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Abstract: The variational formulation of the interior Bernoulli
free boundary problem is considered. The problem is formulated
as follows. Choose an arbitrary bounded simply connected domain
G ⊂ R

2 and smooth positive functions g : ∂G → R, Q : G → R.
Denote by C the totality of all connected compact sets ω ⊂ G, such
that the flow domain Ω = G \ ω is double-connected. The notation
C+ ⊂ C stands for the totality of the set ω ∈ C of positive measure.
The cost function J (ω) is defined by the equalities

J (ω) =

∫

Ω

(

|∇u|2 +Q2
)

dx,

∆u = 0 in Ω, u = g on ∂G, u = 0 on ∂ω.

We prove that, under the natural nondegeneracy assumption, the
variational problem min

ω∈C+
J (ω) has a solution ω ∈ C+. The ap-

proach is based on the methods of complex variables theory and
the potential theory. The key observation is that every subset of
C , separated from ∂G is sequentially compact with respect to the
Caratheodory-Hausdorff convergence.

Keywords: Bernoulli problem, shape optimization, potential
theory

1. Introduction

This paper is devoted to the application of the theory of holomorphic functions
to shape optimization problems. We focus on the Bernoulli’s free boundary
problems to illustrate our approach. This problem is formulated as follows.
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Assume that G ⊂ R
2 is a bounded simple connected domain with C∞ bound-

ary. Fix two functions, g ∈ C∞(∂G), Q ∈ C∞(G), such that

g > cg > 0 on ∂G, Q > cQ in G. (1.1)

The problem is to find a compact set ω ⋐ G and a potential u : G \ω satisfying
the following equations and boundary conditions

∆u = 0 in Ω, u = g on ∂G, u = 0 on ∂ω,

∂nu = Q on ∂ω,
(1.2)

where n is the outward normal to ∂ω, the domain Ω = G \ω. This problem has
many physical applications, see Crank (1984), Fasano (1992), or Flucher and
Rumpf (1997), and references therein. There is a growing massive literature
devoted to the existence theory and the regularity properties of solutions to the
Bernoulli problem, see, e.g., Aguilera, Alt and Cafarelli (1986), Alt and Cafarelli
(1981), Beurling (1957), Cafarelli and Spruck (1982), Daniljuk (1972), Flucher
and Rumpf (1997), Hamilton (1982) or Haslinger et al. (2004). Note that there
are two kinds of solutions to the Bernoulli problem. They are named elliptic
and hyperbolic solutions. The theory usually deals with the elliptic solutions.
The difficult hyperbolic case was considered in Henrot and Onodera (2021).

The Bernoulli problem admits the weak variational formulations. The most
general is the the Alt-Cafarelli problem

min J(u), J(u) =

∫

G

|∇u|2dx+

∫

u>0

Q2 dx.

Here, the minimum is taken over the class of functions u ∈ W 1,2(G), satisfying
the boundary condition u = g on ∂G. The existence and regularity of solutions
to this problem was established in Aguilera, Alt and Cafarelli (1986) and Alt
and Cafarelli (1981). In general case, the domain Ω = {u > 0} is multiply
connected, see Acker (1980) for examples. Hence, the topology of Ω is not
defined. Our goal is to prove the existence results for the problem with fixed
topology. We focus on the simplest case of doubly-connected domain Ω. The
following definition describes the class of admissible domains.

Definition 1 We denote by C the totality of all connected compact sets ω ⊂ G,
such that Ω = G \ ω is open and connected, that is, Ω is doubly-connected. We
also denote by C+ ⊂ C the totality of all elements of C with the positive 2D
measure |ω| = meas ω > 0.

We thus come to the following variational problem.

min
ω∈C+

J (ω), J (ω) =

∫

Ω

|∇u|2dx+

∫

Ω

Q2 dx, Ω = G \ ω, (1.3)
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where u is a solution to the Dirichlet problem

∆u = 0 in Ω, u = g on ∂G, u = 0 on ∂ω. (1.4)

Since ω is an arbitrary compact connected set, the meaning of the boundary
condition at ∂ω should be refined. Further on, we deal with weak solutions of
problem (1.4). In order to give a weak formulation of this problem, we introduce
the following notation.

Definition 2 Denote by W (Ω), Ω = G \ ω, the linear space of functions u ∈
W 1,2(G) with the following property: Each function u ∈ W vanishes on some
neighborhood of ω. We assume that W is endowed with the norm W 1,2(G),
which is equivalent to the norm

‖u‖21 =

∫

Ω

|∇u|2dx+

∫

∂G

|u|2 ds.

We also denote by H1 the completion of W with respect to the norm ‖ · ‖1.

It is worthy noting that if the condenser capacity of ω (see Section 4 for
definitions) equals zero, then H1 = W 1,2(Ω). It is clear that every function
u ∈ H1 has the extension u∗ : G → R such that

‖u∗‖W 1,2(G) ≤ c‖u‖1.

In particular, u has the trace u
∣

∣

∂G
∈ W 1/2(∂G).

Definition 3 Let ω ∈ C . We say that u is a weak solution to problem (1.4) if

u ∈ H1(Ω), u = g on ∂G, (1.5)

∫

Ω

|∇u|2 dx = min
ũ∈J

∫

Ω

|∇ũ|2 dx, (1.6)

where J ⊂ H1 is the set of all functions ũ ∈ H1, satisfying the boundary
condition ũ = g on ∂G. In particular, the integral identity

∫

Ω

∇u · ∇ζ dx = 0 (1.7)

holds for all ζ ∈ C∞
0 (Ω).

Note that the affine space J is convex and weakly closed. The Dirichlet integral
in the left hand side of (1.6) defines the strictly convex and coercive functional
on J . Therefore, problem (1.6) has a unique solution u ∈ J . The following
theorem is the main result of this paper.
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Theorem 1 Assume that G, g, and Q satisfy the following nondegeneracy con-
dition. There is ω0 ∈ C+ such that

J (ω0) <

∫

G

|∇U |2dx+

∫

G

Q2dx,

where U is the solution to the Dirichlet problem

∆U = 0 in G, U = g on ∂G.

Then the variational problem (1.3) has a solution ω ∈ C+.

Note that the nondegeneracy condition is fulfilled if the constant cQ in (1.1) is
sufficiently large. The remainder of the paper is devoted to the proof of Theorem
1.

The paper is organized as follows. In Section 2 we give definitions of various
types of convergence of domains of the Euclidean plane. In particular, we intro-
duce the notion of convergence of plane domains in the Caratheodory-Hausdorff
sense, which differs from the generally accepted notion of convergence in the
Mosco sense. In Section 3 we present basic facts about conformal mappings
of multiply connected domains. Section 4 is devoted to the estimates of the
capacity of two-dimensional condensers. In Section 5 we consider solutions of
the Dirichlet problem for harmonic functions in doubly-connected domains. We
study the stability of these solutions regarding perturbations of the domains in
the Caratheodory-Hausdorff topology. The last section of the paper is devoted
to the proof of the main theorem.

2. Preliminaries

2.1. Notation

In this section, we consider the various kinds of convergence of plane domains.
First, we introduce the notations, which will be used throughout the paper.

Further, the notation G stands for a bounded simple-connected domain in
space R

2 of points x = (x1, x2). We assume that ∂G is a smooth curve of class
C∞. Notice that G is diffeomorphic to the unit disc B = {|x| < 1}.

We denote by Gh, h > 0, the compact set

Gh = {x ∈ G : dist (x,Γ) ≥ h}.

It follows from the smoothness conditions imposed on ∂G that there is h0 > 0,
depending on G only, such that for every h ∈ (0, h0), the set

Σh = ∂Gh = {x ∈ G : dist (x, ∂G) = h}
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is a Jordan curve of the class C∞. Throughout the paper we will assume that
h ∈ (0, h0). It follows that the curvilinear annulus

A(h) = G \Gh (2.1)

is a double-connected domain with C∞ boundary ∂G ∪ Σh. Starting from this
point we assume that G and h are fixed. It is convenient to introduce the
following definition:

Definition 4 By Ch we denote the class of all connected compact sets ω ⊂ Gh,
such that the open sets Ω = G \ ω are connected. In other words, Ω is a doubly
connected domain for every ω ∈ Ch.

Note that the class Ch includes the degenerate sets of capacity zero and even
isolated single points.

2.2. Domain convergence

Hausdorff convergence

Recall the definition of the Hausdorff metrics. If ω and π are compact subsets
of R2, then the Hausdorff distance dH(ω, π) is defined by the equality

dH(ω, π) = inf{ε > 0 : ω ⊂ πε and π ⊂ ωε}.

Here
ωε = {x : dist (x, ω) ≡ inf

z∈ω
|x− z| < ε}

is the ε-neighborhood of ω, and πε is the ε-neighborhood of π. The following
two simple lemmas will be used throughout this section.

Lemma 1 If a compact set ω ⊂ R
2 is not connected, then there are two compact

sets ω′, ω′′ with the following properties: ω = ω′ ∪ ω′′ and dist (ω′, ω′′) > 0.
This means that there is ǫ > 0 such that ω′

ǫ ∩ ω′′
ǫ = ∅, where ω′

ǫ and ω′′
ǫ are ǫ-

neighborhoods of ω′ and ω′′.

Proof We will consider ω as a compact metric space O, equipped with the
standard R

2 metric. A set E ⊂ ω is open in O if there is an open set G ⊂ R2,
such that E = ω ∩ G. Conversely, the set E ⊂ ω is closed in O if there is a
closed set F ⊂ R

2, such that E = F ∩ ω. The set ω is connected if and only if
it has the following property, see Dieudonné (1960, Ch. 3, Sec. 19). If subset
ω′ ⊂ O is closed and open, then ω′ = O or ω′ = ∅. If ω is not connected, then
there is a nonempty subset ω′ ⊂ ω, such that ω′ is closed and open in O and
ω′′ = ω \ ω′ 6= ∅.
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If ω′ is closed in O, then it is closed and compact in R
2. Since ω′ is open in

O, for every point z0 ∈ ω′ there is a circle of radius ε > 0, centered at z0, such
that

ω′ ∩ {|z − z0| < ε} ⊂ ω′.

Since ω′ is a compact set, the finite collection of such circles covers ω′. Hence,
there is a ε-neighborhood ω′

ε of ω′ such that ω ∩ ω′
ε = ω′. Therefore, the set

ω′′ = ω \ ω′ = ω \ ω′
ǫ

is compact and the distance between ω′ and ω′ is greater than ε. This completes
the proof of Lemma 1.

Lemma 2 If a sequence of connected compact sets ωn ⊂ G converges to a com-
pact set ω in the Hausdorff metric, then ω ⊂ G is connected.

Proof Suppose, contrary to our claim, that ω is not connected. By virtue of
Lemma 1, there are compact sets ω′, ω′′, and ǫ > 0 such that

ω = ω′ ∪ ω′′, ω′
ǫ ∩ ω′′

ǫ = ∅,

where ω′
ǫ and ω′′

ǫ are ǫ-neighborhoods of ω′ and ω′′. It follows from the defi-
nition of the Hausdorff metric that dist (ωn, ω) → 0 as n → ∞. In particular,
dist (ωn, ω) < ǫ/2 for all sufficiently large n. We thus get ωn,ǫ/2 ⊂ ωǫ. Since
ωǫ/2 = ω′

ǫ/2 ∪ ω′′
ǫ/2, we have

ωn = ω′
n ∪ ω′′

n, where ω′
n = ωn ∩ ω′

ǫ/2, ω′′
n = ωn ∩ ω′

ǫ/2.

Obviously, the sets ω′
n, ω

′′
n are nonempty and dist (ω′

n ∪ω′′
n) > ǫ. Hence, ωn are

disconnected for all sufficiently large n. The contradiction proves the lemma.

Remark 1 The totality of all compact subsets ω ⊂ Gh, equipped with the Haus-
dorff metric, is a compact metric space. In particular, every sequence ωn ∈ Ch,
n ≥ 1, contains a subsequence, which converges in the Hausdorff metric to some
compact set ω∞ ⊂ Gh. It follows from Lemma 2 that ω∞ is connected. How-
ever, ω∞ does not belong to the class Ch in the general case, since Ω∞ = G\ω∞

may be not connected. We will return to this question at the end of the section.

Kernels. Caratheodory convergence to kernel

Recall the definition of the kernel of a sequence of domain.

Definition 5 We say that a domain A ⊂ R
2 is the kernel of a sequence of

domains An ⊂ R
2 with respect to a point z0 ∈ A if

A.1 z0 ∈ An for all n.
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A.2 Every compact set ω ⊂ A belongs to domains An for all sufficiently large
n.

A.3 A is a maximal domain, satisfying conditions (A.1)-(A.2).

Definition 6 We say that a sequence of domains An ⊂ R
2, containing a fixed

point z0, converges in the sense of Caratheodory to a domain A ∋ z0 if A is a
kernel of each subsequence {Ak} ⊂ {An}.

Caratheodory–Hausdorff convergence

Let us consider the following construction. Recall Definition 4 of the set Ch.
Choose an arbitrary sequence ωn ∈ CH , such that ωn → ω∞ in the Hausdorff
metric. The limiting set ω∞ ⊂ Gh is connected and compact. In its turn,
the open set G \ ω∞ is a union of a countable set of disjoint, maximal, open,
connected components. Moreover, G \ ω∞ contains the annulus Ah. Therefore,
there is the only maximal connected component of G \ ω∞, which contains
Ah. We denote this component by Ω. The other maximal open connected
components of G \ ω∞ we denote by πn, n ≥ 1. We thus get

Ω = G \ ω, ω = ω∞

⋃

(

⋃

n

πn

)

. (2.2)

Theorem 2 The set ω, defined by (2.2), is compact and connected. In particu-
lar, Ω is a doubly connected domain. It is a kernel of the sequence Ωn = G \ωn

with respect to an arbitrary point z0 ∈ Ah. The domains Ωn converge to Ω in
the sense of Caratheodory.

Proof Let us prove that ω is compact. To this end, it suffices to show that ω
contains all its limiting points. Suppose, contrary to our claim, that the limiting
point z0 of ω does not belong to ω. Since ω ∈ Gh, we have z0 ∈ Gh ⊂ G. Hence

z0 ∈ G \ ω = Ω.

There is a sequence zn ∈ ω, n ≥ 1, such that

ω ∋ zn → z0 ∈ Ω as n → ∞.

Only a finite number of the elements zn belong to ω∞. In the opposite case,
there is a subsequence {znk

} ⊂ {zn} such that znk
∈ ω∞. Since ω∞ is compact,

we have z0 ∈ ω∞ ⊂ G \ Ω, which is impossible. Hence,

zn ∈ ω \ ω∞ =
⋃

n

πn for all sufficiently large n.
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In particular, zn ∈ πkn
for some sequence kn. Since Ω is open, there is an open

circle Br = {|z − z0| < r} ⊂ Ω. Obviously, zn ∈ Br for large n. Hence,

zn ∈ πkn
∩B ⊂ πkn

∩ Ω,

and the connected sets πkn
and Ω have nonempty intersection. From this and

the generic properties of connected sets in metric spaces, see Dieudonné (1960,
Ch. 3, Sec. 19, n 3.19.3), the open set πkn

∪ Ω ⊂ G \ ω∞ is connected. This
contradicts the fact that Ω is a maximal connected component of G \ ω∞.

Now our task is to prove that the compact set ω, defined by (2.2), is con-
nected. We will consider ω as the metric space O, equipped with the standard
R

2 metric. If ω is not connected, then it follows from Lemma 1 that there are
two nonempty compact sets ω′, ω′′, and ǫ > 0 with the following properties.

ω = ω′ ∪ ω′′, ω′
ǫ ∩ ω′′

ǫ = ∅, ω′, ω′′ 6= ∅, (2.3)

where ω′
ǫ and ω′′

ǫ are open ǫ- neighborhoods of ω′ and ω′′. Note that ω′ and ω′′

are open and closed in O. It follows that

ω = ω′
ǫ/2∪ω′′

ǫ/2, dist (ω′
ǫ/2, ω

′′
ǫ/2) > ǫ > 0, ω′ = ω′

ǫ/2∩ω, ω′′ = ω∩ω′′
ǫ/2. (2.4)

Let us prove that one of the sets ω′
ε/2 ∩ ω∞ and ω′′

ǫ/2 ∩ ω∞ is empty. We have

(

ω′′
ǫ/2 ∩ ω∞

)

∪
(

ω′′
ǫ/2 ∩ ω∞

)

=
(

ω′′
ǫ/2 ∪ ω′′

ǫ/2

)

∩ ω∞

= ω ∩ ω∞ = ω∞.

On the other hand, relations (2.4) imply

dist
(

ω′
ǫ/2 ∩ ω∞, , ω′′

ǫ/2 ∩ ω∞

)

> ǫ > 0.

If both sets ω′
ε/2 ∩ ω∞ and ω′′

ǫ/2 ∩ ω∞ are not empty, then ω∞ consists of
two nonempty components, and the distance between them is positive. This
contradicts the connectedness of ω∞. Hence, one of these components, say
ω′
ǫ/2 ∩ ω∞, is empty. From this and (2.4) we conclude that

ω′ = ω′
ε/2 ∩ ω = ω′

ε/2 ∩
(

ω∞

⋃

(

⋃

n

πn

))

=

(

ω′
ε/2 ∩ ω∞

)

⋃

(

ω′
ε/2 ∩

(

⋃

n

πn

))

=
(

ω′
ε/2 ∩

(

⋃

n

πn

))

.

Note that the sets ω′
ε/2 and ∪nπn are open in R

2. Hence, ω′ is an open subset

of R2. On the other hand, ω′ is closed in the metric space O. This means that
ω′ = ω ∩ F for some closed set F ⊂ R

2. Since ω is a compact subset of R2, it
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follows that ω′ is closed in R
2. Therefore, the bounded set ω′ is open and closed

in R
2. Hence, it is empty, which contradicts (2.3). Hence, ω is connected.

It remains to prove that the domain Ω = G \ ω is a kernel of the sequence
Ωn = G \ ωn with respect to an arbitrary point z0 ∈ A(h). We begin with
the observation that A(h) ⊂ Ω and A(h) ⊂ Ωn, since ωn ∈ Ch. Choose an
arbitrary compact set K ⋐ Ω. Note that Ω ∩ ω∞ is the empty set. Hence,
dist (K,ω∞) > ǫ for some ǫ > 0. Since dist (ωn, ω∞) → 0 as n → ∞, the
inequalities dist (K,ωn) > ǫ/2 > 0 hold for all sufficiently large n. This means
that

K ⊂ G \ ωn = Ωn for all large n.

Now we prove that Ω is the maximal domain with this property. Let Ω′ ⊃ Ω
be a domain (connected, open subset of G) such that every compact set K ⊂ Ω′

belongs to domains Ωn for all large n. Our task is to show that Ω′ = Ω. We
begin with the observation that the intersection of Ω′ and ω∞ is empty. Indeed,
if z0 ∈ ω∞ ∩Ω′, then there is a compact neighborhood Bρ = {|z− z0 ≤ ρ} ∈ Ω′,
ρ > 0, since Ω′ is open. By the assumption,

Bρ ⊂ Ωn = G \ ωn for all large n. (2.5)

Since ωn converge to ω∞ in the Hausdorff metric, there is a sequence

ωn ∋ zn → z0 ∈ ω∞ as n → ∞.

It follows that zn ∈ Bρ for all large n, which contradicts (2.5). Hence,

Ω′ ∩ ω∞ = ∅ and Ω′ ⊂ G \ ω∞.

From this, we conclude that Ω′ ⊃ Ω is an open connected component of the set
G \ ω∞. Since Ω is a maximal open connected component with this property,
we get Ω′ = Ω. Hence, Ω is a kernel of the sequence Ωn.

Finally, note that every subsequence ωnk
converges to ω∞ in the Hausdorff

metric, and the compact set, ω given by (2.2), is independent of the choice of
such a subsequence. Hence, Ω is the kernel of each subsequence Ωnk

. This
means that Ωn converges to Ω in the sense of Caratheodory. This completes the
proof of Theorem 2

Definition 7 Let a sequence ωn ∈ Ch, n ≥ 1, converge to a compact set ω∞ ⊂
Gh in the Hausdorff metric and the compact set ω be defined by (2.2). Consider
the domains Ωn = G \ ωn and Ω = G \ ω. We say that Ωn → Ω (ωn → ω) in
the sense of Caratheodory-Hausdorff.

Remark 2 Every sequence ωn ∈ Ch contains a subsequence, still denoted by
ωn, which converges to some ω∞. Let the set ω be defined by (2.2). Then
ωn → ω in the sense of Caratheodory-Hausdorff. It follows from Theorem
2 and Definition 4 that ω ∈ Ch. Therefore, the space Ch, equipped with the
Caratheodory–Hausdorff convergence, is sequentially compact.
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Mosco and Caratheodory-Hausdorff convergence

The other type of convergence of domains in Euclidian spaces is the Mosco con-
vergence. It is widely used in the shape optimization theory, see Bucar and
Trebesch (1998) and Švetàk (1993). The following example demonstrates the
essential difference between the Mosco and the Caratheodory-Hausdorff conver-
gence.

Example 1 Assume that G = {|x| < R} and Gh = {|x| ≤ R − h}. Let us
consider the sequence of arcs

ωn = {x : x1 + ix2 = reiφ, 1/n ≤ φ ≤ 2π}, 0 < r < R− h.

The sets ωn can be viewed as circular atolls surrounding a circular lagoon with
the entrance of the width 1/n. Obviously, ωn ∈ Ch. It is clear that ωn converge
in the Hausdorff metric to the circle ω∞ = {|x| = r}. The open set G \ ω∞

consists of two connected components: the annulus Ω = {r < |x| < R} and the
disc Br = {|x| < r}. It follows from Definition 7 that the domains Ωn = G \ωn

converge to Ω in the Caratheodory-Hausdorff sense. On the other hand, the
Mosco limit of the sequence Ωn equals Ω ∪ Br, and consists of two disjoint
components.

3. Conformal mappings

Conformal mapping of doubly-connected domains

Recall that a bounded domain Ω ⊂ R
2 is doubly connected if the boundary of Ω

consists of two disjoint compact connected sets. If G is a simply connected do-
main and ω ⋐ G is a compact set, then Ω = G\ω is a doubly connected domain
if and only if Ω and ω are connected. The following result is a particular case
of the general Hilbert Theorem on conformal mappings of multiply connected
domains, see Golusin (1969, Ch. 5, §1). Hereinafter we will use the complex
notation

z = x1 + ix2, ζ = ζ1 + iζ2.

We also denote by Dµ, 0 ≤ µ < 1, the open annulus

Dµ =
{

ζ ∈ C : µ < |ζ| < 1
}

(3.1)

in the complex plane of the variable ζ.

Theorem 3 Let Ω be a doubly connected domain. Then there are µ ∈ [0, 1)
and a conformal one-to-one onto mapping w of Ω onto the annulus Dµ. The
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quantity 1/µ is named the conformal modulus of Ω. The conformal mapping w
is uniquely defined by the normalization condition

ζ0 = w(z0), w′(z0) > 0 with fixed z0 ∈ Ω and ζ0 ∈ Dµ.

If ∂Ω consists of Jordan arcs, then w ∈ C(Ω). If ∂Ω ∈ C∞, then w ∈ C∞(Ω).

Convergence of conformal mappings

The next general fact is the generalization of the Caratheodory Theorem for
multiply connected domains, Golusin (1969, Ch. 5, §5, Thm. 2).

Theorem 4 Let domains An ⊂ C converge to a kernel A ⊂ C with respect
to a point z0 in the sense of Caratheodory, and Bn ⊂ C converge to a kernel
B ⊂ C with respect to a point ζ0 in the sense of Caratheodory. Let wn : An →
Bn ⊂ C be a conformal bijection such that wn(z0) = ζ0, w′

n(z0) > 0. Then,
wn converge uniformly with all derivatives on every compact subset of A to the
conformal mapping w : A → B, satisfying the normalization condition w(z0) =
ζ0, w

′(z0) > 0.

The following Proposition is the straightforward consequence of Theorem 3 and
Definition 7. Let us consider a sequence of compact sets ωn ∈ Ch, domains
Ωn = G\ωn, and conformal mappings wn, n ≥ 1, with the following properties.

B.1 The compact sets ωn and domains Ωn = G \ ωn converge to a set ω ∈ Ch

and domain Ω = G \ ω in the sense of Caratheodory-Hausdorff.
B.2 For every n ≥ 1, the holomorphic function wn : Ωn → C is a conformal

bijection, which takes the domain Ωn onto the annulus Dµn
.

B.3 The conformal modulus 1/µn satisfies the conditions

0 < µ− ≤ µn ≤ µ+ < 1, µn → µ as n → ∞.

Proposition 1 Let conditions B.1-B.3 be satisfied. We also assume that wn

satisfy the normalization conditions

wn(z0) = ζ0 for fixed z0 ∈ Ah, ζ0 ∈ Dµ+. (3.2)

Then, wn converge uniformly with all derivatives on every compact subset of Ω
to the conformal mapping w : Ω → Dµ satisfying normalization condition (3.2).

Proof Fix an arbitrary z0 ∈ A(h) and ζo ∈ Dµ+. It follows from Definition
7 of the Caratheodory-Hausdorff convergence that Ωn converge to the kernel Ω
with respect to z0 in the sense of Caratheodory. Obviously, the domains Dµn

converge to the kernel Dµ with respect to ζ0 in the sense of Caratheodory. The
application of Theorem 4 completes the proof.
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The mappings of boundaries

Choose an arbitrary ω ∈ Ch and denote by ζ = w(z) the conformal mapping
of doubly-connected domain Ω = G \ ω onto the annulus Dµ. Assume that the
conformal modulus 1/µ and w satisfy the conditions

0 < µ− ≤ µ ≤ µ+ < 1, (3.3)

w(z0) = ζ0, w′(z0) > 0 for fixed z0 ∈ A(h), ζ0 ∈ Dµ+ . (3.4)

Since ∂G belongs to the class C∞, it admits the natural parametrization

z = Z(s), 0 ≤ s ≤ L, Z ∈ C∞[0, L], |Z ′(s)| = 1.

In its turn, the boundary S
1 of the unit circle B = {|ζ| < 1} admits the

parametrization

ζ = eiϑ, 0 ≤ ϑ ≤ 2π.

The conformal mapping w establishes one-to-one correspondence between pa-
rameters s and ϑ. This leads to the following definition.

Definition 8 We say that the mapping ϕ : [0, L] → [0, 2π] is associated with
the conformal mapping w if

eiϕ(s) = w
(

Z(s)
)

, s ∈ [0, L]. (3.5)

The following proposition constitutes the smoothness properties of ϕ.

Proposition 2 For every integer r > 0, there is a constant c(r), depending
only on r, µ−, h, and ∂G such that

‖ϕ‖Cr [0,L] ≤ c(r). (3.6)

Proof The mapping w−1 is a holomorphic diffeomorphism of Dµ onto Ω. For
every λ ∈ (µ, 1), the circle |ζ| = λ is a compact subset of Dµ. Hence, Γλ =
w−1{|ζ| = λ} is an analytic Jordan curve. The curves Γλ and ∂G belong to
the class C∞ and form the boundary of the doubly-connected domain Ωλ =
w−1(Dλ). It follows from this and Theorem 3 that w belongs to the class
C∞(Ωλ) for every λ ∈ (µ, 1). Introduce the function

Ψ(z) = ln |w(z)|, z ∈ Ω.

It is infinitely continuously differentiable in the neighborhood of ∂G and satisfies
the relations

lnµ < Ψ < 0, ∆Ψ = 0 in Ω, Ψ = 0 on ∂G. (3.7)
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Note that the curvilinear C∞ annulus A(h) belongs to the domain Ω. It fol-
lows from this, (3.7), and estimates of solutions to elliptic equations near the
boundary that for every integer r ≥ 0,

‖Ψ‖Cr(A(h/2)) ≤ c(r) and ‖∂νΨ‖Cr(∂G) ≤ c(r). (3.8)

Here, ∂ν is the outward normal derivative, the constant c(r) depends only on
r, µ−,h, and ∂G. Next, note that w(z) = |w(z)|eiϑ(z) and the function lnw =
ln |w(z)+iϑ(z) is locally holomorphic in Ω. From this and the Cauchy-Riemann
equations we get

∂r
sϕ(s) = ∂r

sϑ(Z(s)) = ∂r−1
s

(

∂νΨ(Z(s))) for r ≥ 1.

Combining this identity with the second inequality in (3.8) we obtain the desired
estimate (3.6).

Our next task is to obtain the similar estimate for the inverse mapping
ϕ−1 : [0, 2π] → [0, L]. This question is less trivial and we prove the following
particular result.

Proposition 3 Let compact sets ωn, ω, domains Ωn = G\ωn, Ω = G\ω, and
conformal mappings wn : Ωn → Dµn

, w : Ω → Dµ satisfy conditions B.1-B.3

and meet all requirements of Proposition 1. Then, for every integer r > 0, there
is a constant c(r), independent of n, such that

‖ϕn‖Cr [0,L] + ‖ϕ‖Cr [0,L] ≤ c(r), (3.9)

‖ϕ−1
n ‖Cr [0,2π] + ‖ϕ−1‖Cr[0,2π] ≤ c(r). (3.10)

Moreover, we have

‖ϕn − ϕ‖Cr [0,L] → 0, ‖ϕ−1
n − ϕ−1‖Cr [0,2π] → 0 as n → ∞. (3.11)

Proof Without loss of generality we may assume that wn and w satisfy the
normalization conditions

wn(z0) = w(z0) = ζ0, w′
n(z0) > 0, w′(z0) > 0 for fixed z0 ∈ A(h), ζ0 ∈ Dµ+ .

Note that estimate (3.9) is the straightforward consequence of Proposition 2. In
order to prove the estimate (3.10), we introduce the harmonic functions

Ψn(z) = ln |wn(z)|, z ∈ Ωn, Ψ(z) = ln |w(z)|, z ∈ Ω.

Arguing as in the proof of Proposition 2 we conclude that they are infinitely
differentiable in the neighborhood of ∂G and satisfy the relations

lnµ− < Ψn < 0, ∆Ψn = 0 in Ωn, Ψn = 0 on ∂G,

lnµ− < Ψ < 0, ∆Ψ = 0 in Ω, Ψ = 0 on ∂G.
(3.12)
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Note that Ψn, Ψ take the maximum on ∂G, which, along with the strong max-
imum principle, yields

inf
∂G

∂νΨn > 0, inf
∂G

∂νΨ > 0, (3.13)

where ∂ν is the outward normal derivative. Let us prove that there is β > 0,
independent of n, such that

∂νΨn ≥ β > 0, ∂νΨ ≥ β > 0 on ∂G. (3.14)

Suppose, contrary to our claim, that there exists a subsequence of the sequence
Ψn, still denoted by Ψn, and a sequence zn ∈ ∂G such that

∂νΨn(zn) → 0, zn → z∗ ∈ ∂G as n → ∞. (3.15)

It follows from the estimates of solutions to elliptic equations near the boundary
that for every integer r ≥ 0,

‖Ψn‖Cr(A(h/2))
≤ c(r), (3.16)

where c(r) is independent of n. On the other hand, Proposition 1 implies that
wn → w uniformly on every compact subset of A(h). From this and (3.16) we
conclude that

Ψn → Ψ in Cr(A(h/2)),

∂νΨn → ∂νΨ in Cr(∂G) as n → ∞.

These relations, along with the identities

∂r
sϕn(s) = ∂r−1

s

(

∂νΨn(Z(s))), ∂r
sϕ(s) = ∂r−1

s

(

∂νΨ(Z(s)))

imply the convergence of the sequence ϕn

ϕn → ϕ in Cr[0, L] as n → ∞. (3.17)

Obviously, we have

∂νΨn(zn) → ∂νΨ(z∗) = 0,

which contradicts (3.13). Hence, the normal derivatives ∂νΨn and ∂νΨ ad-
mit estimate (3.14) with the constant β independent of n. From this and the
identities

∂sϕn(s) = ∂νΨn(Z(s)), ∂sϕ(s) = ∂νΨ(Z(s))

we get the inequalities

∂sϕn(s) ≥ β > 0, ∂sϕ(s) ≥ β > 0. (3.18)

Therefore, the desired estimates (3.10) follow from estimate (3.9) and the inverse
function theorem. It remains to note that the first relation in (3.11) follows from
(3.17). The second follows from the first and the inverse function theorem.
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4. Condenser capacity

Recall that a condenser in R
2 is a pair (G,ω) such that G ⊂ R

2 is an arbitrary
domain and ω ⋐ G is an arbitrary compact subset of G. The capacity of the
condenser (G,ω) is defined by the equality

cap (G,ω) = min

∫

G

|∇ϕ|2 dx, (4.1)

where the minimum is taken over the set of all Lipschitz functions ϕ : G → R,
satisfying the conditions

ϕ = 0 on ∂G, ϕ ≥ 1 on ω.

There is another definition of the condenser capacity. The Green condenser
capacity Cg(G,ω) is defined by the equality (Landkof, 1972, Ch. 2, §4)

Cg(G,ω) = W−1, W = inf

∫

G×G

g(x, y) dµ(x) dµ(y). (4.2)

Here g is the Green function of G, and the infimum is taken over the set of
all nonnegative probability measures µ supported on ω. The following relation
establishes the connection between two capacities

cap (G,ω) = 2πCg(G,ω).

Recall the basic properties of the condenser capacity.

Monotonicity. Let ω′ be a compact set, such that ω ⊂ ω′ ⋐ G, then

cap (G,ω) ≤ cap (G,ω′).

Conformal invariance. Let G′ be a simply connected domain with regular
boundary, w : G → G′ be a conformal mapping, and ω′ = w(ω). Then

cap (G,ω) = cap (G′, ω′).

Symmetrization. Recall that the Steiner symmetrization ωsym of a compact
set ω ⊂ R

2 with respect to the real axis is defined by the equality

ωsym =
{

z = x1 + ix2 : x1 ∈ Πω, |x2| ≤
1

2
meas Bx1

}

. (4.3)

Here, Πω is the projection of ω onto real axis, Bx1
is the intersection of ω with

the vertical line ℜz = x1. If B = {|z| < 1} is a unit circle and ω ⋐ B, then

cap (B,ωsym) ≤ cap (B,ω). (4.4)
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Capacity and conformal modulus. Let ω ⋐ G be a connected compact set
and ζ = w(z) be a conformal mapping of doubly connected domain G \ ω onto
the annulus µ < |ζ| < 1. Then (see Landkof, 1972, Ch. 2, §4)

cap (G,ω) = 2πCg(G,ω) = 2π
(

ln
1

µ

)−1

. (4.5)

The following proposition is the main result of this section.

Proposition 4 Let G ⊂ R
2 be a bounded domain with C∞ boundary and

|G| = meas G. Fix an arbitrary θ ∈ (0, |G|). Then there are λ ∈ (0, 1) and
a continuous function Φ : (0, λ) → R

+, depending on G and θ, with the follow-
ing properties:

Φ(ǫ) → ∞ as ǫ → 0, (4.6)

and the inequality

cap (G,ω) ≥ Φ(ǫ) (4.7)

holds for every connected compact set ω ⋐ G such that

|ω| ∈ [ θ, |G| ], ǫ ≡ dist (ω, ∂G) ≤ λ.

The following corollary is a straightforward consequence of Proposition 4.

Corollary 1 Let G ⊂ R
2 be a bounded domain with C∞ boundary. Further-

more, assume that a sequence of connected compact sets ωn ⋐ G, n ≥ 1, satisfies
the conditions

0 < θ ≤ |ωn|, dist (∂G, ωn) → 0 as n → ∞, Ωn = G\ωn is doubly-connected.

Then
cap (G,ωn) → ∞ as n → ∞.

Let us turn to the proof of Proposition 4. We split the proof into the sequence
of Lemmas

Lemma 3 Let B = {|z| < 1} be a unit circle and ω(h) ⋐ B be a compact
segment

ω(h) = {z = x1 + i0 : 0 ≤ x1 ≤ h}, 1/2 < h < 1.

Then

cap (B,ω(h)) = π ln
( 4(1 + h)

1− h

)

+ o(1), (4.8)

where o(1) → 0 as h → 1.
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ProofWe construct the conformal mapping B\ω(h) → Dµ and employ relation
(4.5). Our considerations are based on the scheme proposed in Landkof (1972,
Ch. 2). Introduce the auxiliary conformal mapping

ζ =
(1− z)2

2(1 + z)2 − (1− z)2
. (4.9)

It takes diffeomorphically the domain B \ ω(h) onto the domain C \ (I ∪ Iβ).
Here, the segments I and Iβ are defined by the relations

I = {z = x1 + i0 : x1 ∈ [−1, 0]}, Iβ = {z = x1 + i0 : x1 ∈ [β, 1]},

β =
(1− h)2

2(1 + h)2 − (1− h)2
.
(4.10)

By virtue of Akhiezer’s formula (Akhiezer, 1990, Ch. 8 §49), the implicit relation

ζ =
(

2 sn2
(K ′ lnσ

π

)

− 1
)−1

determines the conformal mapping σ(ζ) of the domain C \ (I ∪ Iβ) onto the
annulus

Dµ = {µ < |σ| < 1}, µ = e−π K

K′ .

Here, sn is the Jacobi elliptic function with period 4K + i4K ′, see Whittaker
and Watson (1996). The elliptic integrals K and K ′ are given by the equalities

K =

∫ 1

0

(1−t2)−1/2(1−k2t2)−1/2 dt, K ′ =

∫ 1

0

(1−t2)−1/2(1−k′
2
t2)−1/2 dt,

where the elliptic modulus k ∈ (0, 1),

k2 =
2β

1 + β
, k′

2
= 1− k2. (4.11)

The composite mapping σ(ζ(z)) determines the conformal mapping of the dou-
bly connected domain G \ ω(h) onto the annulus Dµ. From this and relation
(4.5) we obtain

cap (G,ω(h)) = 2
K

K ′

It is well known (see Whittaker and Watson, 1996, n 22.737) that

K(k) =
1

2
π +O(k2), K ′(k) = ln

( 4

k

)

+ o(1) for k ∈ (0, 1/3],
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where o(1) → 0 as k → 0. In particular, we have

cap (G,ω(h)) = 2
K

K ′
= π ln

( 4

k

)

+ o(1) for k ∈ (0, 1/3].

Next, relations (4.10) and (4.11) imply

k =
1− h

1 + h
, k ∈ (0, 1/3] for h ∈ [1/2, 1).

We thus get

cap (G,ω(h)) = π ln
( 4(1 + h)

1− h

)

+ o(1) for h ∈ [1/2, 1),

where o(1) → 0 as h → 1. This completes the proof of Lemma 3.

For a fixed a ∈ (0, 1), denote by ω(a, h) ⋐ B the compact segment

ω(a, h) =
{

z = x1 + i0, x1 ∈ [a, h] }, a < h < 1.

Now our task is to estimate the capacity of the condenser (B,ω(a, h)). The
result is given by the following lemma.

Lemma 4 Let 0 < a < 1. Furthermore, assume that a moving parameter h
satisfies the inequalities

a <
1 + 2a

2 + a
≤ h < 1. (4.12)

Then

cap
(

B,ω(a, h)
)

= π ln
(

4
1− a

1− h

1 + h

1 + a

)

+ o(1), (4.13)

where o(1) → 0 as h → 1.

Proof Note that the conformal automorphism

z′ =
z − a

1− az

of the unit circle B takes the segment ω(a, h) onto the segment

ω(h′), h′ =
h− a

1− ah
.

It follows from this, the conformal invariance of the condenser capacity, and
Lemma 3 that

cap
(

B,ω(a, h)
)

= cap
(

B,ω(h′)
)

= π ln
( 4(1 + h′)

1− h′

)

+ o(1), (4.14)
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where o(1) → 0 as h′ → 1. On the other hand, we have

π ln
( 4(1 + h′)

1− h′

)

= π ln
(

4
1− a

1− h

1 + h

1 + a

)

.

Combining this result with (4.14) we finally obtain

cap
(

B,ω(a, h)
)

= π ln
(

4
1− a

1− h

1 + h

1 + a

)

+ o(1).

Here

o(1) → 0 as =
h− a

1− ah
→ 1,

or, equivalently, o(1) → 0 as h → 1. This completes the proof of Lemma 4.

Lemma 5 Let a connected compact set ω ⋐ B satisfy the conditions

0 < θ ≤ |ω|, ε ≡ dist (ω, ∂B) > 0, (4.15)

where θ ∈ (0, 1) be a fixed positive constant. Then the inequality

cap (B,ω) ≥ Φθ(ε) (4.16)

holds for all

0 < ε ≤ λ =
θ

6− θ
. (4.17)

Here, the function Φθ : (0, λ] → R
+ is defined by the equality

Φθ(ε) = π ln
(

2
θ

ε

2− ε

2− θ
2

)

+ o(1), (4.18)

where o(1) → 0 as ε. In particular, Φθ(ε) → ∞ as ε → 0.

Proof There exist two points, z0 ∈ ω and z∗ ∈ ∂B, such that |z0 − z∗| = ǫ.
After rotation we may assume that z∗ = 1. Denote by Πω the orthogonal
projection of ω onto the real axis. We have

θ ≤ |ω| =

∫

Πω

{

∫

Bx1

dx2

}

dx1 ≤ 2

∫

Πω

dx1 = 2meas Πω.

It is easy to see that Πz0 ≥ 1− ε. We thus get

θ

2
≤ meas Πω, Πz0 ∈ [1− ε, 1). (4.19)
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Since ω is connected, the projection Πω is also connected, then there are α, β ∈
(−1, 1) such that

Πω = {z = x1 + i0 : x1 ∈ [α, β]} ≡ ωα,β .

It follows from inequalities (4.19) that

1 > β ≥ Πz0 ≥ 1− ε, α ≤ β −
θ

2
.

We thus get

Πω = ω(α, β) ⊃ ω(a, h), a = 1−
θ

2
, h = 1− ε. (4.20)

It easy to see that the Steiner symmetrization ωsym contains the segment
ω(α, β). From this, and the monotonicity properties of the capacity, we ob-
tain

cap (B,ω) ≥ cap (B,ωsym) ≥ cap
(

B,ω(α, β)
)

≥ cap
(

B,ω(a, h)
)

.

This result, along with inequality (4.13) in Lemma 4, implies the estimate

cap (B,ω) ≥ π ln
(

4
1− a

1− h

1 + h

1 + a

)

+ o(1), o(1) → 0 as h → 1, (4.21)

which holds true for all h satisfying inequalities (4.12). By virtue of relations
a = 1 − θ/2 and h = 1 − ε, inequalities (4.12) in Lemma 4 are equivalent to
inequalities (4.17) in Lemma 5. Moreover, we have

π ln
(

4
1− a

1− h

1 + h

1 + a

)

= ln
(

2
θ

ε

2− ε

2− θ
2

)

, h → 1 as ε → 0.

From this and (4.21) we finally obtain the desired estimate (4.16).

We are now in a position to complete the proof of Proposition 4. To this
end, we employ Lemma 5 and the conformal invariance of the condenser capa-
city. Denote by z′ = w(z) the conformal mapping of G onto the unit circle B.
Next, denote by ω′ ⋐ B the connected compact set ω′ = w(ω). The conformal
invariance property of the condenser capacity implies

cap (G,ω) = cap (B,ω′). (4.22)

Recall that G is a bounded simply connected domain with C∞ boundary. There-
fore, the derivatives of w and the inverse w−1 are uniformly bounded. It follows
from this and relations |ω| > θ, dist (ω, ∂G) = ε, that

|ω′| =

∫

ω

|w′(z)|2 dx1dx2 ≥ C1|ω|, c−ε ≤ ε′ ≤ c+ε, (4.23)
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where ε′ = dist (ω′, ∂B), the positive constants C1 ∈ (0, 1) and c± depend only
on G. Hence, ω′ and ε′ meet all requirements of Lemma (5) with θ replaced by
θ′ = C1θ. It remains to note that the assertion of Proposition 4 is the straight-
forward consequence of (4.23), estimate (4.16) in Lemma 5 for the condenser
(B,ω′), and identity (4.22).

5. The Dirichlet problem

Preliminaries

In this section, we consider in details the main boundary value problem for the
harmonic function u : Ω → R,

∆u = 0 in Ω,

u = g on ∂G, u = 0 on ∂ω.
(5.1)

Hereinafter, we assume that G is a bounded simple connected domain with C∞

boundary and ω ⊂ G is a compact set. We also assume that the set ω and the
annulus Ω = G \ ω are connected. This means that Ω is a doubly-connected
domain in R

2.

Recall Definition 3 of the weak solution to problem (5.1). Denote by W (Ω),
Ω = G \ ω, the space of functions u ∈ W 1,2(G) such that every u ∈ W vanishes
on some neighborhood of ω. We assume that W is endowed with the norm
W 1,2(G), which is equivalent to the norm

‖u‖21 =

∫

Ω

|∇u|2dx+

∫

∂G

|u|2 ds.

Denote by H1 the completion of W with respect to the norm ‖ · ‖1. Every
function u ∈ H1 has the extension u∗ : G → R such that

‖u∗‖W 1,2(G) ≤ c‖u‖1.

In particular, u has the trace u
∣

∣

∂G
∈ W 1/2(∂G).

Let g : ∂G → R be an arbitrary function, satisfying the conditions

g ∈ C∞(∂G), g > cg > 0 on ∂G. (5.2)

We say that u is a weak solution to problem (5.1) if

u ∈ H1(Ω), u = g on ∂G,

∫

Ω

|∇u|2 dx = min
J

∫

Ω

|∇ũ|2 dx, (5.3)
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where J ⊂ H1 is the set of all functions ũ ∈ H1 satisfying the boundary
condition ũ = g on ∂G.

Let us consider the following construction. It follows from Theorem 3 that
there is a conformal diffeomorphism w : Ω → Dµ = {µ < |ζ| < 1}, 0 ≤ µ < 1.
For every λ ∈ (µ, 1), the mapping w−1 takes diffeomorphically the circumference
{|ζ| = λ} onto an analytic Jordan curve Γλ ⋐ Ω. The disjoint curves Γλ and
∂G form the boundary of the doubly-connected domain Ωλ = w−1(Dλ). It is
easy to check that

⋃

λ>µ

Ωλ = Ω,
⋂

λ>µ

(

G \ Ωλ

)

= ω. (5.4)

The following simple lemma will be used throughout this section:

Lemma 6 For every neighborhood O of ω, there is ν > µ such that G\Ων ⊂ O.

Proof Assume that the assertion of the lemma is false. Then, there is a neigh-
borhood O of Ω, and sequences νn > µ, and zn ∈ G such that

λn → µ as n → ∞, and zn ∈ (G \ Ωνn
) \ O.

After passing to a subsequence we may assume

λn ց µ as n → ∞, and (G \ Ωνn
) \ O ∋ zn → z∗, (5.5)

as n → ∞. We have

z∗ ∈ {zk}k≥n ⊂ G \ Ωνn

since G \ Ωνn
is compact. It follows from this, (5.4), and the monotonicity of

sequence Ωνn
that

z∗ ∈
⋂

λ>µ

(

G \ Ωλ

)

= ω. (5.6)

Hence dist (zn, ∂G) > ǫ > 0 for all sufficient large n. For such n, we have
zn ∈ Gǫ \ O. Note that Gǫ \ O is a compact subset of G \ ω. We thus get

z∗ ∈ Gǫ \O ⊂ G \ ω,

which contradicts (5.6). This completes the proof of Lemma 6.

Denote by uλ the solution to the boundary value problem

∆uλ = 0 in Ωλ, uλ = g on ∂G, uλ = 0 on Γλ. (5.7)

Since the boundary ∂Ωλ belongs to the class C∞, we have uλ ∈ C∞(Ωλ).
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Lemma 7 The function uλ, being extended by zero to G, belongs to the space
W.

Proof It suffices to show that the setG\Ωλ contains some neighborhoodO of ω.
Note that the set Ω has no common points with ω. The same is true for Γλ ⋐ Ω.
We obviously have ∂G ∩ ω = ∅. Hence, the compact set K = Ωλ ∪ ∂G ∪ Γλ has
no common points with the compact set ω. It follows that dist (K,ω) > d > 0
for some d > 0. Since Ωλ ⊂ K, we have dist (Ωλ, ω) > d. Therefore, d/2
neighborhood of ω belongs to G \ Ωλ and the lemma follows.

Corollary 2 Let 0 < µ < λ < λ′ < 1. Then

∫

Ω

|∇u|2dx ≤

∫

Ωλ

|∇uλ|
2dx ≤

∫

Ωλ′

|∇uλ′ |2dx. (5.8)

Proof The first inequality in (5.8) obviously follows from Lemma 7 and varia-
tional principle (5.3). In order to prove the second, extend the function uλ′ by
zero to Ωλ. The extended function satisfies the same boundary conditions as
uλ. Hence, the desired estimate follows from equations (5.7) and the Dirichlet
principle.

Along with the functions u : Ω → R and uλ : Ωλ → R we will consider the
auxiliary functions v : Dµ → R and vλ : Dλ → R, µ < λ < 1, defined by the
equalities

v = u ◦ w−1, vλ = uλ ◦ w−1, (5.9)

where w : Ω → Dµ is a conformal diffeomorphism. The normalization conditions
are not essential at this stage. However, we will assume that the conformal
modulus satisfies the inequalities

0 < µ− ≤ µ ≤ µ+ < 1 (5.10)

with fixed constants µ±. Note that Ωλ is a curvilinear annulus with c∞ boundary
∂G∪Γλ. It follows from this and Theorem 3 that w ∈ C∞(Ωλ), w

−1 ∈ C∞(Dλ),
which yields vλ ∈ C∞(Dλ). Finally, note that the function vλ satisfies the
equations and boundary conditions

∆vλ = 0 in Dλ,

vλ(ζ) = f(ζ) for |ζ| = 1, vλ(ζ) = 0 for |ζ| = λ,
(5.11)

where f(eiθ) = g(w−1(eiθ)) belongs to the class C∞(S1).
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Basic inequality

Theorem 5 Assume that the conformal modulus satisfies inequalities (5.10).
Then there is a constant C, depending only on the constants µ± in (5.10), such
that

∫

Ω

|∇u|2 dx ≤

∫

Ωλ

|∇uλ|
2 dx ≤

(

1 + C(λ− µ)
)

∫

Ω

|∇u|2 dx (5.12)

for all λ ∈ (µ, (1 + µ+)/2).

Proof The lower estimate in (5.12) is a consequence of Corollary 2. The proof
of the upper estimate falls into three steps.

Step 1. First we prove that for every ε ∈ (0, 1), there is ν(ε) ∈ (µ, 1) such that

∫

Ων(ε)

|∇uν(ε)|
2 dx ≤

∫

Ω

|∇u|2 dx+ ε, ν(ε) → µ as ε → 0. (5.13)

Recall Definition 2 of the class W. Since W is dense in H1 and u is a solution to
variational problem (1.6), for every ε > 0 there is a function ũ ∈ W satisfying
the conditions

∫

Ω

|∇u|2 dx ≤

∫

Ω

|∇ũ|2 dx ≤

∫

Ω

|∇u|2 dx+ ε, ũ
∣

∣

∣

∂G
= g. (5.14)

By the definition of the class W, there exists a neighborhood O(ε) such that
ũ = 0 in O(ε). By virtue of Lemma 6, there is ν(ε) ∈ (µ, 1) such that G\Ων(ε) ⊂
O(ε). In particular, ũ vanishes in a neighborhood of Γν(ε). We thus get

∆uν(ε) = 0 in Ων(ε),

uν(ε) = g on ∂G, uν(ε) = 0 on Γν(ε).

and

ũ ∈ W 1,2(Ων(ε)), ũ = g on ∂G, ũ = 0 on Γν(ε).

It follows from this and the Dirichlet principle that

∫

Ων(ε)

|∇uν(ε)|
2dx ≤

∫

Ων(ε)

|∇ũ|2dx ≤

∫

Ω

|∇ũ|2dx.

By combining this result with (5.14) we get the desired estimate (5.13). Note
that if (5.13) holds for some ν(ε), then it also holds for all ν ∈ (µ, ν(ε)). Hence,
we may assume that ν(ε) → µ as ε → 0.
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Step 2. Now fix an arbitrary λ ∈ (µ, (1 + µ+)/2). Next, choose ε > 0 so small
that

µ < ν(ε) < λ < 1.

Out task is to establish relations between Dirichlet’s integrals of the functions
uλ and uν(ε). Recall the definition of harmonic functions

vλ = uλ ◦ w−1 : Dλ → R and vν(ε) = uν(ε) ◦ w
−1 : Dν(ε) → R.

Note that vλ ∈ C∞(Dλ) and vν(ε) ∈ C∞(Dν(ε)). By virtue of the conformal
invariance of the Dirichlet integral, we have

∫

Ωλ

|∇uλ|
2 dx =

∫

Dλ

|∇vλ|
2 dζ,

∫

Ων(ε)

|∇uν(ε)|
2 dx =

∫

Dν(ε)

|∇vν(ε)|
2 dζ.

(5.15)

Introduce the mapping σ : Dν(ε) → Dλ, defined by the equality

σ(ζ) =
1

ν(ε)− 1

(

(λ− 1)|ζ|+ ν(ε)− λ
) ζ

|ζ|
.

It is clear that σ takes diffeomorphically Dν(ε) onto Dλ. Moreover, σ and σ−1

belong to the class C∞. Denote by M(ζ) the Jacobi matrix ∇ζσ(ζ). Calcula-
tions show that

|M |+ |M−1| ≤ C, |M − I| ≤ C(λ− ν(ε)) in Dν(ε). (5.16)

Note that the function vν(ε) satisfies the equations and boundary conditions

∆vν(ε) = 0 in Dν(ε),

vν(ε)(ζ) = f(ζ) for |ζ| = 1, vν(ε)(ζ) = 0 for |ζ| = ν(ε).
(5.17)

Now, set ϕε(σ) = vν(ε)(ζ(σ)). It follows from (5.17) and the expression for σ(ζ)
that

ϕε ∈ W 1,2(Dλ), ϕε(e
iθ) = f(eiθ), ϕε(σ) = 0 for |σ| = λ (5.18)

Direct calculations lead to the identity
∫

Dλ

|∇ϕε|
2 dσ =

∫

Dν(ε)

detM M−1M−⊤∇vν(ε) · ∇vν(ε) dζ. (5.19)

Next, inequalities (5.16) imply the estimate
∣

∣ detM M−1M−⊤ − I
∣

∣ ≤ C(λ− ν(ε)) ≤ C(λ− µ),
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where C depends only on µ±. By combining this result with (5.19) we obtain
∫

Dλ

|∇ϕε|
2 dσ ≤

(

1 + C(λ− µ)
)

∫

Dν(ε)

|∇vν(ε)|
2 dζ. (5.20)

It follows from relations (5.18) and equations (5.11) for the harmonic function
vλ that this function satisfies the same boundary conditions as ϕε. From this
and the Dirichlet principle we conclude that

∫

Dλ

|∇vλ|
2 dζ ≤

∫

Dλ

|∇ϕε|
2 dσ.

By substituting this inequality in (5.20) we obtain
∫

Dλ

|∇vλ|
2 dζ ≤

(

1 + C(λ− µ)
)

∫

Dν(ε)

|∇vν(ε)|
2 dζ.

Since the Dirichlet integral is invariant with respect to a conformal transform,
we can rewrite this inequality in the equivalent form

∫

Ωλ

|∇uλ|
2 dx ≤

(

1 + C(λ− µ)
)

∫

Ων(ε)

|∇uν(ε)|
2 dx. (5.21)

On the other hand, inequality (5.13) yields
∫

Ων(ε)

|∇uν(ε)|
2 dx ≤

∫

Ω

|∇u|2 dx+ ε.

By substituting this inequality into (5.21) we obtain
∫

Ωλ

|∇uλ|
2 dx ≤

(

1 + C(λ− µ)
)

(

∫

Ω

|∇u|2 dx+ ε
)

. (5.22)

Letting ε → 0 we arrive at the desired estimate (5.12). This completes the proof
of Theorem 5.

Stability

At the end of this sections, we study the domain dependence of solutions to
the Dirichlet problem (5.1). Recall Definition 4 of the set Ch. Consider doubly
connected domains Ω = G \ ω, Ωn = G \ ωn, n ≥ 1, where connected compact
sets ω, ωn ∈ Ch. Denote by u and un the corresponding weak solutions of the
boundary value problems

∆u = 0 in Ω, u = g on ∂G, u = 0 on ∂ω. (5.23)

∆un = 0 in Ωn, un = g on ∂G, un = 0 on ∂ωn. (5.24)

Assume that they satisfy the following conditions
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C.1 There is c > 0 such that
∫

Ω

|∇u|2 dx+

∫

Ωn

|∇un|
2 dx ≤ c, n ≥ 1. (5.25)

C.2

0 < µ− ≤ µn ≤ µ+ < 1, µn → µ as n → ∞, (5.26)

where 1/µn and 1/µ are the conformal modulus of Ωn and Ω.

C.3 The domains Ωn (the compact sets ωn) converge to the domain Ω (the
compact set ω) in the sense of Caratheodory-Hausdorff.

Theorem 6 Let conditions C.1-C.3 be satisfied. Then
∫

Ωn

|∇un|
2 dx →

∫

Ω

|∇u|2 dx as n → ∞. (5.27)

Proof Denote by wn : Ωn → Dµn
and w : Ω → Dµ the conformal mappings,

satisfying the normalization conditions

wn(z0) = ζ0, w(z0) = ζ0, w′
n(z0) > 0, w′(z0) > 0,

with fixed z0 ∈ A(h), ζ0 ∈ Dµ+ . For every λ ∈ (µ, 1), introduce the domain
Ωλ = w−1(Dλ). Since µn → µ, the inequality µn < λ holds for all large
n. Further, we will assume that n is sufficiently large. Set Ωn,λ = w−1

n (Dλ).
The doubly-connected domain Ωλ is bounded by the C∞ Jordan curves ∂G
and Γλ = w−1({|ζ| = λ}). In its turn, the doubly-connected domain Ωn,λ is
bounded by the C∞ Jordan curves ∂G and Γn,λ = w−1

n ({|ζ| = λ}).

We also introduce the harmonic functions uλ ∈ C∞(Ωλ) and un,λ ∈ C∞(Ωn,λ),
satisfying the equations

∆uλ = 0 in Ωλ, uλ = g on ∂G, uλ = 0 on Γλ. (5.28)

∆un,λ = 0 in Ωn,λ, un,λ = g on ∂G, un,λ = 0 on Γn,λ. (5.29)

Note that Ωn, Ω and µn, µ meet all the requirements of Theorem 5 which yields
∫

Ω

|∇u|2 dx ≤

∫

Ωλ

|∇uλ|
2 dx ≤

(

1 + C(λ− µ)
)

∫

Ω

|∇u|2 dx,

∫

Ωn

|∇un|
2 dx ≤

∫

Ωn,λ

|∇un,λ|
2 dx ≤

(

1 + C(λ− µ)
)

∫

Ωn

|∇un|
2 dx

(5.30)

for λ < (1 + µ+)/2 and λ > µ, λ > µn. Here, the constant C depends only on
µ±. Now, fix an arbitrary ε > 0 and choose λ such that

0 < C(λ− µ) < ε, λ < (1 + µ+)/2.
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Since µn → µ as n → ∞, we have

0 < C(λ− µn) < ε for all large n.

From this and (5.30) we conclude that the inequalities
∫

Ω

|∇u|2 dx ≤

∫

Ωλ

|∇uλ|
2 dx ≤

(

1 + ε
)

∫

Ω

|∇u|2 dx,

∫

Ωn

|∇un|
2 dx ≤

∫

Ωn,λ

|∇un,λ|
2 dx ≤

(

1 + ε
)

∫

Ωn

|∇un|
2 dx

hold for all sufficiently large n. In particular, we have

1

1 + ε

∫

Ωλ

|∇uλ|
2 dx ≤

∫

Ω

|∇u|2 dx. (5.31)

We thus get
∫

Ωn

|∇un|
2 dx−

∫

Ω

|∇u|2 dx ≤

∫

Ωn,λ

|∇un,λ|
2 dx−

1

1 + ε

∫

Ωλ

|∇uλ|
2 dx

= In +
ε

1 + ε

∫

Ωλ

|∇uλ|
2 dx ≤ In + ε

∫

Ω

|∇u|2 dx,

(5.32)

where

In =

∫

Ωn,λ

|∇un,λ|
2 dx−

∫

Ωλ

|∇uλ|
2 dx. (5.33)

The permutation (un, u) → (u, un) gives the the symmetric inequality
∫

Ω

|∇u|2 dx−

∫

Ωn

|∇un|
2 dx ≤ −In + ε

∫

Ωn

|∇un|
2 dx.

Upon combining this result with (5.32) we get the two-sided estimate

In − ε

∫

Ω

|∇un|
2 dx ≤

∫

Ωn

|∇un|
2 dx−

∫

Ω

|∇u|2 dx ≤ In + ε

∫

Ω

|∇u|2 dx,

which holds true for all sufficiently large n. From this and condition C.1 we
conclude that

In − cε ≤

∫

Ωn

|∇un|
2 dx−

∫

Ω

|∇u|2 dx ≤ In + cε, (5.34)

where c is independent of n and ε. Let us prove that In tends to 0 as n → ∞.
Introduce the harmonic functions vλ, vn,λ : Dλ → R, defined by the equalities

vλ = uλ ◦ w−1, vn,λ = un,λ ◦ w−1
n . (5.35)
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It follows from (5.33) and the conformal invariance of the Dirichlet integral that

In =

∫

Dλ

(

|∇vn,λ|
2 − |∇vλ|

2
)

dζ.

From this and the identity

|∇vn,λ|
2 − |∇vλ|

2 = (∇vn,λ −∇vλ) · (∇vn,λ +∇vλ)

we conclude that

|In| ≤ c‖vn,λ − vλ‖C1(Dλ)

(

∫

Dλ

(|∇vn,λ|
2 + |∇vλ|

2) dζ
)1/2

=

c‖vn,λ − vλ‖C1(Dλ)

(

∫

Ωn,λ

|∇un,λ|
2dx+

∫

Ωλ

|∇uλ|
2 dx

)1/2

≤ c(1 + ε)1/2‖vn,λ − vλ‖C1(Dλ)

(

∫

Ωn

|∇un|
2dx+

∫

Ω

|∇u|2) dx
)1/2

≤ c‖vn,λ − vλ‖C1(Dλ).

(5.36)

Here we use inequality (5.31). Next, note that the function vn,λ − vλ satisfies
the equations

∆(vn,λ − vλ) = 0 in Dλ,

vn,λ − vλ = fn − f for |ζ| = 1, vn,λ − vλ = 0 for |ζ| = λ,
(5.37)

where

fn = g(w−1
n (eiθ)), f = g(w−1(eiθ)).

We will consider ∂G and S
1 as parametrized curves equipped with natural

parametrization z = Z(s), 0 ≤ s ≤ L, and ζ = eiθ, 0 ≤ θ ≤ 2π. We will
write simply g(s) instead of g(Z(s)). It is clear that the L-periodic function
g(s) belongs to the class C∞[0, L]. With this notation we may rewrite the
expressions for fn and f in the parametric form

fn(e
iθ) = g ◦ ϕ−1

n (θ), f(eiθ) = g ◦ ϕ−1(θ). (5.38)

Here, the mapping ϕ, determined by Definition 8, establishes the connection
between parameters s and θ, induced by the conformal mapping w. The defini-
tion of ϕn is similar. Conditions C.1-C.3 imply that the conformal mappings
wn and w meet all the requirements of Proposition 3. It follows from relation
(3.11) in this proposition that

ϕ−1
n → ϕ−1 in Cr[0, 2π] and hence g ◦ ϕ−1

n − g ◦ ϕ−1 → 0 in Cr[0, 2π]
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as n → ∞ for all integers r ≥ 0. It follows that fn − f → 0 as n → ∞ in every
space Cr(S1), r ≥ 0. Note that λ and ε are independent of n. The standard a
priori estimate for solutions to problem (5.37) implies the relation

‖vn,λ − vλ‖Cr(Dλ) → 0 as n → ∞ for all r ≥ 0,

which, along with (5.36), yields the equality lim
n→∞

In = 0. Letting n → ∞ in

(5.34) we finally obtain

−cε ≤ lim inf
n→∞

(

∫

Ωn

|∇un|
2 dx−

∫

Ω

|∇u|2 dx
)

≤

lim sup
n→∞

(

∫

Ωn

|∇un|
2 dx−

∫

Ω

|∇u|2 dx
)

≤ cε,

where ε > 0 is an arbitrary small number and c is independent of ε. This
completes the proof of Theorem 6

6. Proof of Theorem 1

Recall the formulation of the main Theorem 1. We fix a bounded simply con-
nected domain G ⊂ R

2 with C∞ boundary and two functions g ∈ C∞(∂G),
Q ∈ C∞(G), satisfying the conditions

g > cg > 0 on ∂G, Q > C− > 0 in Ω. (6.1)

Denote by C+ the totality of all connected compact sets ω ⋐ G of the positive
measure |ω| > 0 such that the set Ω = G\ω is open and connected. This means
that Ω is doubly-connected. Introduce the functional

J (ω) =

∫

Ω

|∇u|2dx+

∫

Ω

Q2 dx, Ω = G \ ω, (6.2)

where u is a solution to the Dirichlet problem

∆u = 0 in Ω, u = g on ∂G, u = 0 on ∂ω. (6.3)

See Definition 3 for the explicit definition of the weak solution to problem (6.4).
We also suppose that g and Q satisfy the following nondegeneracy condition:
There is ω0 ∈ C+ such that

J (ω0) <

∫

G

|∇U |2dx+

∫

G

Q2dx. (6.4)

Here U is the solution to the Dirichlet problem

∆U = 0 in G, U = g on ∂G.
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Our main goal is to prove that the variational problem

min
ω∈C+

J (ω) (6.5)

has a solution ω ∈ C+. Let us consider the minimizing sequence ωn, n ≥ 1,
such that

J (ωn) → inf
ω∈C+

J (ω). (6.6)

We prove that this sequence contains a subsequence, which converges to a so-
lution of problem (6.5) in the sense of Caratheodory-Hausdorff. Our consi-
derations are based on Theorem 6. Therefore, it is necessary to show that the
minimizing sequence meets all requirements of this theorem. The proof falls
into a sequence of lemmas.

Lemma 8 Let ω ∈ C+ and 1/µ be a conformal modulus of the domain Ω = G\ω.
Then, |ω| ≤ cG µ2, where cG depends only on G.

Proof First, we consider the case of G = B, where B is a unit circle. It follows
from identity (4.5) that

2π
(

ln
( 1

µ

)

)−1

= cap (B,ω). (6.7)

On the other hand, the condenser capacity does not increase after the Steiner
symmetrization of ω. This leads to the well known inequality

cap (B,ω) ≥ cap (B,Bρ), where Bρ = {|z| ≤ ρ}, ρ = π−1/2 |ω|1/2. (6.8)

It is easy to see that

cap (B,Bρ) =

∫

B\Bρ

|∇ϕ|2 dx, where ϕ = ln |z|/ ln ρ,

which yields

cap (B,Bρ) = 2π
(

− ln

√

|ω|

π

)−1

.

By combining this identity with (6.7) and (6.8) we finally obtain

2π
(

ln
( 1

µ

)

)−1

≥ 2π
(

− ln

√

|ω|

π

)−1

,

or, equivalently,

1

µ

√

|ω|

π
≤ 1 and |ω| ≤ πµ2.
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Let us turn to the general case of the simply connected domain G with c∞

boundary. Note that there is C∞ conformal diffeomorphism w : G → B. It
takes the connected compact set ω ⊂ G onto the connected compact set w(ω) ⊂
B. Recall that the conformal modulus is invariant with respect to conformal
transformations. It remains to note that |ω| ≤ c|w(ω)|, and the lemma follows.

Lemma 9 Let ωn ∈ C+ be a minimizing sequence, satisfying condition (6.6).
Then, there are constants µ− and θ, independent of n, such that

0 < µ− ≤ µn, 0 < θ ≤ |ωn| for all n ≥ 1. (6.9)

Here, 1/µn is the conformal modulus of the doubly-connected domain Ωn =
G \ ωn.

Proof Suppose that the first inequality in (6.9) is false. After passing to a
subsequence we may assume that µn → 0 as n → ∞. It follows from this and
Lemma 8 that

|ωn| ≤ cG µ2
n → 0 as n → ∞.

We thus get

J (ωn) ≥

∫

G

|∇U |2 dx+

∫

G\ωn

Q2 dx →

∫

G

|∇U |2 dx+

∫

G

Q2 dx.

From this and nondegeneracy condition (6.4) we obtain lim inf J (ωn) > inf J .
Hence, ωn is not a minimizing sequence. The contradiction proves the first
estimate in (6.9). Repeating correspondingly these arguments gives the second.

Lemma 10 Assume that a solution to problem (6.3) in the domain Ω = G \ ω,
ω ∈ C+, satisfies the inequality

∫

Ω

|∇u|2 dx ≤ E.

Then the conformal modulus of Ω admits the estimate

µ ≤ e−
2πc2g
E , (6.10)

where cg is the constant in condition (6.1)

Proof Fix a conformal mapping w : Ω → Dµ and choose an arbitrary λ ∈ (µ, 1).
Let us consider the doubly-connected domain Ωλ = w−1(Dλ). It is bounded by
C∞ Jordan curves ∂G = w−1(S1) and Γλ = w−1({|ζ| = λ}). It follows from
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Theorem 3 that w ∈ C∞(Ωλ) and w−1 ∈ C∞(Dλ). Introduce the harmonic
function uλ ∈ C∞(Ωλ), satisfying the equations

∆uλ = 0 in Ωλ, u = g on ∂G, u = 0 on Γλ.

Since the distance between ω and ∂G is positive, we have ω ∈ Ch for some
h > 0. Obviously, µ satisfies inequalities (5.6) with µ± = µ. Hence, u meets all
the requirements of Theorem 5, which yields

∫

Ωλ

|∇uλ|
2 dx ≤ aλ

∫

Ω

|∇u|2 dx ≤ aλE for λ ≤ (1 + µ)/2.

Here, aλ = 1 + C(µ − λ), where C depends only on µ. It is clear that aλ → 1
as λ → µ. Next, introduce the harmonic function vλ : Dλ → R, defined by the
equality vλ = uλ ◦w−1. Since the Dirichlet integral is invariant with respect to
conformal transforms, we have

∫

Dλ

|∇vλ|
2 dζ =

∫

Ωλ

|∇uλ|
2 dx ≤ aλ E for λ ≤ (1 + µ)/2. (6.11)

Moreover, vλ satisfies the equations and boundary conditions

∆vλ = 0 in Dλ,

vλ(ζ) = f(ζ) for |ζ| = 1, vλ(ζ) = 0 for |ζ| = λ,

where f(eiθ) = g(w−1(eiθ)) belongs to the class C∞(S1) and satisfies the in-
equality f ≥ cg. Here, cg is the constant in (6.1). It follows from this and (6.11)
that the function

ϕ(ζ) = 1−min
{

1,
1

cg
vλ(ζ)

}

, ζ ∈ Dλ,

satisfies the conditions

ϕ = 0 for |ζ| = 1, ϕ = 1 for |ζ| = λ,

∫

Dλ

|∇ϕ|2 ≤
aλ

(cg)2
E.

It follows that

cap (B,Bλ) ≤
aλ

(c−)2
E, Bλ = {|ζ| ≤ λ}.

Since the conformal modulus of the annulus Dλ = B \Bλ equals 1/λ, we have

2π
(

ln
1

µ

)−1

≤ 2π
(

ln
1

λ

)−1

= cap (B,Bλ) ≤
aλ

(cg)2
E.

From this we conclude that

µ ≤ e
−

2πc2g
aλE → e−

2πc2g
E as λ → µ, (6.12)

and the lemma follows.
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Lemma 11 Let ωn ∈ C+ be a minimizing sequence, satisfying condition (6.6).
Then there is a constant µ+ < 1, independent of n, such that µn ≤ µ+ for all
n ≥ 1. Here, 1/µn is the conformal modulus of the doubly-connected domain
Ωn = G \ ωn.

Proof It suffices to note that the Dirichlet integrals of the functions un are
uniformly bounded and to apply Lemma 10.

Lemma 12 Let ωn ∈ C+ be a minimizing sequence, satisfying condition (6.6).
Then there is a constant h > 0, independent of n, such that dist (ωn, ∂G > h
for all n ≥ 1. In other words, ωn ∈ Ch.

Proof Suppose, contrary to our claim, that there is a subsequence of the se-
quence ωn, still denoted by ωn, such that

ǫn ≡ dist (ωn, ∂G) → 0 as n → ∞. (6.13)

By virtue of Lemma 11, we have

cap (G,ωn) = 2π
(

ln
1

µn

)−1

≤ 2π
(

ln
1

µ+

)−1

. (6.14)

On the other hand, it follows from Lemma 9 that |ωn| ≥ θ > 0, where θ
is independent of n. Hence, ωn meets all the requirements of Proposition 4.
By virtue of this proposition, there are λ ∈ (0, 1) and a continuous function
Φ : (0, λ) → R

+, depending on G and θ, such that

cap (G,ωn) ≥ Φ(ǫn) → ∞ as εn → 0.

It remains to note that this relation contradicts the estimate (6.14).

We are now in a position to complete the proof of Theorem 1. Let us consider
the minimizing sequence ωn, satisfying condition (6.6). It follows from Lemmas
9, 11, and 12 that there are µ± ∈ (0, 1), θ > 0, and h > 0 with the properties

0 < µ− ≤ µn ≤ µ+ < 1, |ωn| > θ, ωn ∈ Ch. (6.15)

After passing to a subsequence, we may assume that

ωn → ω ∈ Ch in the sense of Caratheodory-Hausdorff and µn → µ

as n → ∞. Relations (6.15) imply that the sequence ωn satisfies conditions of
the stability Theorem 6, which yields

∫

Ωn

|∇un|
2 dx →

∫

Ω

|∇u|2 dx. (6.16)
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It follows from Definition 7 of the Caratheodory-Hausdorff convergence that Ωn

converge to the kernel Ω in the sense of Caratheodory. Therefore, every compact
subset of Ω belongs to Ωn for all large n. We thus get

∫

K

Q2dx ≤ lim inf

∫

Ωn

Q2 dx, |K| ≤ lim inf |Ωn| ≤ |G| − θ

for every compact set K ⋐ Ω, which yields

∫

Ω

Q2dx ≤ lim inf

∫

Ωn

Q2 dx, |ω| ≥ θ.

Combining this result with (6.16) we finally obtain

J (ω) ≤ lim inf J (ωn) and ω ∈ C+.

Hence, ω is a solution to variational problem (6.5) and the theorem follows. �
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