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Abstract: The purpose of the work, presented in this article,
was to obtain a price model for the Day-Ahead Market of the Polish
Power Exchange (PPE). The resulting proposed models are based on
Artificial Neural Networks (ANN), and the involved suggested im-
provement concerns the proper selection of both the type of network
and the factors used in model construction. The article also proposes
a new approach to the ANN with the implemented quantum learning
model. The purpose of the research was to analyze factors, which
exert influence on the quality of the model, like weather or economic
factors, or the type of neural network used. The model determines
the relationship between the price and the volume of electricity for
a given hour of the day.

The mean square error and the coefficient of determination were
used to measure the quality of the obtained models. The results
from the experiments performed indicate the possibility of develop-
ing improved models of the Day-Ahead Market.

Keywords: Polish Power Exchange, Day Ahead Market, mod-
eling of energy market, quantum inspired neural network

1. Motivation

The main subject of the research here reported was to build a Day-Ahead Mar-
ket (DAM) model for price prediction using an artificial neural network and to
examine the impact of neural network types, as well as the impact from var-
ious factors on the quality of the model. The next stage of research was the
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implementation of the DAM model using a quantum-inspired artificial neural
network. Such a network constitutes a proposal for a new method of modeling
of the DAM system.

Modeling was based on data from the Day-Ahead Market since the beginning
of its operation, i.e. the data for the period between the second half of 2002 and
June 30, 2019. The work here reported is a continuation of previous research on
DAM modeling in Poland, see Ruciniski (2017, 2018, 2019, 2022), Tchérzewski
and Rucinski (2016, 2018, 2019).

With the deregulation of the electricity market in Poland, involving, in par-
ticular the Day-Ahead Market system, operating on the Polish Power Exchange
as a subsystem of Polish Power Exchange (POLPX), the phenomenon of com-
petition and changing market conditions has emerged, affecting suppliers, con-
sumers, prosumers and intermediaries in the trading and in supply of electricity.
Therefore, there is a need to build appropriate models of the Day-Ahead Market
system, which will be able to model the operation of this market, taking into
account its nature, including its changes, for the needs of all market partici-
pants, i.e. both suppliers and customers, as well as the increasing number of
intermediaries, participating in electricity trading, and even the prosumers.

The expected outcome of the research is, first of all, to obtain a correct
(neural) model of the Day-Ahead Market (DAM) system and to verify the pos-
sibility of improving its quality by using quantum-inspired networks (QiANN)
(see Tchérzewski, 2013).

2. Description of the relevant market

The rules for the operation of the PPE system in Poland are set forth in the
Energy Law of April 10, 1997, and the related implementing acts. The Energy
Law does not provide for specific restrictions on the formation of various energy
trading modes. Currently, the Polish energy market system consists of three
subsystems (called segments): Contract Market System, Share Market System,
and Balancing Market System (see Mielczarski, 2000).

The contract market system is a system of electricity trading, based on
bilateral contracts, concluded directly between electricity generators and end-
users or electricity trading companies.

The exchange market system is a system of energy trading on the power
exchange (PPE) mainly on the DAM (PPE also includes the Intraday Market).

The DAM system consists of 24-hour trading periods, during which Ex-
change Members can buy and sell electricity. Participants of the Exchange send
buy or sell orders for each hour, based on which a supply curve, resulting from
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the sell orders (see Fig. 1 — the curve marked in red) and a demand curve, based
on buy orders (the curve marked in blue), are created.
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Figure 1. The courses of the supply curve (red) [PLN / MWh] and the demand
curve (blue) [PLN / MWHh] for the volume of electricity at PPE S.A. intersect
(the method of determining the equilibrium price and trading volume for each
hour of the day). Symbols: X-axis - electricity volume [MWh], Y-axis - elec-
tricity price [PLN / MWh], E,. - ee volume value, for which the supply is equal
to the demand and the C,. price is determined (equilibrium price, transaction
price), E, - the volume of energy purchased at the transaction price, E, - the
total volume of energy offered at the transaction price. Source: Mielczarski
(2000)

3. Research methodology

For the purpose of modeling of prices in the DAM system, relevant research
experiments were developed using the prices and the volume of energy sold in
the given periods as a reference. In addition, the influence of weather factors
(temperature, sunshine, wind strength, humidity, cloud cover) and economic
factors (size of public debt, size of the state budget, rate of inflation, money
supply) were also considered. The research plan consisted of the following steps:

Step 1. Implementing the models of the Day-Ahead Market System using
data listed on the DAM in MATLAB and Simulink environments.

Step 2. Analysing the obtained models in terms of the impact of the size
of the learning sets on model quality, the impact of the selection of various
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factors (variables) on building of the model, the impact from the type of neural
networks used on the quality of the obtained model, etc.

Step 3. Implementing neural models and developing a new proposal of
quantum-inspired neural models with a quantum-inspired artificial neural net-
work model based on 12 parallel neural networks*.

Step 4. Comparative analysis of the obtained models.

Step 5. Discussion of the obtained results and formulation of conclusions
and directions for further research.

4. The process of selecting factors for building the Day-
Ahead System model

4.1. General characteristics of the models identified

Energy markets have been the subject of many studies (see, for instance, Bai
and Ng, 2002; Lago et al., 2021), and these studies have generally focused on
multivariate models for estimating the number and the selection of the rele-
vant factors. There are also proposals for methodologies meant to estimate the
number of factors, using the adopted convergence criteria, in order to do so, in-
volving comprehensive statistical analysis of classification issues and correlations
between selected factors.

In order to study the impact of various factors on the quality of the DAM
model, five models containing different factor sets were built for analyzing their
impact on the quality of the model. The study focused on two main groups
of factors, namely economic factors and weather factors. The following factors
were taken into account:

[t

volume of ee sold in a given hour of the day,
temperature,

insolation,

wind force,

humidity

cloudiness

level of inflation,

magnitude of debt,

balance of state expenditures,

money supply.
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*The idea of introducing 12 neural networks is explained in detail in Section 7 of this paper.
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The following five models were built for the purposes of this study:

1.

one-factor model, i.e., based solely on the volume of ee sold in a given
hour of the day,

a model containing all factors, in which all normalized data, corresponding
to factors from 1 to 10 above, were taken into account.

a model containing weather factors, in which factors from 2 to 6 were
considered.

a model containing economic factors, in which factors from 7 to 10 were
considered.

a model containing weather factors and economic factors, in which factors
from 2 to 6 were taken to create a separate network for average daily energy
requirements and then factor 1 and factors from 7 to 10 were considered,
as this is shown in Fig. 1.

Diagram of a complex Artificial Neural Network
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Figure 2. Diagram of the ANN network to which the weather factors enter
indirectly. Source: Own study.

Each of the five models was built and tested over the same time interval
using the same ANN. The data for the study involved a semiannual data set
with different input data sets (models 1 through 5) and the same set of prices
as model output. It should be noted that due to fact that different factors were
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taken into account, they had to be brought to comparable values. In this case,
the normalization consisted of a quotient transformation. The reason for this
approach was that the data were of different types, including temperatures in
degrees Celsius [C] or wind speeds in [km/h], and thus were not comparable
with each other. The transformation formula applied is as follows:

oy
n; = —; -, (1)
> Ti
i=1
where:
rn; — i-th normalized value,
x; — i-th original value,
p - the number of samples.

Each of the five adopted models was trained twenty times. The selected
results describing model quality (assessed with MSE and R?) are presented in
Tables 1 and 2 and in Figs. 3 and 4.

4.2. Model selection

Models taking into account only economic and weather factors (i.e. models
3 and 4), when assessed by the adopted criteria showed that their quality is
weaker than that of the other ones: MSE equal from 5.51E-05 to 4.95E-05, and
R? equal from 0.496689 to 0.560401.

The quality of the other three models turned out to be quite similar. Also
interesting from the implementation point of view are the results of the first
model, based only on the volume of ee sold in a given hour of the day, whose
results are comparable to those of model no. 2, containing all factors, and
of model no. 5, containing selected factors. In this case, the simplest model
based only on the volume of ee sold in a given hour of the day, which is a
direct derivative of electricity demand, correctly represents the operation of the
system. In the opinion of the present author, the similarity of the results of
these models (1, 2 and 5) results from the fact that the impact of economic
and weather factors is already taken into account in the magnitude of energy
demand.

5. Analysis of selection of artificial neural networks

Another issue, which was studied, was the effect of selection among the artifi-
cial neural network models, i.e. Perceptron ANN, Radial ANN and Recursive
ANN, on the quality of the obtained neural model of the Day-Ahead Market
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Table 2. Examples of results regarding the coefficient of determination R? for various models. Source

: Own study

Sequential training number

Model no. First Second Third Fourth Fifth Sixth Seventh
1 0.8006 0.882303 | 0.842319 | 0.835333 | 0.83776 | 0.809407 | 0.846567
2 0.833067 | 0.829533 | 0.82373 0.8546 0.846465 | 0.840213 | 0.84505
3 0.469712 | 0.496689 | 0.485287 | 0.503741 | 0.504631 | 0.500658 | 0.486556
4 0.544816 | 0.560401 | 0.586853 | 0.571416 | 0.534766 | 0.546944 | 0.4941
5 0.80445 | 0.756447 | 0.805817 | 0.789157 | 0.824628 | 0.799346 | 0.770874
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Figure 3. Comparison of the courses of values of the MSE error for the models
tested in the study reported. Symbols: x-axis — the ordinal value of subsequent
model training attempts, y-axis - MSE value for a given sample. Source: Own
elaboration in the MATLAB and Simulink environment.

system. Many studies analyze information processing networks, among them,
for instance, Osowski (2020) or Catalao et al. (2022). It was assumed that the
main purpose is to study the quality of modeling performed with the different
types of ANN. There are works in the literature (see Conejo et al., 2005; Ziel
and Weron, 2018) that present the studies of the DAM system models meant for
electricity price forecasting, including the ARIMA autoregressive moving aver-
age model (see Bissing et al., 2019). The research results also take into account
various aspects, such as hourly price series, power demand, etc.

The selected models have been implemented and tested for different periods
of operation of the DAM system in TGE S.A., namely the periods from a single
month, through a quarter of a year, half a year, three quarters, a year, 2 years,
..., up to 15 years, and then also for the entire already indicated time period of
operation of PPE S.A. (2002-2019). The research was carried out in MATLAB
and Simulink environments using proprietary m-files and DLT. The coefficient
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Comparing Regression for a Network with a Single Factor Input
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Figure 4. Comparison of the courses of values of the coefficient of determination
R? for models containing different sets of factors. Symbols: x-axis - ordinal value
for subsequent ANN training attempts, y-axis - R? value for a given sample.
Source: Own study in the MATLAB and Simulink environment (see Mrozek
and Mrozek, 2010)

of determination R? and the mean squared error MSE were used again as the
yardsticks of model quality.

As a result of the investigations carried out, it turned out that the Perceptron
ANN is relatively the best neural model for the DAM system, although the
MSE error and determination coefficient values are close to those obtained for
the Recursive ANN. During the six-month period adopted for further research
(see Rucinski, 2022), the MSE error for the Perceptron network ranged from
0.006723 to 0.001065. The MSE error for the Recursive network, which ranged
from 0.006723 to 0.00025243, was also relatively good, although slightly worse
than that for Perceptron.

For each period and for each type of network, a series of trainings were carried
out. As a result, models were obtained whose quality was again described by
two parameters, MSE and R2. In order to standardize the evaluation criterion,
an aggregate measure taking into account both criteria was introduced, which
can be described as follows:

0= Xn:wioi (2)
=1
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Table 3. Characteristics of artificial neural networks used in research experi-
ments. Source: Own elaboration in MATLAB and Simulink environment using

m-files and DLT.

Parameter Perceptron Recursive Radial
Network Network Network

number of layers | 2 2 2

number of neu- | 24 24 depends

rons in the hid- on the

den layer number
of input
vectors,
from 30
to 6221

number of neu- | 24 24 24

rons in the out-

put layer

first layer trans- | tansig() tansig() radbas()

formation func-

tion

second layer | purelin() purelin() purelin()

transformation

function

evaluation func- | MSE, R? MSE, R? MSE, R?

tion

where:

n — number of sub-criteria;

0; — i-th sub-criterion value;

w; — i-th weight of the sub-criterion,

where, in turn:

n
Z w; = 1.
=1

(3)

The mean values of MSE and R2? were adopted as the criteria for network
assessment. In this case, the weights of both factors were equal and amounted to
0.5 and n is, of course, equal 2. In addition to the aggregate measure of network
quality, a measure of stability for a given time interval was introduced, referred
to further on as the dispersion function, understood as the difference between
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the extreme values of the so-called dispersion (the difference of maximum and
minimum values of MSE and R?).

r (O) = Z w; (Oinaac - O’rinin)v (4)
i=1

where:
r (o) —  dispersion function,
1; . . . . .
Opnar —  -th maximum value of a given criterion,
ol . — i-th value of a given criterion.
man

The dispersion function describes the stability of a given network over a
given period of time. Figure 4 shows that for a shorter period, e.g. a month
or a quarter, the dispersion is greater, and for a longer period it is smaller.
Therefore, this factor should be taken into account during the selection of the
data range for building models. It is also worth noticing that the dispersion
measure is basically independent of the network type.

dispersion
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subsequent periods

Figure 5. Values of the dispersion function for individual networks in successive
periods. Source: Own study.

6. Analysis of the influence of the length of the learning
data period on the predictive abilities of models

The main purpose of this stage of research was to determine an acceptable time
horizon of prediction for given learning period that can be used for prediction
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based on the known ANN neural models of the DAM. system. The analysis was
conducted using data covering the period of operation of PPE S.A. from 2002
to 2019 (the first half of the year). The value of R? was used as a criterion
for evaluating the ability of individual models to predict the volume-weighted
average electricity prices.

Examination of prediction quality for each period of time, taken as the learn-
ing period, proceeded in the following way:

1. Train the ANN network of the Day-Ahead Market system for a given
length of the learning time period, i.e., month, quarter, half-year, ..., 5
years (see Table 4 — “ANN learning period length”).

2. Take the trained ANN network and perform simulation with the values

shifted by “Prediction shift in days” as the data set (see Table 4 and Fig.

6).

Calculate the regression indicator R? and store it.

4. Move the prediction frame by “Prediction shift in days” for a given period
(e.g. for a month shift = shift 42).

5. If the number of cycles' for a given period did not exceed the “Number of
cycles” value (see Table 4) - return to point 2.

6. If the number of cycles for a given period reached the value of “Number
of cycles”, end the procedure.

@

The scheme for the study of the prediction quality for a given period (in
this case, one month) for the ANN model is shown in Fig. 6. As shown, the
prediction based on the trained ANN and starting from the dataset described in
”Prediction shift in days”, after calculating the prediction quality (regression in-
dicator R?), the period is shifted forward by the value specified in the ”Forecast
shift in days” parameter and prediction quality is calculated. The procedure is
repeated 10 times (parameter described in the ”Number of cycles”).

The study of predictive capabilities consisted in estimating the forecast for
a given ANN (see Table 5 — “ANN learning period length”) by increasing the
forecast period by a specified value (see Table 5 — “Prediction shift in days”)

The values of the regression index for the successively increased prognostic
periods for a given research period are provided in Table 5, see “Mean Regression
Value for a given cycle”. The notion of a “cycle” is illustrated in the scheme of
Fig. 6.

Predictive abilities were assessed for the selected neural models of the DAM
system, assuming the following ranges of values as the classification criteria for
the regression index (see Nazarko, 2018):

1. “ideal” forecast: 0.90-1.00,

fthe number of cycles indicates how many times the period is moved forward; in this case
it is 10 times.
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Scheme of examining the impact of the length of the training period on the model's predictive
labilities for the monthly ANN _..mmi:jm period

'The next cycles

The next hours of the day
[ssBs]

[ S N 5 R Sy B R

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

The next days
[Train ANN dataset | |Prediction shift in days

Figure 6. An example of examining the impact of the training period on the predictive abilities of the model for one
month. Source: Own study.
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Table 4. Assumptions adopted for the ANN model quality analysis for individual
data sets. Source: Own study.

ANN learning period length | Prediction shift in days | Number of cycles
Month 2 10
Quarter 7 10
Half-year 12 10
1 year 24 10
2 years 48 10
3 years 72 10
4 years 96 10
5 years 120 10

Table 5. Numerical values of the index R? for the system models for individual
data sets and individual prediction periods. Source: Own study

ANN learning period length
Month [ Quarter | Half-year [ 1 year [2 years [3 years |4 years |5 years
Prediction shift in days
Mean R* [0.6573 ] 0.6508 | 0.6487 [0.6490] 0.6063 [ 0.5736 | 0.5607 | 0.5010
0.6088 | 0.6139 | 0.6170 |0.6335| 0.5931 | 0.5622 | 0.5466 | 0.4992
0.5778 | 0.5959 0.6042 |0.6128| 0.5809 | 0.5295 | 0.5270 | 0.4889
0.5482 | 0.5738 | 0.5881 [0.5993| 0.5555 | 0.5099 | 0.5183 | 0.4750
0.5213 | 0.5516 | 0.5575 |0.5809 | 0.5265 | 0.4968 | 0.5151 | 0.4643
0.4920 | 0.5237 | 0.5445 |0.5651| 0.5180 | 0.4917 | 0.5014 | 0.4477
0.4626 | 0.4919 0.5314 |0.5443| 0.5129 | 0.4885 | 0.4871 | 0.4414
0.4402 | 0.4663 | 0.5123 |0.5188 0.5055 | 0.4869 | 0.4670 | 0.4218
0.4140 | 0.4475 0.4986 |0.4746| 0.4968 | 0.4793 | 0.4529 | 0.3935
0.3929 | 0.4250 | 0.4835 [0.4620 | 0.4646 | 0.4805 | 0.4302 | 0.3914

i.e. Mean R? values for consecutive cycles

2. “optimal” forecast: 0.60-0.89,
3. “acceptable” forecast: 0.50-0.59,
4. “unacceptable” forecast: below 0.50.

In the above context, an additional indicator (WsP) was also proposed in
order to examine the predictive ability of the DAM system model. The assess-
ment of the predictive ability of the tested models (in days) taking into account
this indicator is presented in Table 6.
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The predictive ability of the DAM system model in terms of WsP was evalu-
ated from the point of view of its impact, understood as the length of the period
recorded in Table 6 according to the following relationship:

d
WsP = —— (5)
wm
where:
nd — number of prediction days corresponding to the ranges of the pre-

diction quality classification, provided above (“ideal”, “optimal”, “acceptable”,
“unacceptable”),

wm — the number of days used in creating a given model of the DAM
system, i.e. the length of the learning period (see Table 6 — “ANN learning
period length”).

This indicator was introduced as an auxiliary one to better estimate the
predictive ability of the model. The main point of introducing this indicator is
to determine the predictive ability of the model in relation to the size of the set
on which it was taught.

For example, a 6-day prediction horizon for a monthly learning set is not
comparable to a 6-day horizon for a yearly set, since in the former case WsP
= 6/30 = 0.2, and in the latter case WsP = 6/365 = 0.0164, so it is by an
order of magnitude smaller. This may be so, despite the fact that the regression
index R? itself for the annual set at this horizon might be in the same predictive
range, for example, “optimal”.

The analysis of the results regarding the predictive power of the models
developed, according to the classes of values of the regression index R?, these
results being presented in Table 6, shows that the best WsP coefficients for
the “optimal” forecasts occur in semi-annual periods, for which its value is at
0.2. The annual period, compared to other periods, is also characterized by a
relatively high value of the WsP coefficient of 0.19. The remaining periods are
characterized by worse values of the WSP coefficient for the “optimal” forecast,
while there are no positive results for the “ideal” forecast. For the “acceptable”
forecast, there is a clear relationship between the size of the ANN model, and
the value of the index, which ranges from 0.67 for one month to 0.07 for five
years. The values for half a year, one year and two years are the same, at 0.53.

Taking into account the results for the “optimal” and “acceptable” forecasts,
it can be admitted that the six-month period should be assumed as the basis
for further research on the neural model of the RDN system.
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Table 6. Assessment of the predictive abilities of the neural models of the DAM
system according to the classes of values of R%. Source: Own study.

ANN perfect optimal WsP | Acceptable] WsP | Unacceptable

learning | forecast forecast forecast forecast

period [days] [days] [days] [days]

length

Month 0 4 0.13 | 20 0.67 | over 20 days

Quarter | 0 14 0.16 | 42 0.47 | over 42 days

Half- 0 36 0.2 96 0.53 | over 96 days

year

Year 0 72 0.19 | 192 0.53 | over 192
days

2 years 0 48 0.07 | 384 0.53 | over 384
days

3 years 0 0 0 288 0.27 | over 288
days

Four 0 0 0 576 0.40 | over 576

years days

5 years 0 0 0 120 0.07 | over 120
days

7. Implementation of quantum inspirations to build the
DAM system model based on 12 networks

7.1. Introductory remarks

Quantum calculations and their actual implementation are the subject of many
studies, presenting both general rules (see Adamowski, 2019; Bernhardt, 2020;
Chudy, 2011; Feynman et al., 2014; Heller, 2016; Hirvensalo, 2004; Sawer-
wain and Wisniewska, 2015), as well as specific practical applications, including
those related to building prediction models (see Alaminos et al., 2020; Ge and
Wenping, 2022; Ciechulski and Osowski, 2014; Wright and Jordanov, 2017,
Wigniewska, Sawerwain and Obuchowicz, 2020). This exemplary short list of
publications shows that the quantum inspirations constitute the subject of wide
interest and research. The publications show different approaches to the subject;
however, it is a dynamically developing field of research.

The proposed approach to modeling with the use of quantum inspirations
is based on the fundamental assumptions and achievements of quantum com-
puting. The proposal is based on the assumption that Quantum-Inspired ANN
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can be implemented as a register of a given order of magnitude describing a
mixed quantum state for a given real value. Such a quantum state is created as
a result of converting a numerical value stored in the decimal number system
into a value stored in the binary system, assuming the accuracy of representing
a given decimal number by 12 values in the binary system.

The number so stored is then transformed into a 12-element matrix of quan-
tum mixed states. As a result of this approach, for each value stored in the
decimal number system, representing data for the input to the neural network,
the values of weights and biases and output data are represented by a 12-column
by two rows matrix of quantum mixed states (12x2 ).

The essence of the new approach is to build a Quantum-Inspired ANN for
each qubit of the quantum mixed state, which leads to the necessity of building
12 quasi-parallel ANNs from the youngest cubit to the oldest.

For example, the first ANN consists of the first qubit of the quantum state
matrix representing the input values, the first qubit of the quantum state ma-
trix representing the values of the weighting matrix, the first quantum state
representing the bias values, and the first qubit of the quantum state matrix
representing the output values that are used to train the first ANN.

by ] Y >1 7
b, 1Y >,
- b3 |y >
Zl | =]
, :
Us . 28 1Y >11
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Figure 7. The example of transformation of a real value into quantum mixed
states. Symbols: u, — real value, b,- binary value, |¥>- quantum mixed state.
Source: Own study.

The quantum computations carried out involve the occurrence of redundant
values at various stages of computation, which are transferred to the higher-
order neural network.

After learning the twelve quantum-inspired ANNs built in this way, one ob-
tains a quantum-inspired neural model having as outputs 12 quantum states for
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Figure 8. The example of processing of the mixed quantum states for the hid-
den layer for first qubit into first neuron. Symbols: f(net,)— activation func-
tion, net,- adder value, w,- weight density matrix, |¥>- quantum mixed state.
Source: Own study.

each decimal value. Measurement of quantum mixed states allows for obtaining
of pure states ket 0 or ket 1. Pure states are treated as binary values, which are
then converted to decimals.

The first operation to prepare for the construction of the ANN model based
on mathematical structures used for quantum calculations is the conversion of
numbers in the decimal system to binary values.

7.2. Binary representation

In the first stage, the input values, i.e., the volume of electricity supplied and
sold, and the output values?®, i.e., the volume-weighted average price of electricity
obtained in each hour of the day, were converted into binary values.

As a result of the first stage of data preparation, a binary matrix representing
the decimal values for the input and output data is obtained. In the case of

fConsidering the one-factor model, i.e. based solely on the volume of ee sold in a given
hour of the day (see Section 4 of the paper),
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this particular study, it was a 12-element binary vector representing a given real
value. Each element of a binary vector represents the corresponding order of
magnitude, i.e., the first element represents the largest order of magnitude and
the last one — the smallest.

The next stage of the quantum-inspired ANN design was the conversion of
binary values into quantum mixed states and density matrices in the Hilbert
space. It was assumed that individual binary values represent pure states in
this space.

The conversion consists in adding the products of successive powers of two
and the corresponding digits of a binary number. In this case, real numbers
smaller than zero were subject to conversion. The respective algorithm came
down to the following steps:

1. the value of a given real number r is multiplied by 2,

2. if 2r is greater than 1, then the value of a binary number for this order of
magnitude takes the value 1 and then 1 is subtracted from the value of 2,

3. if 2r is smaller than 1 then the value of a binary number for this order of
magnitude is 0,

4. if the length of the binary representation of the real number is not suffi-
cient, we return to point 1,

5. if the length of the binary representation of the real number is sufficient,
the algorithm terminates.

7.3. Quantum representation

In the quantization process, quantum mixed states were created on the basis
of the values of binary numbers, 0 or 1, and they were treated as pure states
of the quantum value state vector, i.e. ket 0 and ket 1. The idea of creating a
quantum mixed state was based on the use of the property that, as a result of
the measurement, the probability of a quantum bit being in the |1 > state is |a|?
and, analogously, the probability of a bit being in the |1 > | state is |3]?. Thus,
assuming that o = 3, we can write 2|a|?> = 1, from which the positive value
(actual state) leads to the determination of the lower limit of the probability
modulus value for:

a=4 :g ~ 0.71. (6)

Based on the relation (6) it is possible to determine the probability module
for pure states, e.g., for pure state 1, the dominant interval of the probability
module is in the range 0.71 < a < 1, the given value o was drawn from this
range, and the corresponding value § was determined from the principle of
superposition:
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Oé2 +,62 = 1. (7)

The procedure applied for the value of ket 0 was the same.

7.4. Density matrices

When analyzing the construction principle of the quantum ANN model, it can be
seen that the weight matrices are linear operators for the input data, which are
quantum mixed states, representing the volume of energy. Taking this property
into account, the quantum states of the weights were transformed into their
density matrices.

Thus, for example, for the weight w_1,1, which has the value in the decimal
number system of 0.361760584314686:

1. conversion to binary?® is: 0.010111001001,
2. conversion to quantum mixed states¥ (see Table 7),

Table 7. Examples of quantum mixed state values. Source: Own study

Value of the corresponding bit
Binary | Module o | Module 8
0 0.820 0.572
1 0.014 1.000
0 0.900 0.436
1 0.243 0.970
1 0.527 0.850
1 0.704 0.710
0 0.890 0.456
0 0.770 0.638
1 0.510 0.860
0 0.920 0.392
0 0.890 0.456
1 0.475 0.880

3. conversion for the first qubit from Table 7 into the density matrix is done
as follows:

$using the algorithm from the section devoted to binary representation, 7.2.
Yusing the algorithm from the section devoted to quantum representation, 7.3.
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0,820 B 0,8202  0,820-0,572 | _
[ ><yl= [ 0,572 ] [ 0,820 0,572 ] = 0,572-0,820  0,5722 =

0,6724 0,4690 (8)

0,4690 0,3272
The data transformed in this way form the basis for modeling with the Quantum
Inspired Artificial Neural Network.

7.5. Findings

Examples are provided below of the results obtained for normalized real data.
The results obtained from the Perceptron Artificial Neural Network are pre-
sented in Table 8. Then, the sample of results, obtained from the quantum-
inspired Artificial Neural Network is presented in Table 9.

The course of the average values for a given day in the entire period under
consideration, i.e., 181 days, is shown in Fig. 9.

Table 8. Sample data for three days (01-03.01.2019) obtained from Perceptron
ANN. Source: Own study

Hours of the day T 5 3 Da}II{(r;;lglberl ) 3

of the

day
1 0.432 | 0.327 | 0.408 | 13 0.442 | 0.310 | 0.484
2 0.397 | 0.305 | 0.384 | 14 0.433 | 0.312 | 0.487
3 0.391 | 0.285 | 0.367 | 15 0.457 | 0.344 | 0.508
4 0.401 | 0.291 | 0.373 | 16 0.463 | 0.361 | 0.513
5 0.423 | 0.316 | 0.396 | 17 0.424 | 0.371 | 0.531
6 0.443 | 0.311 | 0.444 | 18 0.418 | 0.364 | 0.535
7 0.446 | 0.324 | 0.490 | 19 0.418 | 0.386 | 0.540
8 0.470 | 0.382 | 0.504 | 20 0.439 | 0.409 | 0.536
9 0.478 | 0.339 | 0.484 | 21 0.475 | 0.408 | 0.526
10 0.488 | 0.328 | 0.476 | 22 0.493 | 0.478 | 0.520
11 0.470 | 0.332 | 0.477 | 23 0.442 | 0.429 | 0.534
12 0.450 | 0.320 | 0.477 | 24 0.478 | 0.447 | 0.524

When analyzing the obtained results, we can conclude that it is possible
to implement a quantum-inspired Artificial Neuron Network to obtain a model
of the Day-Ahead Market System on the Polish Power Exchange. Regarding
these results, it can be seen that QIANN shows a greater tendency to average



579

Neural modeling of prices inspired by quantum computing

JUOWUOIIAUD YV TLVIN U3 Ul UOIJRIOqR[d
umo 9ommog “mndino NNV poiidsur wnjuenb — poar ‘ndino NNV UoIydeoiod — MO[[PA ‘sonfeA 9o11d PozeULIOU [edl
—on[g ootid Jo on[eA pozI[RULIOU dFeIoAr - ([BSI oY) PUR S[EPOW oY} woIj senjes ndino o)) sixe-A ‘(sdep QT
osed sIy ul) porrad PauTIeXd 1) JO SABD 9ATINDSSTOD - (Ioquunu sAe(]) SIXe-X :S[OqUAG ‘[ppour pardsur-umyuenb
oY) pue [opowl NNV U013dooIod oY} [ilm 9SInod 90L1d oYj JO sonfea POZI[eULIOU [BNIOR 9} JO UosLredwo)) "¢ 9INSIg

sAep Jo Jaquinu
00¢ 08T 09T ovT 0ct 00T 08 09 (017 0¢ 0

T T T T T T T T T NO
- €0
- | 70
A Y U
| | [ | | =
L ] P INAIAM 8 \ Z/\/, § 502
L WA | 5
L AN TRYAY , 190 ¢
| } V1 / o)
NNV uoiidadlad wolj sanjea / %]
L | wnmuenb NNV wodj sanjea indino 470
(lreob) sanjen |eal
1 1 1 1 1 1 wo

1 1 1
sanfeA auljeseq NNV pue NNV paJidsul wniuenb pue fenjoe jo uosiredwo)



580 D. RUCINSKI

Table 9. Results obtained from the Quantum Inspired Artificial Neural Network
for three days (01-03.01.2019). Source: Own study

Hours of the day T 5 3 Da%;lzrri}berl 5 3

of the

day
1 0.542 | 0.898 | 0.724 | 13 0.913 | 0.048 | 0.788
2 0.348 | 0.045 | 0.176 | 14 0.006 | 0.036 | 0.159
3 0.060 | 0.142 | 0.713 | 15 0.220 | 0.114 | 0.254
4 0.466 | 0.488 | 0.137 | 16 0.147 | 0.179 | 0.061
5 0.450 | 0.134 | 0.389 | 17 0.556 | 0.614 | 0.246
6 0.676 | 0.673 | 0.384 | 18 0.060 | 0.841 | 0.281
7 0.302 | 0.927 | 0.427 | 19 0.254 | 0.523 | 0.299
8 0.432 | 0.404 | 0.638 | 20 0.806 | 0.461 | 0.314
9 0.588 | 0.317 | 0.003 | 21 0.647 | 0.266 | 0.127
10 0.113 | 0.634 | 0.635 | 22 0.194 | 0.942 | 0.171
11 0.107 | 0.608 | 0.576 | 23 0.334 | 0.528 | 0.535
12 0.103 | 0.348 | 0.689 | 24 0.421 | 0.868 | 0.402

the output, i.e., it is more resistant to interference. Notwithstanding this, the
average value of the MSE error is definitely higher for it than for the Perceptron
Artificial Neural Network. For QiANN it was 0.09, and for Perceptron ANN it
was 0.03.

8. Conclusions and directions for further research.

The proposal to improve the quality of ANN-based models through the proper
selection of both the type of network and the factors for its construction turned
out to be sensible both technically and substantively. The proposed new ap-
proach to ANN with the implemented quantum learning model for the Day-
Ahead Market of the Polish Power Exchange showed also that building a quan-
tum-inspired model is feasible.

The results for the ”classic” Perceptron ANN model compared to the quan-
tum-inspired model indicate the need for further research work on the quantum-
inspired model in order to improve it.
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