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A b s t r a c t :  Probabilistic optimization algorithms that mimic the 
process of biological evolution arc usually subsumed under the term 
'evolutionary algorithms.' This work extends the convergence the-
ory of evolutionary algorithms by presenting a sufficient convergence 
condition for those evolutionary algorithms that do not necessarily 
generate a sequence of feasible points such that the associated objec-
tive function values decrease monotonically to the global minimum. 
Moreover, it is investigated how fast the sequence of objective func-
tion values generated by an evolutionary algorithm approaches the 
minimum of strongly convex functions in a probabilistic sense. The 
theoretical analysis presented here distinguishes from related studies 
in three points: First, it does not require advanced calculus. Sec-
ond, only the first partial derivatives of the objective function are 
assumed to exist. Third, one obtains sharp bounds on the conver-
gence rates for a class of functions being a superset of the class of 
quadratic functions with positive definite Hessian matrix. 

Keywords :  evolutionary algorithms, stochastic convergence, con-
vergence rate, convex functions, asymptotical distributions, order 
statistics 

1. Introduction
Evolutionary algorithms (EAs) belong to the class of probabilistic optimiza-
tion algorithms whose design is inspired by principles of biological evolution. 
A population of individuals-each of them representing a feasible solution of 
an optimization problem-repeatedly undergoes a cycle of random variation 
and selection which leads in many cases to practically acceptable solutions and 
sometimes even to globally optimal solutions. 

The typical field of application of EAs are difficult optimization problems 
for which specialized methods are not available or traditional methods fail for 
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reasons whichever. Here, it is analyzed how fast a specific subclass of EAs ap-
proaches the minimum of a convex function. Although convex objective func-
tions arc not an appropriate domain for EAs (such problems can be solved by 
deterministic optimization methods more efficiently) it is not useless to consider 
them, since an optimization method that is intended to tackle just the most dif-
ficult problems also ought to be "sufficiently efficient" for simple problems. 

Investigations in this direction have a long list of predecessors. Early pub-
lications of Rastrigin (1963), Schumer and Steiglitz (1968), Rechenberg (1973) 
considered algorithms, later classified as (1 + 1)-EA, that may be interpreted
as the simplest form of an evolutionary process: A single individual is ran-
domly mutated and the worse of the original and the new point is selected to 
"die." The objective function under consideration was the sum of squares of 
n real-valued variables. A considerable extension of these results is presented 
in Rappl (1989) who investigated the performance of the same algorithm for a 
class of objective functions that is essentially identical to the class considered 
here. Another avenue of extension was entered in Schwcfel (1977), pp. 150-157: 
The objective function was again the sum of squares but a single individual now 
generates ,\   2 offspring by random mutations and the best of the offspring 
and the parent becomes the parent of the next generation. Alternatively, the 
new parent is chosen solely among the ,\ offspring. Although this latter petty 
modification might seem to be negligible it has the theoretically significant effect 
that the new parent may be worse than the old one. This algorithm, known as 
(1, >-)-EA, was investigated in case of quadratic objective functions (interpreted 
as second order Taylor expansion of the original objecyve function) in Rechcn-
berg (1994), pp. 51-60, by exploiting the principal axis theorem, and in Beyer 
(1994), pp. 64-67, via Ricmannian differential geometry. Compared to these 
investigations the approach taken here has three advantages: First, the analysis 
does not require advanced calculus. Second, only the first partial derivatives of 
the objective function are assumed to exist. Third, one obtains sharp bounds 
on the convergence rates for a class of functions being a superset of the class 
of quadratic functions with positive definite Hessian matrix. This is shown in 
Section 3. 

But prior to these calculations it is useful to clarify the underlying meaning 
of stochastic convergence. Moreover, it is not obvious whether a (1, >-)-EA will 
converge (in sense whatever) to the optimum or not. Those questions are ad-
dressed in Section 2. The main result is actually an extremely simplified version 
of the supermartingalc approach presented in Rudolph (1994). An alternative 
route is proposed in Yin, Rudolph and Schwcfel (1996) via the tools developed 
for the analysis of stochastic approximation methods in continuous time. The 
work presented here, however, will concentrate on evolutionary algorithms with 
discrete time. 

The bounds on the convergence rates developed in Section 3 are involved 
with a constant that depends in a nonlinear manner on the problem dimension 
n and the number of offspring A. In principle, this constant can be determined 
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for any specific pair (n, .\) but the effort required-especially for large n and 
, \ - i s  too great for the utility of knowing the exact values. Therefore Section 
4 is devoted to the development of asymptotical expressions. Finally, some 
conclusions arc drawn in Section 5. 

2. A sufficient convergence condition
Since the state transitions of an evolutionary algorithm are of stochastic nature 
the deterministic concept of the "convergence to the optimum" is not appropri-
ate. In order to clarify the exact semantics of a phrase like "the EA converges to 
the global optimum" one has at first to distinguish between the various modes 
of stochastic convergence. 

DEFINITION 2 .1 Let Z, Z0, Z1, . . .  be random variables de.fined on a probability 
space (D, A, P). The seqv,ence (Zk : k 2". 0) is said to converge with probability
1 ( w. p .1) or almost surely ( a. s.) to random variable Z if P { limk--, 00 I Z k - Z I = 
0 }  = 1, to converge in probability to Z if P{ I Zk - Z I > E} = o(l) as k - ,  oo 
for any E > 0, and to converge in mean to Z if  E[ I Zk - Z I ] =  o(l) a s k - ,  oo. 

■ 
Both convergence with probability 1 and convergence in mean implies conver-
gence in probability whereas the converse is wrong in general (Lukacs, 1975, pp. 
33-36). With the definitions above one can assign a rigorous meaning to the
notion of the convergence of an evolutionary algorithm.

DEFINITION 2.2 Let (Xk : k 2". 0) be the seq1tence of popv,lations generated by 
some evolutionary algorithm and let F t  = min{ f (Xk ,l ) , . . .  , f ( Xk ,µ)} denote 
the best objective fv,nction value of the population of size µ < oo at generation 
k 2". 0. An evolv.tionary algorithm is said to converge in mean (in probability, 
with probability 1) to the global minimv.m f* = min{f(x) : x E nin } of objective 
function f : Ill" '  

- t  Ill if the nonnegative random seqv.ence (Zk : k 2". 0) with 
Zk = F t  - f* converges in mean (in probability, with probability 1) to zero. ■ 
The convergence theory of probabilistic optimization methods resembling a (1 + 
1)-EA was established in Devroye (1976), Oppel and Hohcnbichler (1978), Born 
(1978), Solis and Wets (1981), Pinter (1984), and others. The proofs in each 
of these publications exploited the algorithms' property that the parent of the 
next generation cannot be worse than the current one, i.e., it is guaranteed by 
the construction of the algorithms that the stochastic sequence (Zk : k 2". 0) is
monotonically decreasing. The result presented below only requires the weaker 
precondition that the sequence (Zk : k 2". 0) decreases monotonically on average. 
As a consequence, the objective function value of the best parent may be worse 
than that of the best parent of the previous generation-as it may happen for 
the sequence (Zk : k 2". 0) generated by a (1, .\)-EA.
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THEOREM 2.1 Let ( Xk : k ;:::: 0) be the sequence of populations generated by 
some evolv,tionary algorithm and let Ff;, = min{f  (Xk,1), . . .  , f ( Xk ,µ)} denote the 
best objective fv,nction value of the popv,lation at generation k ;:::: 0. I f  E[ Zk ] < oo 
and 

a.s. (1) 

where Zk = Ff;, - f* and Ck E [ 0, 1) for all k ;:::: 0 sv,ch that the infinite product 
of the c k converges to zero, then the evolutionary algorithm converges in mean 
and with probability 1 to the global minimv,m of the objective fv,nction f( ·) .  

Proof: 
Taking expectations on both sides of inequality (1) yields 

for all k ;:::: 0. This implies 

k-l 

E[ zk] '.S E[ Zo] II Ci -----+ 0
i = O  

as k -+ oo since the infinite product of the Ci converges to zero and E[ Z0 ] < oo 
by the preconditions of the theorem. Thus, the sequence (Zk : k ;:::: 0) converges 
in mean to zero. 

As for convergence with probability 1, notice that inequality (1) implies that 
the nonnegative sequence (Zk : k ;:::: 0) is a nonnegativc supermartingale that 
converges w.p.1 to a random variable Z < oo (Neveu, 1975, p. 26). This ensures 
that (Zk : k ;:::: 0) converges in probability to Z. But since (Zk : k ;:::: 0) also 
converges in probability to zero by the first part of the proof, and since the limits 
arc unique (Lukacs, 1975, p. 39), one may conclude that Z = 0. Consequently, 
the random sequence (Zk : k;:::: 0) converges w.p.l to zero. ■ 

3. Convergence rates for strongly convex functions
The notion of the 'convergence rate' of an iterative optimization method is well 
established is the field of deterministic optimization. It serves as a measure 
of how fast the deterministic sequence of objective function values approaches 
the global optimum. For example, let (xk : k ;:::: 0) be the sequence of points 
generated by some deterministic minimization method and Ek = f ( x k) - f*. 
The method is said to converge geometrically fast if there exists an index k0 , a 
constant A > 0 and a constant c E [ 0, 1) such that Ek '.S A c k for all k ;:::: k0 . Here
c is termed the convergence rate. Following this definition a related concept for 
stochastic sequences is given below. 

DEFINITION 3.1 Let (Zk : k ;:::: 0) be a nonnegative random seq11,ence defined by 
Zk = Ff;, - f *  where Ff;, is the best objective function valv,e of a population of 
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some evolutionary algorithm at generation k   0. The evolutionary algorithm is 
said to converge geometrically fast in mean {in probability, w.p.1) to the global 
minimum if there exists a constant q > l such that the sequence ( qk Z k : k   0) 
converges in mean {in probability, w.p.1) to zero. Let q* > l be the supremum of 
all constants q > l such that geometrically fast convergence is still guaranteed. 
Then c = l/q* is called the convergence rate. ■ 
Let zk = qk z k with q > l and assume that E[ zk+l I x k ]   Ck zk for all k   0 
in the sense of Theorem 2.1. Since 

- k+l k+l -
E[ zk+l I X t  l = q E[ z k+l I x k ]   q Ck z k = q Ck zk a.s.

for all k   0, it suffices to find a constant c E (0, 1) with ck   c to ensure 
geometrically fast convergence to the optimum with probability 1 and in mean. 
For example, one may set q = 2/(c+ 1) > 1 to guarantee that cq E (0, 1). Thus,
we have proven: 

THEOREM 3.1 Let ( Xk : k   0) be the sequence of populations generated by 
some evolutionary algorithm and let Fk = min{f(Xk,1), . . .  , f ( Xk,µ)} denote the 
best objective function value of the population at generation k   0. I f  E[ Z k ] < o o  
and 

E[Zk+1IX k , X k- l , · · •, X o]  c Z k a.s. 

where Zk = Fj; - f *  and c E (0, 1) for all k   0 then the evolutionary algorithm 
converges with probability l and in mean geometrically fast to the optimum of 
the objective function f(-). ■ 
Evidently, it cannot be expected that an evolutionary algorithm converges ge-
ometrically fast to the optimum for arbitrary objective functions. Rather, this 
property is likely to be restricted to a tiny subset of the set of all possible ob-
jective functions. As will be shown in the sequel, objective functions of the type 
introduced below are included in this subset. 

DEFINITION 3.2 Let f :  S  ]R n JR. Then f is called (K, Q)-strongly convex 
if for all x, y E S and for each 0 E [ 0, l] the inequalities 

K 
2 0 (l - 0) II x - y 112 

  0 · f(x) + ( 1 - 0) · f(y) - f(0 x + (l - 0) y) 
L 
2 0 (l - 0) II X - y 112 

with O < K   L := K · Q < o o  are valid. ■ 
For example, every quadratic function f ( x) = x' A x  + b' x + c is ( K ,  Q )-strongly 
convex if the Hessian matri..x V2 f ( x) = 2 A is positive definite. Another example
is the function 
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In case of twice differentiable functions, Nemirovsky and Yudin (1983), p. 255, 
have offered a simple condition to verify the (K, Q)-strong convexity of some 
function f(·). Let v1 be the smallest and v2 be the largest eigenvalue of the 
Hessian matrix. If there exist positive constants K and L such that O < K :=:; 
v1 :S v2 : S L <  oo for all x E S  then the function f(x) is (K, Q)-strongly convex 
with Q = L /  K .  Owing to this condition one easily finds K = 4 and L = 12 
for the function given in equation (2). Alternatively, the same result can be 
obtained from the result below which presupposes only the availability of the 
gradient V f (x) of the function under consideration. 

THEOREM 3.2 (GOPFERT (1973), pp. 170-173) Let f: S  ]R n - -+ ]R be con-
tinuo11,sly differentiable and S an open convex set. Then the following statements 
are equivalent: 

(a) f is (K, Q)-strongly convex. 
{b) K JI x - y 112 /2 :S f(x) - f(y) - V f(y)' (x - y) :S L II x - y 112 /2 for all 

x ,y  E S .  
(c) K l l x - y J l 2 :S (Vf(x)-Vf(y)) '(x-y)  :S Lll .1:-vll 2 foral lx ,yES .■

These characterizations lead to a result that will be useful later on. 

LEMMA 3.1 If f : S   ]RR. --+ lR is d(fie'tentiable and (K, Q)-strongly convex 
then for all x E S 

II Vf(x) 112 f(x) - f(x*) 
2 £ 2: Q2 (3) 

where x* E S  denotes the global minim11,m point off(·). 

Proof: 
Since Vf(x*) = 0 for the optimum, the setting y = .T* in Theorem 3.2(c) leads
to the inequality K II x - x* II 2 :S V f ( x )' ( x - x*) that can be further bounded
by the Cauchy-Schwarz inequality yielding K II x - x* 112 :S V f(x)' (x - x*) :::; 
II V f ( x) II · II x - x* II . If II x - x* JI > 0, which may be presupposed, one obtains 

II Vf(x) 112 2: K 2 II x - x*l1 2 
• (4) 

Insertion of y = .T* in Theorem 3.2(b) delivers II x - x*l1 2 2: 2 [f(x) - f(x*) ]/L 
and together with inequality ( 4) one finally obtains the desired result. ■ 

Consider a (1, >.)-EA and let the objective function f : ]Rn --+ 1R be (K, Q)-
strongly convex. The current parent X k is mutated via X k + rk Uk where rk > 0 
and Uk is a random vector uniformly distributed on the boundary of the unit 
hyper ball of dimension n 2: 2. Owing to Theorem 3.2(b) the random objective
function value f (Xk + Tk U) can be bounded by

f (Xk + rk U) :S f (Xk ) + rk V f (Xk )'U + rk U'U · L / 2 . (5) 

Notice that the Euclidean length of vector U is IIUII = 1 with probability 1. It 
follows that U'U = IIUJJ 2 = 1 and inequality (5) reduces to 

f ( Xk + rk U) :S f ( Xk ) + rk V f ( Xk )'U + r l L / 2 . (6) 
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For further simplifications we need the following result. 

LEMMA 3.2 YIN, RUDOLPH AND SCHWEFEL (1996), p. 479 I f U  is a random 
vector 11,niformly distribv,ted on the bo11,ndary of the 11,nit hyperball of dimension 
n ;=:,: 2 and x E ] in with llxll = 1, then the random scalar prod11,ct B = - x ' U  
possesses a Beta distrib11,tion with probability density f11,nction 

2 2 - n  (1 _ x2)(n-3)/2
p(x) = 

B(n- l  n-1) . lc-1,1)(x) 
2 ' 2 

where B(-, •) denotes the complete Beta fv,nction and lA(x) is the indicator 
f11,nction of some set A. The mean, mode, and median of B is zero while the 
variance is l/n. ■ 
Thus, inequality (6) is equivalent to 

(7) 
where B is a Beta random variable as specified in Lemma 3.2. Since the (1, >-)-
EA generates ,\ offspring and chooses the best among them to serve as the new 
parent, the random objective function value of the new parent is equivalent to 
the value of the best offspring and it can be bounded via 

f(Xk+i) = min{f(Xk + rk Ui) : i = 1, . . .  , >-} S
f (Xk ) - rk IIV f (Xk ) II B>.,>. + ri L/2

(8) 

by taking into account inequality (7) and where B>.,>. denotes the maximum 
of ,\ independent and identically distributed Beta random variables. Taking 
conditional expectations on both sides of (8) yields 

(9) 
Differentiation of (9) with respect to rk leads to the optimal choice 

(10) 

where M>. = E[B>.,>.], After insertion of r'J:, into inequality (9) and subtraction
o f f *  on both sides, inequality (9) becomes 

< f(Xk) _ j* _ 11Vf(Xk)ll 2 Mi 
2 L  

< f (Xk ) - f* - ( f  (Xk )
; / * )

Mi 

( 1 - ;t) · (f(Xk) - J*)

(11) 

(12) 

by inserting inequality (3) given in Lemma 3.1 into to the r.h.s. of inequality 
(11). Owing to Theorem 2.1 and inequality (12) it is guaranteed that the (1, >-)-
EA will converge with probability 1 and in mean to the optimum, provided that 
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M>. > 0. Moreover, since c = 1 - M1/Q2 E (0, 1) for M>. > 0 it is guaranteed 
by Theorem 3.1 that the rate of approach to the optimum is geometric in mean 
and with probability l .  To show that M>. > 0 for >. 2".: 2 the result shown next 
is useful. 

LEMMA 3.3 (DAVID (1970), P. 8) Let Y1, . . .  , Y>. be independent and identi-
cally distributed continuous random variables with probability density function 
p(·) and distribution function P(-). If these random variables are ordered so 
that Yi:>. ::::; Y2: >. ::::; . . .  ::::; Y>. :>. then the probability density function of Y;:>. is 

. ( ) _ p ( x ) P
i- l (x) [l - P (x)]>.- i

Pi:>. x - B ( i , > . - i + l )  

where B(·, ·) denotes the complete Beta function. ■ 
Since the probability density function of random variable B is symmetrical with 
respect to zero the identities p(-x) = p(x) and P(-x) = 1 - P(x) are valid. It 
follows that P(x) > 1/2 for x > 0 and hence 

00 1 

M2 E[B2:2]= j xp2:2(x)dx=2fxp(x)P(x)dx= 

1 

- o o  - 1

2 / xp(x) [2P(x) - 1 ]  dx > 0 
0 

(because of the positivity of the integrand for x > 0) and finally M>. 2".: A-12 > 0 
for >. 2".: 2. Notice that the actual values of M>. also nonlinearly depend on the 
dimension n. Despite this fact there is - in principle - no problem to calculate 
M>. for each n 2".: 2. For example, 

{ 
L 

J (2i ! 
(>..) ( - l ) i + l + ( l - > . m o d 2 ) ( - l )>./2+1   

M - L..,, 1r 2 • 2 i  7r>. 
>. - i=l 

> . - 1
>. + 1

if n = 2, 

if n = 3 

with >. E JN. Apart from few exceptional cases, however, the resulting expres-
sions become more and more complicated the larger following the value of n. 
Therefore, the next section is devoted to the investigation of the asymptotics of 
constant M>. ,n• 

4. Asymptotics
Since M>. ,n depends on two parameters one has to investigate two subcases: 
First, the asymptotics of M>. ,n for fixed .X and n   oo. Second, the asymptotics 
for fixed n and >.   oo. The basic technique rests on the idea to approximate 
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the distributions of the random variables by appropriate limit distributions. 
For this purpose one needs the notion of the weak convergence of probability 
measures. 

DEFINITION 4.1 Let {P(x),Pi(x): i E JN} be a collection of distribntion f11,nc-
tions of the random variables {Y, Y; : i E JN} on some probability space. I f
P i (x ) --+ P(x) as i--+ oo for every continnity point x of P(·), then the seqv.ence 
Pi(·) of distribntion fnnctfons is said to converge weakly to P(·), which is de-
noted as Pi.:!!, P .  In s11,ch an event, the seqnence of random variables Y; is said

to converge in distribution to Y ,  which is denoted as Y;   Y .  ■ 
Convergence in distribution is implied by convergence in probability whereas 
the converse is wrong in general (Lukacs, 1975, p. 33). If the random variables 
are continuous and the sequence of probability density functions converge to the 
limit variable's p.d.f. for each of its continuity points then a theorem in Scheffe 
(194 7) ensures weak convergence of the associated distributions functions. This 
result may be used for the case with fixed ).. E JN and n --+ oo. 

LEMMA 4.1 Let B n be a Beta random variable parametrized by n 2: 2 as spec-

ified in Lemma 8.2. I f  Yn = f o B n then Yn � Y ~ N(O, 1) as n--+ oo, where 
N(O, 1) denotes the standard normal distribv.tion with zero mean and v.nit vari-
ance. ■ 
Proof: 
As mentioned previously it suffices to show that the probability density functions 
qn ( ·) of the random variables Yn converge to the probability density function 
q(·) of the standard normal random variable Y for every continuity point of q(·) 
as n--+ oo. Lot Pn (·) denote the p.d.f. of random variable B n , Since Yn = f o B n

the probability density transformation rule leads to the p.d.f. 

qn (x) 
1 

( 
X ) 

f o P
n 

f o
= 

1 22-n 
( 

2 )  (n-3)/2 

f o  B((n - 1)/2, (n - 1)/2) l - : . 1(-y"n,✓ri)(x). 

Note that 

1 22-n 
f o  B((n - 1)/2, (n - 1)/2) 

( 
x 2 )  (n-3)/2

l - -
n 

--+ 

--+ 

--+ 

1 
v'27r 

1(-oo,oo)(x) 
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as n -+ oo for every fixed x E JR. Thus, one obtains 

1 ( x2

) lim (Jn ( X) =  exp _ :._ lc-oo 0 0  )(.r,) 
n---+oo y271" 2 ' 

G.RUDOLPH 

(13) 

for every continuity point x E 1R of q(·). Since the r.h.s. of equation (13) is the 
p.d.f. of a standard normal random variable it has been shown that f o ,  Bn ..:!:+ 
Y ~ N(0, 1) as n - +  oo. ■ 

An immediate consequence of this lemma is the result below: 

THEOREM 4.1 Let B;,.., :,.. (n) be the maximV,m of,\ independent and identically 
distribv.ted (i. i. d.) Beta random variables as in Lemma 4- 1 (parametrized by 
n   2). If  Y:,.. ,:,.. denotes the maximv.m of,\ i.i.d. standard normal random 
variables, then f o , B:,.. ,:,.. (n) _<!:, Y:,.. ,:,.. as n - +  oo. 

Proof: 
Let (Jn (-) and Qn (-) be the probability density function and the distribution 
function of random variable fo,B(n), respectively. Recall from Lemma 4.1 
that (Jn   q as well as Qn   Q as n - +  oo, where q(·) and Q(·) denote the p.d.f. 
respective distribution function of a standard normal random variable. Owing 
to this fact and Lemma 3.3 one obtains for .fixed A E 1N 

(J>-. :>-.;n (x) = A(Jn (x) Q - 1 (x) - ,  >.q(.r) Q>-. - 1 (x) = q:,.. ,:,.. (x)

for every continuity point of q:,.. ,;,.. (x) as n - +  oo. This ensures that the distribu-
tion functions associated with random variables f o , B:,.. ,:,.. (n) converge weakly to 
the distribution function of the maximum of ,\ i.i.d. standard normal random 
variables as n - +  oo. ■ 

This result reveals that the distribution of random variable B :,.. ,:,.. (n) is ap-
proximately equal to the distribution of n - 1 / 2 Y;,.. ,;,.. for large n and hence 

M :,.. ,n = E[B;,..,;,..(n)] ::::; n - 1! 2 E[Y;,..,;,..] = n - 1/ 2 C ;,.. 

where C;,.. = E[Y;,..,;,..] denotes the mean of the maximum of , \  standard normal 
random variables. The actual values of C;,.. can be analytically determined and 
expressed in terms of elementary functions up to ,\ = 5 (sec David, 1970, pp. 
30-34). In general, the bounds

cp-1 (1-  ) ::; C;,..::; cp-1 (1- 2\) (14) 

arc valid (David, 1970, p. 64), where cp-1(-) denotes the inverse of the standard 
normal distribution function. Since C2 = n - 1 / 2 ::::; 0.5642, 0 1 000 < 3.2415, and
C;,.. must increase monotonically, it is obvious that the rate of increase must 
decline considerably for increasing A. In fact, taking into account that the value 
of C;,.. can be bracketed as noted in (14) it can be shown (David, 1970, p. 209) 
that roughly C;,.. ::::; (2 log >.) 1 12 for sufficiently large>.. Accurate approximations 
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Figure 1. Ratio between the approximation n - 1/ 2 C>, and the exact values of 
M>. ,n• 

that roughly C>,   (2 log ,,\) 112 for sufficiently large,,\, Accurate approximations 
of C>, can be easily obtained by numerical integration. They are tabulated, for 
example, in Rechenberg (1994), pp. 236-240, up to ,,\ = 1000. Figure 1 reveals 
that the approximation M>. ,n   n - 1! 2 C>, becomes more accurate as the value 
of n 2: 2 becomes larger. For example, even for the relatively low dimension 
n = 31 the relative error is less than 3 % for ,,\ :S 80. 

As for the second subcase with fixed n 2: 2 and ,,\ - ,  oo, some results from 
the asymptotical theory of extreme order statistics are needed. 

THEOREM 4.2 ( LEADBETTER, LINDGREN AND ROOTZEN (1983), Ch. 1) Let 
x = sup{.T E 1R: P(x) < 1} < oo, a . >  0, and Y>. ,>. be the maximum of,,\ inde-
pendent and identically distributed contirmous random variables which possess 
distribution function P(-). The following statements are equivalent: 

(a) 1. 
l - P ( x - x h )

1m , = x °" 

1i-,o+ 1 - P ( x  - h) 
for all x > 0. 
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(b} 
, X < Q
, X Q 

where a.>.,= (x - 1'.>..)- 1 , b.>.. = x, and 'Y.>.. = inf{x E 1R: P(x)   1 - 1 / > . } . ■ 
Let W be the random variable with distribution function Ga (·) as given above 
and suppose that part (a) of Theorem 4.2 holds true for Beta random variables 
with a distribution function as specified in Lemma 3.2. Then part (b) of the 
theorem reveals that B .>..,.>.. has approximately the same distribution as a:;: 1 W +b .>.. 

for large>. and one may approximate the mean via E[B.>..,.>..]   a:;: 1 E[W] + b.>., . 
Since x = l and - W  is Weibull distributed with E[ - W ]  = r ( l  + 1/a.) one
obtains 

E[B.>..,.>..]   1 - ( 1 - 1'.>..) · I ' ( l  + a.- 1 ) . 

Notice that part (a) of Theorem 4.2 indeed holds true since 

1. 
1 - Pn(l - X h) 

1m 
h-+O+ l - Pn(l - h) 

1. 
Xpn (l - :r;h)I m - - - ' - - - - ' - =

h-+O+ Pn (l - h) 
n - 3 

1. ( 2 x  - x 2 h ) - 2 
Im X

h-+O+ 2 - h 
x(n - 1)/ 2 

where P n (·) and Pn (·) arc the distribution respective probability density func-
tions of the Beta random variable parametrized by n   2. Thus, a . =  ( n - 1 ) / 2 .  
It remains to find an expression for 1'.>... For this purpose one has to find at least 
an asymptotical solution of the equation Pn ('Y.>..) = 1 - >. - l  for >. -----t oo. Since 
the p.d.f. is symmetrical with respect to zero an equivalent condition is 

P n (- 'Y.>..) = l/>.. (15) 

It is clear that necessarily 1'.>.. -----t 1 as >. -----t oo. Notice that - { - X + l} - (X + 1) Pn (x ) = P{ B < x } = P{ 2 B - l < x } = P B < - ·  - 2 - = P n  -· - 2 -

where B is a Beta random variable with probability density function 

_ x Cn - 3)/ 2 (1 _ X) (n - 3)/ 2 
Pn (x ) = 

B ( n - l n - l ) 
. lco,1)(x) ·

2 ' 2 

Using the relationships above, condition (15) changes to 

Pn(-'Y.>..) = F'n (1'.>..) = lj>. (16) 

where ')'.>.. = 1 - 21'>-· Entry 26.5.23 in Abramowitz and Stegun (1965) reveals 
that the distribution function of B n can be expressed by the Gauss hypcrgeo-
metric series 

F'(x) _ 2 x Cn - l )/ 2 
F ( n  - 1 n - 3. n + l .  ) . - ( n - l ) B ( n ;-1, n 2 1) 2 1 - 2 - ,  - - 2 - ,  - 2 - ,  X , 
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where 2F i (·) stands for the Gauss series as defined in entry 15.1.1 in Abramowitz 
and Stegun (1965), which reduces to a polynomial in x for odd n :::=: 3. It suffices 
to consider this special case. As a result, the condition (16) becomes 

(17) 

Notice that necessarily 1'>- --+ 0 since 'Y>- --+ 1 as ,\ --+ oo. In this case the term 
in the brackets of equation (17) converges to 1 because each term in the sum 
converges to zero for i '  --+ 0. The term to the left of the term in the brackets 
describes the asymptotics of the entire expression since it contains the least 
power of 1'>-, namely of order (n - 1)/2, whereas all other terms are of higher 
order converging faster to zero than i'}n-l)/2

. Therefore one may approximate 
condition (17) by the asymptotical condition 

2 >. - ( n - 1 ) / 2
"/;. - 1 

(n - 1) B(n;-1, n2l) -

The solution of this equation is 

which leads-after several resubstitutions-to the final asymptotical expression 

[ n - 1  ( n - 1  n-l)]n l ( 2 )1 - 2  - - B - - - - -r 1 + - -
2 2 ' 2 n - 1  

. A - 2 / ( n - l )

for large ,\ and fixed n :::=: 2. The quality of the approximation may be expressed 
by the ratio M ; . ,n/M >.,n• To avoid waste of computing time only few ratios have 
been calculated 1. They are summarized in Table 1. 

Two observations can be made. First, the ratio approaches 1 for increasing 
>.. Second, the asymptotical expression M;.,n is closer to the true value M ; . ,n 
the smaller is the value of n. The latter observation is not surprising because 
the neglected finite sum in the brackets of condition (17) contains products 
in which n appears in the form of binomial coefficients. As a consequence, the 
larger is the value of n the larger must be the value of,\ so that the sum becomes 
sufficiently small. 

1 Note that M>. ,n is a rational number for odd n 2'. 3. It can be exactly calculated but 
the costs of doing this are not negligible. For example, both the numerator and denominator 
of M100,35 are integers with 1367 digits each and it took more than 30 hours CPU time to 
obtain them. 
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n \ ,\ 5 11 31 50 100 
5 1.040 1.019 1.007 1.004 1.002 
9 1.289 1.140 1.064 1.046 1.029 

15 1.617 1.337 1.181 1.141 1.101 
21 1.902 1.522 1.302 1.244 1.184 
35 2.456 1.899 1.565 1.473 1.376 

Table l .  Ratios M;_,n/M>-,n 

5. Conclusions
In the course of Section 3 it was tacitly presupposed that the evolutionary al-
gorithm has access to a subroutine that returns the Euclidean length of the 
gradient-an assumption that is usually not justified in practice. But it can 
be shown (Rudolph, 1997, pp. 191-192) that it is sufficient to estimate the 
gradients' length up to a relative error of 99.9 % to ensure geometrical con-
vergence rates in case of (K, Q)-strongly convex functions. In the real world of 
evolutionary algorithms this task is accomplished by a mechanism termed 'auto-
adaptation' ( see e.g. Back and Schwefel, 1993), but a mathematically rigorous 
proof of this property is still pending. 

Several results presented here can be sharpened. Theorem 3.1 remains valid 
if 'convergence with probability l '  is replaced by the stronger property of 'com-
plete convergence' (this concept was introduced in Hsu and Robbins, 1947). The 
proofs of Lemma 4.1 and Theorem 4.1 show the convergence of the probability 
density functions for each continuity point of the limit random variable's prob-
ability density function. This is actually stronger than the weak convergence 
of the distribution functions. But the demonstration of these subtle differences 
was omitted in favor of an easy presentation. 

Finally, it should be noticed that the convergence rates derived for the (1, ,\)-
E A  are also valid for the practically more relevant (µ, ,\)-EA. Here, each of 
the µ parents generates m = ,\/ µ E JN offspring (m ?: 2). Under the as-
sumption that the differences between parents and offspring are solely caused 
by mutations, then the convergence rate of the (µ, ,\)-EA can be bounded by 
c :s; 1 - M;,,,n/Q2 E (0, 1) for (K, Q)-strongly convex functions. 
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