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Abstract: The paper concerns the optimal control problem
with the full-range integral performance criterion for the nonlinear
Schrödinger equation with the specific gradient summand and the
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1. Introduction

The optimal control problems for the linear and nonlinear Schrödinger equations
often occur in quantum mechanics, nuclear physics, nonlinear optics, and other
fields of modern physics and engineering, and the study of such problems has
both theoretical and practical interests (see Butkovskii and Samoilenko, 1984,
Vorontsov and Shmalgauzen, 1985, or Zhuravlev, 2001). One of such problems
is the problem of motion of charged particles, in which the potential is unknown
and is to be determined. It is known that if a charged particle in a constant
uniform magnetic field moves and the direction of the magnetic field is cho-
sen along the axis z, then the movement of such a particle occurs in the plane
(x, y) ∈ E2 and this movement is usually described by a two-dimensional lin-
ear Schrödinger equation with a specific gradient summand (see Butkovskii and
Samoilenko, 1984).
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Similar optimal control problems for the linear Schrödinger equation with
a specific gradient summand were previously studied in the papers by Akbaba
(2011) or Yagubov, Toyoğlu and Subaşı (2012). Note also that the optimal
control problems for linear and nonlinear non-stationary Schrödinger equations
without a specific gradient summand were previously studied in detail in such
papers as Baudouin, Kavian and Puel (2005), Iskenderov and Yagubov (1988,
1989, 2007), Iskenderov, Yagubov and Musaeva (2012), Yagubov and Musaeva
(1997), and yet some other ones.

However, optimal control problems for a nonlinear Schrödinger equation with
a specific gradient summand are most poorly studied. Such optimal control
problems for a two-dimensional nonlinear non-stationary Schrödinger equation
with a specific gradient summand and a real-valued potential, when the poten-
tial plays the control role and is searched for in the class of measurable bounded
functions, and the coefficient in the nonlinear part of the equation is a purely
imaginary number, have been studied in the papers by Iskenderov, Yagub and
Zengin (2016) or Iskenderov, Yagub and Aksoy (2015). It should be noted that
the optimal control problem for the three-dimensional nonlinear non-stationary
Schrödinger equation with a gradient summand and a real-valued potential,
when the potential depending on both spatial and temporal variables plays the
control role and is searched for in the class of measurable bounded functions, and
the coefficient in the nonlinear part of the equation is a complex number, has
been first investigated by Yagubov and Musaeva (1997). Further, the optimal
control problem for a three-dimensional nonlinear nonstationary Schrödinger
equation with a specific gradient term and with a complex-valued potential de-
pending on both spatial and temporal variables was previously studied in the
work by Iskenderov, Yagub, Salmanov and Aktsoi (2019), for the case, when
the quality criterion is final.

Therefore, this paper is devoted to the study of the optimal control problem
for the three-dimensional nonlinear Schrödinger equation with a special gradient
term and with a complex potential, when the controls are the real and the
imaginary parts of the complex potential and are selected from the class of
measurable bounded functions depending on a time variable, while the quality
criterion is an integral throughout the region. This is not only an extension of
the work here referred to, but, in itself, is of considerable scientific interest.

2. Statement of the problem

Let us assume that D is a bounded convex area of three-dimensional Eu-
clidean space E3, with the bound Γ, which is supposed to be fairly smooth,
x = (x1, x2, x3) is an arbitrary point of the D area, T > 0 is a predetermined
number, 0 ≤ t ≤ T , Ωt = D × (0, t) , Ω = ΩT , S = Γ × (0, T ) is the lateral
surface of Ω; Ck ([0, T ] , B) is the Banach space of functions, k is the number of
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times of continuous differentiability on the segment [0, T ] with the values in the
Banach space B; Lp (D) is the Lebesgue space of functions summed modularly
with a degree of p ≥ 1; L2 (0, T ;B) is the Banach space of functions defined
and summo modulable with square on an interval [0, T ] with the values in the
Banach space B; L∞ (0, T ;B) is the Banach space of measurable bounded func-
tions on the segment (0, T ) with the values in the Banach spaceB; Sobolev
spaces W k

p (D) ,W k,m
p (Ω) , p ≥ 1, k ≥ 0, m ≥ 0 , are specified, for example, in

Lions and Magenes (1972), Ladyzhenskaya (1973) or in Ladyzhenskaya, Solon-
nikov and Ural’tseva (1967). Ẇ 1

2 (D) is the subspace of the spaceW 1
2 (D), where

a dense set is the set of all smooth functions equal to zero near the boundary of
the D area; Ẇ

2
2 (D) ≡W 2

2 (D) ∩ Ẇ 1
2 (D).

Let us consider the functional minimization problem for:

Jα(v) = ‖ψ1 − ψ2‖2L2(Ω) + α ‖v − ω‖2H (1)

on the set:

V =
{

v = v(t) = (v0 (t) , v1 (t)) : vm ∈W 1
2 (0, T ) , |vm (t)| ≤

≤ bm,
∣

∣

∣

dvm(t)
dt

∣

∣

∣
≤ dm,m = 0, 1, ∀̇ t ∈ (0, T )

}

subject to the following conditions:

i
∂ψp

∂t
+ a0∆ψp + ia1(x, t)∇ψp − a(x)ψp + v0(t)ψp + iv1 (t)ψp+

+a2 |ψp|2 ψp = fp(x, t), p = 1, 2, (x, t) ∈ Ω (2)

ψp(x, 0) = ϕp(x), p=1,2, x ∈ D, (3)

ψ1|S = 0,
∂ψ2

∂v

∣

∣

∣

∣

S

= 0, (4)

where i =
√
−1; T > 0, bm > 0, dm > 0, m = 0, 1 a0 > 0, α ≥ 0 are

predetermined numbers, ∆ = ∂2

∂x2

1

+ ∂2

∂x2

2

+ ∂2

∂x2

3

is the Laplace operator, ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

is the nabla operator; ν is the external normal of the boundary

Γ of the area D; the complex number a2 satisfies the condition:

a2 = Rea2 + iIma2, Rea2 < 0, Ima2 > 0, Ima2 ≥ 2 |Rea2| ; (5)

a (x) is a measurable bounded function that satisfies the condition:

µ0 ≤ a (x) ≤ µ1,
o

∀ x ∈ D, µ0, µ1 = const > 0 ; (6)

(the symbol
o

∀ meaning “almost all”);
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a1 (x, t) = (a11 (x, t) , a12 (x, t) , a13 (x, t)) is the specified function vector with
the components that satisfy the conditions:

|a1(x, t)| ≤ µ2,
∣

∣

∣

∂a1j(x,t)
∂xk

∣

∣

∣
≤ µ3,

∣

∣

∣

∂a1j(x,t)
∂t

∣

∣

∣
≤ µ4, j, k = 1, 2, 3

o

∀ (x, t) ∈ Ω, a1j |S = 0, j = 1, ..., n, µ2, µ3, µ4 = const > 0;

(7)

ϕp (x) , fp (x, t) , p = 1, 2 are the complex-valued functions that satisfy the con-
ditions:

ϕ1 ∈ Ẇ 2
2 (D) , ϕ2 ∈ W 2

2 (D) ,
∂ϕ2

∂ν

∣

∣

∣

∣

Γ

= 0; (8)

fp ∈W
0,1
2 (Ω) , p = 1, 2; (9)

ω ∈ H is a specified element, where H ≡W 1
2 (0, T )×W 1

2 (0, T ) .

The problem of determining functions ψp = ψp (x, t) ≡ ψp (x, t; v) , p = 1, 2
from the conditions (2)-(4) for every v ∈ V will be referred to as a reduced
problem. It is obvious that a reduced problem consists of two, first and second,
initial boundary value problems for a nonlinear Schrödinger equation with a
specific gradient summand and a complex potential.

Definition 1 Under the solution of the reduced problems (2)-(4) we mean the
functions

ψ1 ∈ B1 ≡ C0
(

[0, T ] , Ẇ 2
2 (D)

)

∩ C1 ([0, T ] , L2 (D)) ,

ψ2 ∈ B2 ≡ C0
(

[0, T ] , W 2
2 (D)

)

∩ C1 ([0, T ] , L2 (D)) ,

satisfying the equations (2) for any t ∈ [0, T ] and almost all x ∈ D, the initial
conditions (3) for almost all x ∈ D and the boundary conditions (4) for almost
all (ξ, t) ∈ S.

The reduced problems, i.e. the initial-boundary value problems for lin-
ear stationary Schrödinger equations with a special gradient summand and a
real-valued potential, were previously studied by Akbaba (2011) and Yagubov,
Toyoğlu and Subaşı (2012), and the initial-boundary value problems for a non-
linear non-stationary Schrödinger equation with a special gradient summand
were previously studied by Yagub, Ibrahimov and Zengin (2015, 2018), Yagub,
İbrahimov and Aksoy (2016), Yagub, Ibragimov, Musaeva and Zenghin (2017),
and Yagubov, Salmanov, Yagubov and Zenghin (2017), for the situations, when
the Schrödinger equation is a two-dimensional equation or a three-dimensional
equation and the potential is a real-valued measurable bounded function or a
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quadratically summable function that depends only on a spatial variable, and
the coefficient in the nonlinear part of the equation is a purely imaginary num-
ber or a complex number. It should be noted that the reduced problem of the
type (2)-(4), that is, the first and second initial-boundary value problems (2)-(4)
were previously studied in the paper by Iskenderov, Yagub and Salmanov (2018).
Based on the results of this paper the following statement can be formulated:

Theorem 1 Assume that the complex number a2 satisfies the condition (5),
and the functions a (x) , a1 (x, t) , ϕp (x) , fp (x, t) , p = 1, 2 satisfy the conditions
(6)-(9). Then, the reduced problems (2)-(4) upon every v ∈ V have the single
solution ψ1 ∈ B1, ψ2 ∈ B2, and the following statements are valid for such
solution:

‖ψ1 (·, t)‖2Ẇ 2

2
(D) +

∥

∥

∥

∥

∂ψ1 (·, t)
∂t

∥

∥

∥

∥

2

L2(D)

≤ c1 (‖ϕ1‖2
Ẇ 2

2
(D) + ‖f1‖2W 0,1

2
(Ω) + ‖ϕ1‖6Ẇ 1

2
(D)

)

, ∀ t ∈ [0, T ] , (10)

‖ψ2 (·, t)‖2Ẇ 2

2
(D) +

∥

∥

∥

∥

∂ψ2 (·, t)
∂t

∥

∥

∥

∥

2

L2(D)

≤ c2 (‖ϕ2‖2
W 2

2
(D) + ‖f2‖2W 0,1

2
(Ω) + ‖ϕ2‖6W 1

2
(D)

)

, ∀t ∈ [0, T ] , (11)

where Cp > 0, p = 1, 2 are the constants not depending on t.

According to the theorem, the functional (1) is meaningful for the reduced
problem solution class under consideration.

3. Existence and uniqueness of the optimal control prob-

lem solution

This section deals with the existence and uniqueness of the solution to the
optimal control problem (1)-(4). Therefore, at first, the result concerning the
existence of a single solution to the problem is to be established. For this
purpose, a well-known theorem on the existence and uniqueness of a non-convex
optimization solution is to be specified.

Theorem 2 (Goebel, 1979) Suppose that X̃ is a uniformly convex space, U is
a closed bounded set of X̃, the functional I (v) on U is semi-continuous and
limited at the bottom, α > 0, β ≥ 1 are the predetermined numbers. Then, a
dense subset G of the space X̃ exists such that for any ω ∈ G the functional:

Jα (v) = I (v) + α ‖v − ω‖β
X̃

has the least value on U . If β > 1, the minimum value of the functional Jα (v)
on U is attained on a single element.
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This theorem is useful in proving the following statement:

Theorem 3 Suppose that the number a2 and the functions a (x) , a1 (x, t) , ϕp (x),
fp (x, t) , p = 1, 2 satisfy the conditions (5)-(9). Also, suppose that ω ∈ H.
Then, there exists an everywhere dense subset G of the space H, such that for
any ω ∈ G and any α > 0 the optimal control problem (1)-(4) has a unique
solution.

Proof First, the continuity of the functional J0 (v) in the set V should be
proven:

J0 (v) = ‖ψ1 − ψ2‖2L2(Ω) . (12)

Suppose that δv ∈ B ≡ W 1
∞

(0, T )×W 1
∞

(0, T ) is the increment of any control
v ∈ V so that v + δv ∈ V and

δψp = δψp (x, t) ≡ ψp (x, t; v + δv)− ψp (x, t; v) , p = 1, 2,

where ψp (x, t; v) , p = 1, 2 is the solution of the reduced problems (2)-(4) for v ∈
V . According to the conditions (2)-(4), the functions δψp = δψp (x, t) , p = 1, 2
are the solution of the following initial boundary value problem system:

i
∂δψp

∂t
+ a0∆ψp + ia1 (x, t)∇δψp − a (x) δψp+

+(v0 (t) + δv0 (t)) δψp + i (v1 (t) + δv1 (t)) δψp =

= −δv0 (t)ψp − iδv1 (t)ψp − a2

(

|ψpδ|2 ψpδ − |ψp|2 ψp
)

,

p = 1, 2, (x, t) ∈ Ω,

(13)

δψp (x, 0) = 0, p = 1, 2, x ∈ D, δ ψ1|S = 0,
∂δψ2

∂ν

∣

∣

∣

∣

S

= 0, (14)

where ψpδ = ψpδ (x, t) ≡ ψp (x, t; v + δv) , p = 1, 2 is the solution of the reduced
problems (2)-(4) provided that v + δv ∈ V , δv ∈ B.

Let us establish an estimate for the solution of the system of initial-boundary
value problems (13), (14). For this purpose, both parts of equations (13) are
multiplied by the functions δψ̄p (x, t) , p = 1, 2 and the equalities obtained are
to be integrated over the range Ωt. Then, the following is specified using the
integration by parts formula and the boundary conditions as per (14):
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∫

Ωt

(

i
∂δψp

∂t
δψ̄p − a0 |∇δψp|2 + ia1 (x, τ )∇δψpδψ̄p − a (x) |δψp|2

+(v0 (τ) + δv0 (τ)) |δψp|2 dxdτ + i

∫

Ωt

(v1 (t) + δv1 (t)) |δψp|2 dxdτ

= −
∫

Ωt

δv0 (τ)ψpδψ̄pdxdτ − i

∫

Ωt

δv1 (τ)ψpδψ̄p

−
∫

Ωt

a2

[(

|ψpδ|2 + |ψp|2
)

δψp + ψpδψpδψ̄p

]

δψ̄pdxdτ, p = 1, 2, ∀t ∈ [0, T ] .

Deducting from these equalities their complex conjugations and applying
the Cauchy-Bunyakovsky inequality, using the initial and boundary conditions
from (14), as well as the conditions on the function a1 (x, t), the validity of the
following inequalities is obtained:

‖δψp (., t)‖2L2(D) + 2Ima2

∫

Ωt

(

|ψpδ|2 + |ψp|2
)

|δψp|2 dxdτ

≤ |a2|
∫

Ωt

|ψpδ| |ψp| |δψp|2 dxdτ+

+(3µ3 + 2)

t
∫

0

‖δψp (., τ )‖2L2(D)dτ +

∫

Ωt

|δv0 (τ)|2 |ψp|2dxdτ+

+

∫

Ωt

|δv1 (t)|2 |ψp|2 dxdτ, p = 1, 2, ∀t ∈ [0, T ] .

Hence, by virtue of the estimates (10), (11) and condition (5) for a complex
number using Gronwall’s Lemma, the following value is obtained:

‖δψp (., t)‖2L2(D) +
Ima2

2

∫

Ωt

(

|ψpδ|2 + |ψp|2
)

|δψp|2 dxdτ ≤c3 ‖δv‖2B ,

p = 1, 2, ∀t ∈ [0, T ] .
(15)

where c3 > 0 is a constant not depending on δv.

Now, consider the increment of the functional J0 (v) in any element v ∈ V .
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According to formula (12), the following is found:

δJ0 (v) = J0 (v + δv)− J0 (v) =

2

∫

Ω

Re
[

(ψ1 (x, t)− ψ2 (x, t))
(

δψ̄1 (x, t)− δψ̄2 (x, t)
)]

dx+

+ ‖δψ1‖2L2(Ω) + ‖δψ2‖2L2(Ω) − 2

∫

Ω

Re
(

δψ1 (x, t) δψ̄2 (x, t)
)

dxdt. (16)

According to this formula, applying the Cauchy-Bunyakovsky inequality and
using values (10), (11) and (15), the validity of the following inequalities is
obtained:

|δJ0 (v)| ≤ c4

(

‖δv‖B + ‖δv‖2B
)

, ∀v ∈ V,

where c4 > 0 is a constant not depending on δv. Based on this inequality, the
continuity of the functional J0 (v) in the set V is established. The set V is a
closed bounded and convex set of the space B. It is not difficult to prove that it
is a closed bounded and convex set of uniform convex space H (Yosida, 1967).
Then, according to Theorem 2 a dense subset G from the space H exists such
that for any ω ∈ G and subject to any α > 0 the optimal control problem (1)-(4)
has a single solution. So, Theorem 3 is proven. ✷

Now, let us prove that with α ≥ 0 and for any ω ∈ H the optimal control
problem (1)-(4) has at least one solution.

Theorem 4 Suppose that the conditions of Theorem 3 are satisfied. Then, for
α ≥ 0 and subject to any ω ∈ H the optimal control problem (1)-(4) has, at
least, one solution.

Proof Let us look at any minimizing sequence
{

vk
}

⊂ V :

lim
k→∞

Jα
(

vk
)

= Jα∗ = inf
v∈V

Jα (v) .

Suppose that ψpk = ψpk (x, t) ≡ ψp
(

x, t; vk
)

, p = 1, 2, k = 1, 2, .... According
to Theorem 1, for every vk ∈ V the reduced problems (2)-(4) have the single
solution ψpk ∈ Bp, p = 1, 2, and the following estimates are correct for such
solution:

‖ψ1k (·, t)‖2Ẇ 2

2
(D) +

∥

∥

∥

∥

∂ψ1k (·, t)
∂t

∥

∥

∥

∥

2

L2(D)

≤ c1

(

‖ϕ1‖2Ẇ 2

2
(D) + ‖f1‖2W 0,1

2
(Ω) + ‖ϕ1‖6Ẇ 1

2
(D)

)

k = 1, 2, ... (17)
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‖ψ2k (·, t)‖2W 2

2
(D) +

∥

∥

∥

∥

∂ψ2k (·, t)
∂t

∥

∥

∥

∥

2

L2(D)

≤ c2

(

‖ϕ2‖2W 2

2
(D) + ‖f2‖2W 0,1

2
(Ω) + ‖ϕ2‖6W 1

2
(D)

)

,

k = 1, 2, ... (18)

for ∀t ∈ [0, T ] , where the right hand sides of the estimates do not depend on k.

As the set V is a limited set of the Banach space B ≡ W 1
∞

(0, T ) ×W 1
∞

(0, T ),
then, the sequence

{

vk
}

⊂ V may provide such a subsequence
{

vkl
}

, to be

noted as
{

vk
}

to simplify the explanation, that

vk → v(∗) weakly in L∞ (0, T )× L∞ (0, T ) , (19)

dvk

dt
→ dv

dt
(∗) weakly in L∞ (0, T )× L∞ (0, T ) (20)

provided that k → ∞. Also, V is the bounded convex set from B. Therefore,
V is the (*) weakly closed convex set. Then, it is true that v ∈ V .

According to the estimates (17), (18), it is established that the sequences
{ψpk (x, t)} , p = 1, 2 are equally bounded within the norm of the spaces B1 and
B2. Then, from these sequences one can extract such subsequences {ψpkl (x, t)},
p = 1, 2, to be denoted as {ψpk (x, t)} to again simplify the explanation, that

ψpk (·, t) → ψp (·, t) , p = 1, 2 weakly in W 2
2 (D) ; (21)

∂ψpk (·, t)
∂t

→ ∂ψp (·, t)
∂t

, p = 1, 2 weakly in L2 (D) (22)

for every t ∈ [0, T ], provided that k → ∞.

It is obvious that every element {ψpk (x, t)} , p = 1, 2, from B1 and B2 sat-
isfies the equalities:

∫

D

(

i
∂ψpk (x, t)

∂t
− a0∆ψpk (x, t) + ia1 (x, t)∇ψpk (x, t)

−a (x)ψpk (x, t) + vk0 (t)ψpk (x, t)+

+ivk1 (t) ψpk (x, t) + a2 |ψpk (x, t)|2 ψpk (x, t)− f (x, t)
)

η̄p (x) dx

= 0, p = 1, 2, ∀t ∈ [0, T ] , k = 1, 2, ..., (23)
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for any function ηp = ηp (x) , p = 1, 2 from L2 (D), it satisfies the initial condi-
tions:

ψpk (x, 0) = ϕp (x) , p = 1, 2, ∀x ∈ D, k = 1, 2, ... (24)

and the boundary conditions:

ψ1k|S = 0,
∂ψ2k

∂ν

∣

∣

∣

∣

S

= 0, k = 1, 2, .... (25)

Due to the compactness of the embedding spaces B1, B2 in C0 ([0, T ] , L2 (D))
the following is true:

‖ψpk (·, t)− ψp (·, t)‖L2(D) → 0, p = 1, 2 (26)

relative to t ∈ [0, T ], when k → ∞. Also, based on the limit relations (19), (20),
the validity of the limit relation may be specified as follows:

vk → v strongly in C [0, T ]× C [0, T ] (27)

when k → ∞. This limit relation means that the subsequence
{

vk (t)
}

converges
to the element v (t) uniformly in t ∈ [0, T ]. Using this finding and the limit
relations (27), we can establish the validity of the relations:

∫

D

vkm (t)ψpk (x, t) η̄p (x) dx→
∫

D

vm (t)ψp (x, t) η̄p (x) dx,

p = 1, 2,m = 0, 1,
(28)

∫

D

|ψpk (x, t)|2ψpk (x, t) η̄p (x) dx→
∫

D

|ψp (x, t)|2ψp (x, t) η̄p (x) dx,

p = 1, 2
(29)

for every t ∈ [0, T ] , and for any functions ηp ∈ L2 (D) , p = 1, 2, when k → ∞.
Via the limit relations (21), (22) and (28), (29), upon passing to the limit in the
integral identities (23), the validity of the following equalities will be obtained:

∫

D

(

i
∂ψp (x, t)

∂t
− a0∆ψp (x, t) + ia1 (x, t)∇ψp (x, t)− a (x)ψp (x, t)+

+v0 (t)ψp (x, t) + iv1 (t)ψp (x, t)+

+a2 |ψp (x, t)|2 ψp (x, t)− fp (x, t)
)

η̄p (x) dx = 0, p = 1, 2 (30)

for every t ∈ [0, T ] and for any functions ηp = ηp (x) , p = 1, 2 from L2 (D).
Hence, the limit functions ψp (x, t) , p = 1, 2 for every t ∈ [0, T ] and for almost
all x ∈ D satisfy the equations (2). Satisfaction of the initial conditions follows
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from the limiting relation (26) at t = 0, the initial conditions (24), and from the
following inequalities:

‖ψp (·, 0)− ϕp‖L2(D) ≤ ‖ψp (·, 0)− ψpk (·, 0)‖L2(D) + ‖ψpk (·, 0)− ϕp‖L2(D) ,

p = 1, 2.

Indeed, taking into account the limit relations (26) for t = 0 and the initial
conditions (24), if passing to the limit in the last inequalities is assumed, then,
subject to k → ∞ , the validity of the following relations is obtained:

‖ψp (., 0)− ϕp‖L2(D) = 0, p = 1, 2.

According to these relations it is found that the limit functions ψp (x, t) , p = 1, 2
satisfy ψp (x, 0) = ϕp (x) , p = 1, 2, ∀x ∈ D, that is, the initial conditions (3) are
satisfied.

Finally, let us prove that the limit function satisfies the boundary conditions
(4). First, we prove that the limit function ψ1 (x, t) satisfies the first boundary
condition from (4). Indeed, due to the compactness of the embedding B1 in the
space L2 (S), we have:

‖ψ1k − ψ1‖L2(S)
→ 0

for k → ∞. Then, using this finding and the first boundary condition from (25),
from the inequality:

‖ψ1‖L2(S)
≤ ‖ψ1 − ψ1k‖L2(S)

+ ‖ψ1k‖L2(S)
,

upon passing to the limit, we obtain the validity of the boundary condition:

ψ (ξ, t) = 0,
0

∀ (ξ, t) ∈ S.

Now, let us prove that the limit function ψ2 (x, t) satisfies the second bound-
ary conditions from the ones appearing in (4). Indeed, in view of Lemma
3.4 from Ladyzhenskaya, Solonnikov and Ural’tseva (1967), as well as satis-
faction of the condition that the subsequence {ψ2k (x, t)} belongs to the space
B2 ⊂W

2,1
2 (Ω), the validity of the limit relations may be proven:

∂ψ2k

∂ν

∣

∣

∣

∣

S

→ ∂ψ2

∂ν

∣

∣

∣

∣

S

, weakly in L2 (S) for k → ∞.

Then, using these limit relations and the second boundary conditions from
(25), according to the equality:

∫

S

∂ψ2 (ξ, t)

∂ν
η̄2 (ξ, t) dξdt =

∫

S

(

∂ψ2 (ξ, t)

∂ν
− ∂ψ2k (ξ, t)

∂ν

)

η̄2 (ξ, t) dξdt+



288 V. Salmanov

+

∫

S

∂ψk (ξ, t)

∂ν
η̄2 (ξ, t) dξdt, ∀η2 ∈ L2 (S) ,

by passing to the limit with k → ∞, the validity of the following condition is
obtained:

∫

S

∂ψ2 (ξ, t)

∂ν
η̄2 (ξ, t) dξdt = 0, ∀η2 ∈ L2 (S) ,

and, therefore, the second boundary condition is established:

∂ψ2 (ξ, t)

∂ν
= 0,

0

∀ (ξ, t) ∈ S.

So, it has been proven that the limit functions ψp (x, t) , p = 1, 2 are the
solution for the reduced problems (2)-(4), satisfying the limit function v ∈ V ,
that is ψp = ψp (x, t) ≡ ψp (x, t; v) , p = 1, 2. In addition, the estimates (10),
(11) are valid for such functions, arising directly from the estimates (17), (18)
through the passage to the lower limit as per weakly convergent subsequences
{ψpk (x, t)} , p = 1, 2. According to Theorem 1, such functions ψp (x, t) , p = 1, 2
belong to the spaces Bp, p = 1, 2, respectively, and they are the single solutions
for the reduced problems subject to v ∈ V. Using the weak lower semi-continuity
of the norms of the spaces L2 (Ω), H , as well as the limit relations (19), (20)
and the following limit relations:

ψpk → ψp, p = 1, 2 weakly in L2 (Ω) for k → ∞

for ∀α ≥ 0 and ∀ω ∈ L2 (D), the following is found:

Jα∗ ≤ Jα (v) ≤ lim
k→∞

Jα
(

vk
)

= inf
v∈V

Jα (v) = Jα∗.

Hence, v ∈ V is the solution of the optimal control problems (1)-(4) provided
that α ≥ 0 and ∀ω ∈ H . So, Theorem 4 is proven. ✷

4. Conclusions

The resolvability theorems as proven above, and the reported expression for
the first variation of the quality criterion, as well as the developed essential
extremum condition make it possible to apply the numerical methods for the
solution of incorrect and inverse problems, including the optimal control prob-
lems with crude data, having arisen from studying the movement process of
charged particles in the constant uniform magnetic field, where the complex
potential is unknown and is to be determined.
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