unordered solution into a highly optimized, desirable solution. Thus, simulated 
annealing offers an appealing physical analogy for the solution of optimization 
problems, and more importantly, the potential to reshape mathematical insights 
from the domain of physics into insights for combinatorial optimization prob­
lems. Most of the books mentioned above use this analogy in the presentation 
and design of the SA algorithm, and in the development of theoretical results 
that insure the convergence of the SA algorithm to the optimal solution. This 
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analogy is also used by Lester Ingber in his paper, dealing with the adaptive 
simulated annealing software, included in this special issue.

Third, by considering SA as one of the new meta-heuristic methods for 
handling complex combinatorial optimization problems (four other ones are: ge­
netic algorithms, neural networks, tabu search and target analysis), see further 
Glover and Greenberg (1989) and Pirlot (1993). This algorithmic conceptu­
alization is the prevailing one in the fields of mathematical programming and 
operations research, see for instance Johnson et al. (1989, 1991). This algorith­
mic approach is the one we will use in this paper and is the one used in most of 
the papers of this special issue of Control and Cybernetics.

Anyone considering the uąe of SA today has access to a wide range of ref­
erences covering both theoretical and practical aspects of this technique. This 
paper aims to give some fundamental guidelines to the technique presenting 
enough basic material to enable a beginner to get started. Other excellent tu­
torials have been published, see for instance Eglese et al. (1990) and Dowsland 
(1993), where more emphasis is given to theoretical aspects. Here, we will be 
focusing primarily in design, implementation and practical aspects of this tech­
nique.

In Section 2, the basic method will be presented. This will be done by 
showing that SA is a (stochastic) modification of the well-known local search 
algorithm, also known as steepest descent or greedy algorithm.

In Section 3, guidelines for the implementation of a SA algorithm are out­
lined. Here, we will emphasize that to solve a particular combinatorial opti­
mization problem by the SA technique, a number of decisions have to be made. 
These decisions are usually divided in two groups. First, the generic decisions, 
usually denominated as the annealing or cooling scheme (schedule, process). 
Secondly, the problem-specific decisions which are closely related to the ac­
tual problem to be solved.

For the sake of concreteness, a simple example will be presented to illustrate 
the main points of the implementation process. This is done in Section 4, where 
a family of problems related to partitions of a set with certain specific properties 
are discussed.

In Section 5, we will present some enhancements and modifications to the 
original algorithm based on our own and others published experiences. These 
are rather important pieces of information because in practice the final design 
and implementation of SA demands a lot of computer experimentation and 
evaluation of alternative decisions to a given strategy.

SA is a powerful stochastic search technique applicable to a wide range of 
problems which occur in a variety of disciplines. These include mathematics, 
condensed matter physics, engineering problems, mathematical programming, 
statistics, operations research, computer sciences, etc. In Section 6, we will 
outline some applications of the SA algorithm specially focusing on the fields of 
mathematical programming and operations research.

Finally, the conclusions will be presented in Section 7.
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2. Basic approaches

In this section we will show that the design process of a SA algorithm is easy 
and it can be done very fast. In addition, SA is also a transparent approach, 
i.e. non-specialists can easily understand its principles. Probably, the easiest 
way of introducing SA is by showing that it is a stochastic modification of the 
traditional local search heuristic.

2.1. Local search heuristics

From now on, we consider a minimization problem; of course maximization 
problems are treated similarly. A local search strategy begins from an initial 
solution .Ti E S', and at each iteration i, a new solution is chosen in
the neighborhood N(xi) of the current solution Xi. To each x E S', a subset 
7V(.t) C S is defined as the neighborhood of x. For instance, if S is a set of 
binary vectors, then a neighborhood N(x) of x may be the set of all solutions 
x E S that can be obtained by swapping a single coordinate from 0 to 1 or 
conversely. We assume that x A'(.r) , \/x 6 S, i.e. no solution is a neighbor of 
itself. The evolution of the actual solution = 1,2,... depicts a trajectory 
in S.

The best known local search strategy is the so-called steepest descent 
algorithm. This is shown in Table 1. Here, a new solution x^ is found by 
picking the best one in N(x7;), i.e. a solution E N(xi) so that C(.t7;+i) < 
C(.t), \/x E N(xi). Then, becomes the next actual solution if it is not worse 
than Xi, i.e. C(xi+1) < C(xi).

Procedure Descent algorithm
Begin

Initialize (x7, i — 1)
Repeat

Find best x E N(xi) ;
Calculate AC =.C(xi) - C(x) 
if AC < 0 then Xi = x 
else : stop.

End

Table 1. A local search strategy.

This strategy seems reasonable, is simple to implement and quick to execute, 
but it has a serious problem: it is easily trapped in local minima, solutions that 
look good in some small neighborhood of the total cost surface but are not 
necessarily the global optimum. Standard iterative improvement is a downhill 
only style, each new perturbation moves to a configuration downhill from the 
previous one, thus, becoming trapped in a local minimum. In practice, one 
scheme to overcome this is simply to try many random initial solutions, improve 
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each, and use the best configuration found. However, for very large problems, 
the computational expense is great here, the number of random starts needed 
to adequately sample the cost surface is unreasonable, and we will have no 
guarantee of finding a good answer. SA is a local search strategy explicitly 
designed to avoid the above mentioned situations.

2.2. The SA algorithm

SA offers a strategy very similar to steepest descent, with one major difference: 
annealing allows perturbations to move uphill in a controlled fashion. A move 
can now transform a configuration into a worse one; it is then possible to 
jump out of local minima and potentially fall into a more promising downhill 
trajectory. By following, some uphill moves in a controlled manner, SA offers a 
way of leaving a local minimum. SA is similar to a random descent method in 
which one does not search for the best solution in TV’(.'r^), but one simply draws 
a solution x at random in N(xi). It differs in that a neighbor giving rise to 
an increase in the cost function may be accepted. This acceptance will depend 
on a control parameter (temperature), and the size of the increase of the cost 
function.

The idea of SA comes from thermodynamics and metallurgy related to phys­
ical annealing of a solid. To coerce some material into a low energy state, we 
heat it, then cool it very slowly allowing it to come to thermal equilibrium at 
each temperature. Simulating this process is very similar to a combinatorial op­
timization task. For this physical system the goal is to find some arrangement 
of atomic particles (a configuration) which minimizes the energy (cost) of the 
system. The basic demand for simulating this process is the ability to simulate 
how the system reaches thermodynamic equilibrium at each fixed temperature 
in the schedule of decreasing temperatures used to anneal it.

SA works after the following principle: at the beginning (high “tempera­
ture”) almost all moves (that is all updating of the current solution by a so­
lution x randomly chosen in its neighborhood) are accepted. This permits the 
exploration of the solution space. Then gradually, the control parameter (tem­
perature) is decreased which means that the algorithm becomes more and more 
selective in accepting new solutions. At the end, only the moves that decrease 
C are accepted.

In SA the probability of accepting a transition which causes an increase, 
AC, in the cost is usually called the acceptance function and is set to 
e.7?p(—AC/T), where T is the control parameter which corresponds to the tem­
perature in the analogy with the physical annealing process. In the SA algo­
rithm, at the beginning, T has a relatively high value, to have a better chance 
to avoid being prematurely trapped in a local minimum. The control parameter 
is lowered in steps until it approaches zero. After termination the final “frozen” 
configuration is taken as the solution of the combinatorial problem at hand. In 
other words, SA can be conceptualized as a generalization of the local search
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Procedure Inhomogeneous SA algorithm
Begin

Initialize (k^Tk^i)]
Repeat

Generate configuration (z —> j);
Calculate AC^- = C(z) - C(J)
if /\Cij < 0 then i := j] else
if exp(—ACij/Tk) > random [0,1] then i := J; 
k := k + 1;
Update (Tfc);

Until stop;
End;

Table 2. The Inhomogeneous SA Algorithm.

algorithm.
The SA algorithm is illustrated in pseudo-code in Table 2 and Table 3 in 

its inhomogeneous and homogeneous versions, respectively. These two different 
versions of the SA algorithms represent two different ways of decrementing the 
control parameter T (annealing scheme, cooling strategy or annealing schedule):

i. the inhomogeneous SA algorithm, where T is decreased after each move 
and which, therefore, can be described theoretically by a single inhomo­
geneous Markov chain, and

ii. The homogeneous SA algorithm, where T is decreased after a number 
of moves, L, and which, therefore, can be described by a sequence of 
homogeneous Markov chains, each generated at a fixed value of T. L is 
usually denominated as Markov chain length or length of plateau.

The analysis of the mathematical models of the stochastic processes gener­
ated by the SA algorithm will provide necessary and sufficient conditions derived 
to ensure that asymptotically the algorithms find a globally optimal solution 
with probability 1, see further Aarts and Korst (1989), and van Laarhoven and 
Aarts (1987). Unfortunately, these conditions cannot be satisfied in finite time. 
Therefore, one has to specify values of both a finite number of moves at each 
value of T, and a finite sequence of values of T. This means that in practice 
the SA algorithm will only generate near-optimal solutions which might be the 
global one. In addition, the way the temperature is cooled in practice is not 
in accordance with the hypothesis which guarantee the convergence to an opti­
mal solution. The cooling schemes used in practice are much faster than those 
required by theory and hence, one may not even guarantee near-optimality. 
This conflict between theory and pragmatism is always present in any practical 
application of SA.
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Procedure Homogeneous SA algorithm
Begin

Initialize (&, Z^, ż, Z^);
Repeat

For i :=1 to Lk do
Begin
Generate configuration (i —> j);
Calculate ACij = Ufy) -
if ACij < 0 then i := j; else
if exp(—ACij/Tk) > random [0,1] then i := j; 

End;
k := k + 1;
Update (Lfc);
Update (Zfc);

Until stop;
End;

Table 3. The Homogeneous SA Algorithm.

2.3. Additional remarks

SA algorithms are not deterministic and will produce different answers each 
time they are run, even on the same problem. This is because of the probabilistic 
nature of choosing moves and accepting uphill moves. In particular, there is no 
guarantee of getting precisely the optimum solution in any annealing algorithm 
or even of getting the same answer on multiple runs. What SA really offers is 
some probability of getting out of some local minima; this is not the same as 
a guarantee of finding the optimal solution. In practice, it is recommended to 
select the seed of the random generator in order to be able to make repeatable 
experiments.

A major open question is to characterize the sorts of problems amenable to 
annealing. Not all combinatorial optimization problems can be annealed to give 
satisfactory solutions, e.g. the time taken to get a good solution may prove to be 
unreasonable. It is widely believed that something about the basic structure 
of a particular configuration space - its landscape of multi-dimensional hills and 
valleys - determines whether annealing is viable. Consider a mostly flat land­
scape with numerous, densely packed gopher holes, each of widely varying depth, 
but some of which lead to the very best solutions. Such a problem is probably 
impossible to anneal since moves will keep falling into these dead-end holes, and 
as the temperature cools, it will become impossible to climb out of them, thus 
trapping the solution in a bad local minimum. Thus, just as some materials 
resist physical annealing, some problems resist SA. Moreover, there are even 
applications where SA gives reasonable results but is outperformed my more 
conventional heuristic approaches. In fact, SA is simply another technique for 
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solving combinatorial optimization problems, superior to some approaches for 
some problems, inferior to others. But practice has shown the wide applicability 
of SA, see for instance Vidal (1993).

3. Implementation

To solve a particular combinatorial optimization problem by the SA technique, 
a number of decisions have to be made in order to design a suitable algorithm. 
These are presented in Table 4, where these decisions are divided into two 
groups. First, the generic ones that must be made for any implementation of 
SA. They are usually denominated as the annealing or cooling scheme (schedule, 
process, etc.). Secondly, the problem-specific decisions which are closely re­
lated to the actual problem to be solved. The design of a SA algorithm demands 
both a suitable use of all the knowledge (theoretical and practical) available on 
the actual problem at hand and a suitably selected set of parameters, the “tun­
ing” of the algorithm.

Table 4. Designing the SA Algorithm.

Decisions
Generic (Cooling Scheme) Problems-Specific

®TO (initial temperature)
®Lk (number of iterations, “length of plateau”) 
®Tk (temperature function)
• Stopping criteria

•io (initial solution)
• Neighbor generation
• Evaluation of A (7^

3.1. Generic decisions

The generic decisions basically involve the cooling schedule, including the initial 
(To) and the final temperature (T/), and the rate at which it must be reduced 
(the temperature function). The rate at which the temperature parameter is 
reduced is vital to the success of any SA algorithm. The most popular and sim­
plest cooling schedule is the so-called geometric cooling scheme (Kirkpatrick 
et al, 1985). This involves a geometric temperature function of the form

Tfe+i = oiTk > 0 < a < 1

Practice has shown that relatively high values of a perform best, 0.8 < a < 
0.99, with a bias to the higher end of the range. This corresponds to slow 
geometric cooling.

In the implementation of the inhomogeneous SA algorithm, the parameters 
to be fixed in the cooling scheme are then To,Tf and a. In the homogeneous 
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version, we have also to fix the length of the plateau Z&, where the temperature 
Tk will be kept constant for Lk consecutive steps. Then the temperature will be 
decreased following the geometric cooling rule. When the homogeneous version 
is implemented in practice usually the length of the plateau is set to = L ,\/k.

In the implementation of the homogeneous SA algorithm it is important 
to be aware that L and a are positively correlated: increasing L or a tend to 
increase the number of iterations (slow cooling) and should also improve the final 
solution. When a and/or L are increased beyond a certain point, improvement 
of Ć7* becomes so slow that better results are obtained by allocating the available 
computing time to several shorter runs of the algorithm rather than to a single 
very long run. For some examples, there is some evidence that for a fixed amount 
of computing time, there exists an optimal compromise between the number of 
runs and their lengths.

There is not a single and universal rule for selecting L and a. However, it is 
usually the case that some preliminary experimentation quickly yields accept­
able and robust values.

Another simple and popular cooling scheme, usually used in connection with 
implementation of the inhomogeneous version of the SA technique, is the so- 
called Lundy-Mees scheme (1986). This cooling scheme is regulated by the 
formula

rp __

fc+1 ~ l + (3Tk

where (3 (a small value) is defined as

To-Tf
M-To-Tf

and M is the total number of neighbor generations.
Many others, more complicated, cooling schemes based on the thermody­

namic analogy to the annealing process have been suggested in the literature. 
For a complete review, see Collins et al. (1988). Most of these approaches are 
based on the idea that quasi-equilibrium in the Markov chain should be reached 
before temperature is varied and, in addition, the change in temperature should 
be slow enough to allow to quickly reach a new quasi-equilibrium state for the 
new temperature.

Empirical evidence suggests that the manner of cooling is not as important 
as the rate. This means that there are not much to choose from, say, the 
geometric and the Lundy-Mees scheme, as long as they cool over the same 
range of temperatures at approximately the same rate. Therefore, based on the 
experiments reported in the literature, when using SA for a new application it 
is probably best to start off with one of the simple schedules and only consider 
the more complicated ones if these fail to provide satisfactory results. In what 
concerns the fixing of the values of the parameters for the schedule chosen, 
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there is no easy way of achieving this and almost all the successful applications 
published in the literature state that the best parameters were determined after 
much experimentation. Note that one of the main assumptions in SA is that 
the cooling scheme is basically independent of the problem on hand, in some 
complex situations this might not be true. Therefore, either a modification of 
the cooling scheme has to be done or another approach has to be selected.

The initial temperature To has to be selected high in order to permit bad 
moves at the initial steps of the algorithm but on the other hand too high values 
will increase the total computation time. Usually, To is generally determined 
in order that the initial probability for accepting bad moves be approximately 
equal to a prescribed value yo. This can be done by running the algorithm with 
a tentative initial temperature, the acceptance rate of bad moves is computed 
and To recalculated. Then, the algorithm is restarted with a modified value 
of To and so on until an acceptance rate near %o is found. Dekkers and Aarts 
(1991) have presented a more elaborated way to determine the initial value of To 
which ensures that the algorithm converges faster because it is better adapted 
to the actual problem at hand.

Theoretically, the temperature should be allowed to decrease to zero before 
the stopping condition is satisfied, but in practice there is no need to decrease 
the temperature this far. As the temperature approaches zero the probability of 
accepting uphill moves will be indistinguishable from zero. Thus, the criterion 
for stopping can be expressed either in terms of a minimum value of the tem­
perature parameter, or in terms of the “freezing55 of the system at the current 
solution, some rules attempt to define freezing as the number of iterations or 
temperatures that must have passed without an acceptance. To accelerate the 
process this condition is sometimes weakened so that the process stops when 
the proportion of accepted moves drops below a given value. The simplest and 
most popular rule is to specify the total number of iterations and stop when 
this number is completed. Obviously, this simple rule has to be carefully tuned 
with the other parameters to ensure that it corresponds with a sufficiently low 
temperature to ensure convergence. More specific some stop rules are:

• If C* has not been improved by at least 61% after K± consecutive series 
of L steps, or

• If the number of accepted moves is less than €2% of L for K% consecutive 
series of L steps.

The values of 61 and 62 (usually between 1 and 5 %), and K± and K% should 
be fixed by experimentation.

In the experimentation process necessary to fix the parameters it is proved 
very useful to use the plot of Ck versus k (the number of iterations) as a graph­
ical tool. At the beginning slow improvements are achieved (not necessarily' 
monotonically). Similarly, at the end it is advisable to wait for a clear signal 
showing that the annealing process has converged.
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3.2. Problem-specific decision

Obviously, only some general comments can be made at this point. If for a 
given combinatorial optimization problem it is possible to design a local search 
heuristic approach, then, it is rather easy to modify it to a SA algorithm as we 
have seen in Section 2.

In many applications an initial solution is rather easy to generate. Then, 
this initial solution can be varied as a parameter in order to generate different 
solutions. But in some problems it is difficult to find an initial solution be­
cause of the fact that many constraints have to be satisfied. In such situations, 
excellent results have been found by modelling some (difficult) constraints as 
soft constraints, e.g. through penalty terms added to the objective function. 
Such penalties are functions of the degree of violation of the constraints and 
vanish when the constraints are satisfied. This modification of the model has an 
incidence on the solution space as illegal or unfeasible solutions are considered.

Another main reason for using soft constraints is to get simpler or smoother 
neighborhood structures. If, we restrict to generate only feasible solutions it 
might be complicated and time consuming to (randomly) generate a feasible 
neighbor to the actual solution.

In other types of applications where it is possible to achieve some theoreti­
cal results about the problem structure, then a neighbor solution can be easily 
generated having the adequate properties (feasible, near-optimal) and experi­
ences have shown that in such situation the SA algorithm can be considerably 
improved.

Another important aspect to be taken into consideration is the fact that 
AC has to be calculated at each iteration. It is, therefore, important that the 
cost function and the neighborhood structure are chosen in such a way that 
the calculation can be carried out quickly and efficiently. It is often the case, 
in well-designed SA algorithms that this does not necessitate recalculation of 
the complete cost function for the new solution, and any shortcuts should be 
considered when deciding forms of the costs and neighborhoods.

The determination of suitable problem-specific decisions demand a great 
deal of experimentation and suitable use of the available knowledge about the 
problem in question. It is in this sense that we can stipulate that the design of 
a suitable SA algorithm is both an art and hard engineering work. Looking at 
examples is certainly the best way for getting some feeling in these matters. In 
the next section, we describe a family of examples and then concentrate on one 
of them.

4. A family of problems

As we have seen above a main specific decision in building a SA algorithm is to 
define neighbors in order to get an efficient exploration of the solution space, i.e. 
to ensure that the “good regions” be visited at reasonable computing cost. In 
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general, the choice of the solution space, objective function and neighborhood 
structure are interrelated decisions. An important feature of the moves from a 
solution to a neighbor is to be able to transform any solution into any other one 
in the solution space in a finite number of steps.

Our aim in the present section is to illustrate these points with some exam­
ples. We discuss a family of problems where solutions are partitions of a set with 
certain specific properties. Two types of transformations suggest themselves: 
moves of a point from a class of the partition to another one and exchanges 
of two points belonging to different classes of the partition. A typical exam­
ple is clustering. Consider a set of vectors in 1ZN which describe individuals 
w.r.t. N characteristics. Clustering is a technique in data analysis which aims 
at partitioning the individuals in subsets according to their similarities. Usually 
classes are built which minimize the distances between individuals belonging to 
the same class and maximize the distances between classes (with an appropriate 
definition of the word “distance”). The problem of minimizing the sum of intra­
class distances even with an a priori fixed number of classes, is a difficult one 
(NP-hard). In this situation one can think of using SA. The search space is the 
set of all partitions in K classes, K being determined by inspection, intuition or 
previous knowledge. A neighbor of the current solution may be obtained either 
by moving an individual from a class to another or exchanging two individuals 
which belong to different classes (see for instance the paper by Dzemyda in this 
special issue).

It can happen that the above obvious suggestions are not appropriate or raise 
some problems. It is the case e.g. in graph coloring which is an important tool 
for solving time-tabling problems . A solution (“legal” coloring) is a partition 
of the vertices with no edge linking vertices assigned to the same class. The 
goal is to find a legal coloring with the minimal number of classes. Moving 
from a legal coloring to another legal coloring is in general a rather complicated 
transformation. In Ghams, Hertz and de Werra’s (1987) application of SA 
to this problem, the search proceeds in the space of all partitions with fixed 
number of classes by moving one bad vertex from a class to another one (“bad 
vertex” means a vertex which is linked to at least another vertex of the same 
class). The goal of the search is to minimize the number of illegal edges i.e. 
the number of edges linking vertices belonging to the same class. If a partition 
without any illegal edge can be reached then a legal coloring has been found 
which needs as many colors as there are classes in the partition. The search 
is then restarted in a space of partitions with fewer classes. The process halts 
when no legal coloring can be found with the allowed number of colors. Note 
that more complicated neighborhood structures were experimented with on the 
same problem by Johnson et al. 1991 (the so-called Kempe chain approach, 
where moves preserve the legality of the coloring)
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4.1. Homogeneous grouping of nuclear fuel cans

Let us now describe in more detail the implementation of a SA algorithm for 
another partitioning problem which was raised by a company producing nuclear 
fuel. Full detail about this application can be found in Tuyttens et al. 1994 
or Liegeois et al. 1992. The feed material is stored in small cans and the cans 
must be grouped in batches before being used. Each can is characterised by 7 
quantities, its weight and its content in 6 isotopes of an element. The goal is to 
assign the cans to batches in such a way that the batches are as homogeneous as 
possible w.r.t. the seven characteristics. The objective function C measures the 
lack of homogeneity of an assignment. As the range of variation of the weights 
is not very large, the number of cans in a batch is almost always the same (say 
4 or 5) and an assignment (a solution) can be described by a matrix with 5 
columns and as many rows as necessary; each row is associated to a batch and 
contains the identifiers of the cans associated to it (with possibly a dummy can 
in case the batch comprises only 4 cans).

Starting with an initial assignment, we draw at random two batches and two 
cans in these batches; if exchanging these cans results in a lower value of the 
objective function G, we do the exchange. Else we compute exp[—AC/T]. If a 
random number drawn in the [0,1] interval is smaller than this value we accept 
the move, otherwise we try another exchange. The initial temperature Tq is 
chosen in order to accept about 50% of the bad moves (i.e. moves which don’t 
improve C). The temperature is decreased by a factor a = 0.95 after each series 
of L steps. The algorithm is stopped after we have observed 50 consecutive 
series of L steps with improvement of C by less than 1% in each step.

Except for L the parameters have been set in a fairly standard way. Only 
L is adjusted according to the size of the problem instance, i.e. the number of 
cans. In our case we do not select any form of functional dependency linking L 
and the number of cans; as the goal is to be able to deal with lists of about 150 
to 200 cans, we just selected a value of L which yields. satisfactory results for 
problems of this size. A crucial issue is to define what is a “satisfactory” result. 
In the present application we were lucky enough to benefit from previous work 
done in the firm. Indeed a local search algorithm of the steepest descent type 
based on the same neighborhood structure was used in the firm. This algorithm 
could only deal with lists of up to 50 cans; larger lists resulted in unbearable 
computing times. As a feasibility test for the SA approach, we began to work 
on a 50 cans example which could be treated by the local search algorithm. We 
were readily able to find better results with much less use of computer time. 
For these preliminary trials we set arbitrarily the value of L to 250 iterations. 
In our subsequent trials on full-size instances (170 cans) we tried the values 
L = 250, 500, 750,1000 and obtained results which were considered satisfactory 
by the managers of the firm as soon as L was as large as 500. In this case, 
computing times are almost proportional to L.

In the sequel, we tried to find “optimal” values for the parameters. Obviously 
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this is a multicriteria problem (and even an ill-posed one); in particular one has 
to tradeoff between quality of solution and computing times. Usually there is a 
point were progress in quality becomes extremely slow and can only be obtained 
at the expense of heavy computing times. In order to explore the parameter 
space around the point where the first satisfactory values had been reached, we 
made further experimentation with all combinations of the following values for 
the parameters.

To = 50,100, 200(50 is the initially chosen value)
a = 0.90,0.95,0.975
L = 250,500,750,1000

. In order to take into account the variability due to the choice of the initial 
solution, the algorithm has been run with each set of parameter values on the 
same sample of 100 randomly generated initial solutions. The original set of 
parameters (with L = 750) was found to be the best one; of course slightly 
better values of C were obtained with L=1000, but the improvement was not 
judged to be worth the (linear) increase in computing time. The trials made with 
this parameter setting are summarized in Table 5 by the following quantities: 
minimal, maximal and mean values of C over 100 runs, standard deviation of 
C, average computing time in seconds (on a DECstation 5000/133), mean total 
number of series of L iterations and mean number of series of L iterations at 
which the best value of C was met.

I Alg.l (S.A.) |
Tq a L Cmin Cmax ('mean Std UlTlC tot_.it Opt_it
50 0.95 750 || 109.08 145.48 126.74 7.92 19 175 147

Table 5. Best empirical values of the parameters and results for SA being applied 
to a problem with 170 cans

A general remark which is confirmed by this particular example is that per­
formances of a SA algorithm are rather robust w.r.t. parameter setting. Note 
also that variants of the basic SA algorithm were tried on the same problem. 
We shall come back to this in subsequent sections.

5. Variants and technical improvements

Several alternatives for choosing the solution space, the objective function and 
the neighborhood structures generally exist and making a good choice is of 
course a decision of crucial importance. This fact was already suggested in the 
previous section and it will be further emphasized in the next section by means 
of selected examples.

tot_.it


Simulated annealing: a tutorial 23

In the present section, we briefly review possible technical improvements 
and some sophisticated variants of SA which hopefully are representative of 
the evolution of practice among SA users. Note that our viewpoint is purely 
pragmatic. We believe that the link between the theoretical results about SA 
and what is actually observed are rather weak and it is an area that deserves 
more research.

5.1. Choice of a cooling schedule

Recall that only very slow cooling schedules guarantee theoretical convergence 
to the optimum. In view of this and current practice, which in contrast uses 
geometric cooling, Johnson et al. (1989) experimented with a variety of cool­
ing schedules on the graph partitioning problem. Namely, they compare the 
behaviour of the algorithm under the following schedules:

- the usual geometric schedule;
- the logarithmic schedule (which is in agreement with theoretical conver­

gence requirements)
T. = C 

k 1 + log(fc)
where k = 1, 2,... is indexing the series of L steps done at temperature k]

- a schedule where To is decreased linearly with k\
- a schedule where the probability of accepting a bad move decreases linearly 

with k.
In their experiments with graph partitioning, Johnson et al.did not see any 

advantage in using schedules different from the usual geometric one. They ob­
serve in addition a “lack of robustness with other schedules”. For instance, the 
quality of the final solution is more sensitive to the choice of the initial temper­
ature. This conclusion, formulated in the particular case of graph partitioning, 
should of course be taken with the usual grain of salt; the statement of Johnson 
et al. (1989, p. 869) applies here: “Although experiments are capable of 'demon­
strating that the approach performs well, it is impossible for them, to prove that 
it performs poorly. Defenders of SA can always say that we made the wrong 
implementation choices”.

There is another category of schedules, called adaptive, where the tempera­
ture is monitored after the evolution of the cost function. Most of these schedules 
are based on the idea that “quasi-equilibrium” should be reached at a given tem­
perature before it is decreased . This consideration generally results in tuning 
dynamically the length L of the “plateau”. For example, Johnson et al.(1989) 
experimented with a simple adaptive schedule bn graph partitioning (repeating 
a series of L steps without temperature change if either the best value or the 
average value has improved during the last series of L steps) This particular 
schedule did not result in any significant improvement, but as the variety of 
adaptive schedules is virtually unlimited, one can hope that other approaches 
could be more fruitful. More sophisticated attempts which in general rely on the 
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thermodynamic analogy were made by several authors among which we point 
out Lam and Delosme (1986), Huang et al. (1986), Pedersen (1990) (for further 
references see also van Laarhoven and Aarts (1987)). All those approaches are 
based on the idea that quasi-equilibrium should be reached before temperature 
is varied and the change in temperature should be slow enough to allow to reach 
quickly a new quasi-equilibrium state for the new temperature. In another pa­
per in this special issue, L. Ingber presents his experiments with his adaptive 
simulated annealing code (ASA) that has been publicly available for over two 
years.

An alternative attempt is based on the idea of “strategic oscillation” which 
belongs to the arsenal of another well-known general heuristic called “Tabu 
Search. This idea has been investigated by Osman in a series of problems 
such as for instance vehicle routing (Osman, 1993) and capacitated clustering 
(Osman and Christofides, 1994).

In Osman’s approach, the system is cooled in a non-monotonic way. Starting 
from an initial temperature Too, the cooling process begins in the usual manner. 
When progress becomes slow, due to freezing, temperature is raised to a higher 
value Toi, e.g. half the previous initial temperature Too- Again the system is 
cooled in the usual manner until slow progress is reached. The kth “oscillation” 
consists in a cooling which starts at an initial temperature

Tok = ^To(fc-i),

a fraction /3 < 1 of the initial temperature of oscillation (k — 1).
For a description of elaborated versions of this idea, the reader is e.g. re­

ported to the paper by Osman and Christofides (1994).

5.2. Possible technical improvements

We only mention very briefly a few suggestions which have been proposed in the 
literature for improving the efficiency of the basic SA algorithm. For more detail 
and evaluation on the graph partitioning problem, see Johnson et al. (1989). 
Cutoffs: Stop the series of trials of a plateau (of the temperature schedule) 
as soon as a fixed proportion of moves have been accepted. This may result in 
time savings at high temperature.
Approximate exponentiation: Reading approximate values of the exponen­
tial function in tables instead of using the usual formula for the Boltzmann 
distribution, may lead to non-negligible time savings (up to | according to 
Johnson et al. (1989)).
Starting from better than random solutions: There may be some advan­
tage to start with good initial solutions (e.g. obtained by a conventional fast 
heuristic). This is the case when good solutions are characterized by a very par­
ticular structure which is difficult to find through a guided random search such 
as SA (see Johnson et al. (1989) who experimented with the graph partitioning 
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problem on special geometric graphs). In case better than random initial solu­
tions are used, the starting temperature should not be too high in order not to 
destroy the structure of the initial solution. This however may prevent sufficient 
exploration of the search space and multiple starts (with different better than 
random initial solution) may be advisable.
More efficient choice of the moves: Much time is lost in SA due to the 
random choice of a move. Here are several suggestions.

• In the special case of graph partitioning, select a random permutation of 
the set V of vertices and, in a series of | V| consecutive trials, consider each 
vertex exactly once for exchanging. In the case there are few solutions in 
the neighborhood which improve the current one, this may avoid missing 
them.

• Rejection free annealing (Green and Supowit (1986)) is an appealing 
idea for a more efficient search at low temperature. Implementation of 
this idea is problem- dependent and it will often be difficult to apply it in 
practice.

• Locally optimized SA. Instead of selecting a solution at random in the 
neighborhood of the current one, it seems more efficient to take the best 
solution in a stz&neighborhood. In the example of nuclear fuel cans group­
ing described in section 4.1, we implemented such a variant of SA. The 
subneighborhood is a random sample of solutions obtained by exchanging 
pairs of cans. At each step, we generate and evaluate such a subneigh­
borhood and we apply the usual decision rule to the best solution found 
in the subneighborhood. This leads to substantial improvement both in 
computer time and solution quality as can be seen by comparing Table 5 
with Table 6 below.

Table 6. Best empirical values of the parameters and results for Locally opti­
mized SA

Alg.l’ Locally optimized S.A.
To a L Cmin Cmax Cmean Std time tot.it opt.it

a 50 0.90 100 97.82 143.96 113.91 8.13 11 71 71
b 50 0.90 200 96.73 162.05 109.59 8.05 23 70 69

5.3. Mixed approaches

The experiments briefly reported above show that the reasons for strictly ap­
plying the original principles of SA are rather weak. Indeed neither theoretical 
considerations nor the analogy with the cooling process of a physical system 
are able to explain the successes and failures of SA. In addition, it is pretty 
clear that importing other heuristic ideas may prove useful for improving the 
results. This trend is much in the spirit of “Tabu Search” which is described 



26 M. PIRLOT & R.V.V. VIDAL

by F. Glover et al. (1993) as a technique based on “selected concepts of arti­
ficial intelligence”. So, in modern heuristics, there are no reasons for a priori 
rejecting any idea. Conversely, legitimising an idea or an approach requires 
careful, honest and extensive experimentation. In particular,' it is advisable to 
examine whether some of the ideas implemented in Tabu Search and Genetic 
Algorithms could not be fruitfully integrated in a SA algorithm. This path is 
currently explored by a growing number of researchers among which we point 
out for example, Osman and Christofides (1994), Moscato (1993), Andersen et 
al.(1993).

6. Applications

SA has been applied to such a rich variety of problems that it would be too 
long to mention them all. The reader is referred to the papers and books 
cited in the introduction and in particular to van Laarhoven and Aarts (1987), 
Collins et al. (1988), Vidal (1993) and Koulamas et al. (1994). Among the most 
important applications let us mention image processing (pattern recognition) 
and computer-aided circuit design (VLSI). Note that for large scale problems, 
a good parallel implementation is usually crucial but we will not treat the issue 
of parallelism in this introduction (see e.g. Aarts & Korst, 1989). Note also 
that SA has not only been applied to solve optimization problems on a discrete 
set but also on a continuous space of solutions. This is however done through 
discretization.

Our goal in this section is to outline applications of simulated annealing to 
a few combinatorial optimization problems. These were selected in order to 
further illustrate some points already mentioned in the previous chapters and 
give examples of more subtle implementations.

6.1. The Traveling Salesman Problem (TSP)

This is the problem to which SA was first applied. In the euclidean version of 
the problem, One has to find the shortest circuit which passes once and only 
once in each point of a set of points spread in the unit square of the plane. 
Although the- results were encouraging at first glance, it soon became evident 
that the basic version of SA was outperformed by specialized heuristics like the 
well-known Lin-Kernighan algorithm. The basic version of SA for the TSP is 
based on the 2-exchange neighborhood: a tour can be described as an ordered 
list of the cities (= points) and the neighbors of the current tour can be obtained 
by selecting 2 cities in the tour and reversing the order in which all the cities in 
between are visited. . ' '

Bonomi and Lutton (1984) built a specialized version of SA for the euclidean 
TSP on n cities drawn uniformly at random in the unit square. Probabilistic 
analysis shows, when n is large, that the distance between consecutive cities in 
an optimal tour are small as compared to 1, the unit square side length. Hence 
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the square is divided in disjoint sub-regions whose size has the same order of 
magnitude as the average step of the optimal tour. The initial tour crosses each 
subregion only once and all cities of a subregion are visited consecutively in a 
certain order; 2-exchanges are performed only on pairs of points belonging to the 
same subregion or neighboring ones. In this way crucial structural properties 
of good tours are maintained throughout (by using relatively moderate initial 
temperature) and no time is lost with aberrant tours. For a number of cities 
above 400, it seems that the approach performs well as the length of the best 
tour found is within a few percents of the theoretical optimal value (which 
can be predicted by probabilistic considerations). This is an example where 
theoretical knowledge about a problem has been used to reinforce the efficiency 
of. an algorithm.

6.2. Graph coloring

Hertz and de Werra (1987) proposed a combined Tabu Search algorithm for 
coloring large graphs. Their proposal is equally valid in a SA approach. First 
use SA for finding a large independent set (i.e. a set of nodes, no pair of which 
is linked by an arc of the graph). This can be done by an “annealed?’ version 
of an improvement procedure which aims at enlarging the size of the set and 
diminishing the number of “interior” arcs. Once a large independent set has 
been found, all its nodes are colored with a single color and one tries to find 
a large independent set in the set of not yet colored nodes. The procedure 
continues in this way until the number of not yet colored nodes falls below 
some- threshold. Then the remaining nodes are colored using the SA coloring 
algorithm described in section 4. The Tabu Search version of the approach yields 
good results (near to the theoretically estimated optimal value) for randomly 
generated graphs. This illustrates the potentialities of combined approaches.

6.3; Jobshop scheduling

In a Jobshop problem each job consists in several operation to be performed in a 
prescribed order on a specific machine in the shop. The goal is e.g. to minimize 
the makespan i.e. the earliest time on which all operations of all jobs can be 
accomplished. Scheduling a jobshop amounts to specify for each machine the 
order of succession (sequencing) of the operations on this machine as well as 
the beginning of the processing period (scheduling) of each operation. Jobshop 
scheduling is a particularly (NP-) hard optimization problem; there are many 
test examples of moderate size (less than 50 jobs) for which an optimal schedule 
is not known despite the efforts devoted to their solving.

Van Laarhoven and Aarts (1987) have proposed and tested an approach 
based on the disjunctive graph model due to Roy and Sussmann (1964). In the 
disjunctive graph, each operation is represented by a vertex with two additional 
vertices representing the starting and finishing times of the schedule. Directed 
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arcs link consecutive operations in a job; undirected edges link all pairs of op­
erations to be done on the same machine. A feasible schedule is associated to 
any orientation without cycle of the non directed edges. Each vertex is assigned 
a weight equal to the duration of the corresponding operation. Solving the 
scheduling problem amounts to find an acyclic orientation of the non directed 
edges in which the length of the critical paths (i.e. the paths of maximal weight 
from the initial to the final vertex) is minimal. Van Laarhoven and Aarts have 
shown that reversing the orientation of one arc of a critical path results in a 
new feasible solution and a sequence of such transformations allows to reach a 
global optimum. So, the neighborhood of a solution is defined as the set of all 
solutions that can be obtained by reversing the orientation of an arc of a critical 
path in the oriented graph.

With this approach, using very carefully tuned cooling schedules, the authors 
were able to solve difficult test problems to optimality (among others the famous 
Fisher and Thompson’s problem with 10 jobs of 10 operations each). It should be 
noticed that it is not very easy to reproduce the claimed results; the frequency 
with which we find the optimal solution when starting with different initial 
solutions or different initializations of the random sequence is not very high. 
This means that there could be a certain lack of robustness of the suggested 
cooling schedules. But the most important drawback is not there. Quite often, 
in practical situations, one is not dealing with a purely classical jobshop problem. 
Almost always, there are additional constraints specific to the treated case. It 
is then essential that the algorithm for the classical situation could be flexible 
enough to take into account some kinds of additional constraints. This is not 
the case with the disjunctive graph approach in a jobshop scheduling problem 
with additional due date constraints (each job should be completed before a 
specified “due” date).

For the jobshop problem, another algorithm can be implemented which al­
lows for more flexibility. Associated with each machine, a priority list of the 
operations to be performed on the machine is held. This list does not specify 
the exact order in which the operations will be executed but an order of priority. 
The algorithm roughly runs as follows. One looks at the first time a machine 
becomes idle and the first operation in the priority list associated to the ma­
chine is considered for being loaded on the machine. If the operation may not 
be executed immediately due to anteriority constraints, one looks at the second 
operation in the priority list and so on. SA is used for modifying (through 2- 
exchanges) the order of operations in each of the priority lists. This procedure 
of course does not give as good results as the previous one but it is easy to take 
into account additional constraints. In particular due dates can be managed 
by adding to the objective function a penalty term proportional to the degree 
of violation of the date. This example illustrates that some approaches (and it 
is usually the case with SA) allow to take additional constraints into account 
while other do not and this is often of crucial importance in applications.
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7. Conclusions

In the present paper we tried to provide some guidelines for implementing a 
metaheuristic approach, i.e. to adapt the general ideas to a particular optimiza­
tion context. A traditional warning has been exposed by Johnson et al.(1991, 
p. 405): “SA is not a panacea but a potentially useful toof. It is clear that 
either exact algorithms or specialized heuristics or either other metaheuristics, 
like Tabu Search or Genetic Algorithms, may be better suited in specific situ­
ations. However SA has now its place as a tool in the arsenal of optimization 
techniques.

The main advantages of SA are a relative ease of implementation and a 
good flexibility. The strategic and tactical choices (choice of a neighborhood 
structure, parameter, ...) to be made for adapting the approach to a particu­
lar problem are rather few and one can imagine to implement SA for quickly 
obtaining the first estimation of a good solution. If better solutions are needed, 
the initial approach can be refined or one may turn to other approaches. Also, 
constraints specific to the problem, often additional constraints not known from 
the beginning, can be implemented without fundamental change either in a hard 
or a soft manner (either by restricting the solution space or adding penalties in 
the objective function).

The main drawback of SA is its inefficiency (long computing times, or inap­
plicability in very large size problems). We have seen that this inefficiency can 
be corrected by several types of change in the basic strategy (strategic oscilla­
tion, selection of the best solution in a subneighborhood; nested approach like 
in the coloring problem, restricted neighborhoods in the TSP, ...).

For summarizing, we believe that SA has become and remains a useful tool. 
It is especially the case in practical problems where ease of implementation and 
flexibility are more important than absolute performance either in computing 
times or solution quality. This is the case for decision support systems where the 
users are usually non-specialists in optimization but are experts on the concrete 
problem to be solved.
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