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A b s t r a c t :  Evolutionary computation techniques have received 
a lot of attention regarding their potential as optimization tech-
niques for complex real-world problems. These techniques, based on 
the powerful principle of "survival of the fittest", model some natu-
ral phenomena of genetic inheritance and Darwinian strife for sur-
vival; they also constitute an interesting category of modern heuris-
tic search. This introductory article presents the main paradigms 
of evolutionary algorithms (genetic algorithms, evolution strategies, 
evolutionary programming, genetic programming) as well as other 
(hybrid) methods of evolutionary computation. Two particular re-
search directions (parallel evolutionary techniques and self-adapta-
tion) are discussed further in the last part of this paper. 
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1 .  I n t r o d u c t i o n  

The evolutionary computation (EC) techniques are stochastic algorithms whose 
search methods model some natural phenomena: genetic inheritance and Dar-
winian strife for survival. As stated in Davis and Steenstrup (1987): 
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" the metaphor underlying genetic algorithms1 is that of natu-
ral evolution. In evolution, the problem each species faces is one 
of searching for beneficial adaptations to a complicated and chang-
ing environment. The 'knowledge' that each species has gained is 
embodied in the makeup of the chromosomes of its members." 

It seems that EC, as a domain of Computer Sciences, is presently reaching a 
steady and more mature state. There are several, well established international 
conferences that attract hundreds of participants ( "International Conferences on 
Genetic Algorithms"-ICGA, Grefenstette, 1985;1987, Schaffer, 1989, Belew, 
1991, Forrest, 1993, Eshelman, 1995, Back, 1997, "Parallel Problem Solving 
from Nature"-PPSN,  Schwefel and Manner, 1991, Manner and Manderick, 
1992, Davidor, Schwefel and Manner, 1994, Voigt, Ebeling, Rechenberg and 
Schwefel, 1996, "Annual Conferences on Evolutionary Programming"-EP, Fo-
gel and Atmar, 1992;1993, Sebald and Fogel, 1994, McDonnell, Reynolds, and 
Fogel, 1995, Fogel, Angeline, Back, 1996); new annual conferences are getting 
started, e.g., "IEEE International Conferences on Evolutionary Computation", 
Proceedings of the First I E E E  International Conference on Evolutionary Com-
putation 1994, Proceedings of the Second I E E E  International Conference on 
Evolutionary Compv,tation 1995, Proceedings of the Third I E E E  International 
Conference on Evolutionary Compv,tation 1996, Proceedings of the Forth I E E E  
International Conference on Evolutionary Computation 1996. Also, there are 
many workshops, special sessions, and local conferences every year, all around 
the world. A relatively new journal, Evolutionary Computation (MIT Press) 
is devoted entirely to evolutionary computation techniques; the first issue of 
the next journal, I E E E  Transactions on Evolutionary Compv,tation, appeared 
in May 1997. Many other journals organized special issues on evolutionary 
computation ( e.g., Fogel, 1994, Michalewicz, 1994). Many excellent tutorial pa-
pers, Beasley, Bull and Martin (1993a;b), Reeves (1993), Whitley (1994), Fogel 
(1994), and technical reports provide more-or-less complete bibliographies of 
the field, Alander (1994), Goldberg, Milman and Tidd (1992), Saravanan and 
Fogel (1993), Nissen (1993). There is also The Hitch-Hiker's Guide to Evo-
lutionary Computation prepared initially by Jorg Heitkotter and currently by 
David Beasley, Heitkotter (1993), available on comp.ai.genetic interest group 
(Internet), and a new text, Handbook of Evolv,tionary Computation, has just 
appeared, Back, Fogel and Michalewicz (1997). 

From the point of view of optimization, EC is a powerful stochastic zeroth 

order method (i.e., requiring only values of the function to optimize) that can 
find the global optimum of very rough functions. This allows EC to tackle 
optimization problems for which standard optimization methods (e.g., gradient-
based algorithms requiring the existence and computation of derivatives) are not 

1The best known evolutionary computation techniques are genetic algorithms; very often
the terms evol'Utionary comp'Utation methods and GA-based methods are used interchangeably. 
Is i t  because of their fashionable name and concepts, or due to better marketing policy of the 
corresponding community, the question is beyond the scope of this article. 
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applicable. Moreover, most traditional methods are local in scope, thus they 
identify only the local optimum closest to their starting point. 

Also, it is worthwhile to note that the process of problem solving usually is 
a two-step activity: 

Problem = = }  Model = = }  Solution 

and for most real-world problems, the model must be simplified to allow clas-
sical methods to be applied. For example, transportation problems are often 
approximated by linear cost functions, since, in a general case, no algorithm 
will guarantee a global solution for non-linear cost functions. So the question 
is whether it is better to use an approximate (i.e., simplified) model of the real 
problem and then find its precise solution, or rather to use an exact model of 
the problem and find its approximate solution? Very often the latter approach 
provides with much better results! 

However, the price to pay is twofold: firstly, because of its stochastic na-
ture, EC does not offer any guarantee as to its convergence during a given run 
(the few convergence studies prove some convergence in probability results, or 
address very restricted classes of functions - see section 3.2.); furthermore, the 
computational cost of an EC run is generally very high, and a large number of 
function evaluations must be performed for a satisfying result to be (hopefully) 
found. The first common-sense conclusion (unfortunately often forgotten) is 
that EC should not be used whenever some quality deterministic optimization 
method is applicable! On the other hand, there are some clear benefits; the 
evolutionary paradigm is an example of a weak method, which makes few as-
sumptions about problem domain, so it can be used as an optimization engine 
for almost any optimization problem. 

In this introductory paper we provide with a general outline of a structure 
of an evolutionary algorithm (EA), discuss the main paradigms of evolutionary 
computation, and summarize theoretical foundations of E C  techniques. The 
next section provides a personal perspective ( of both authors) on the devel-
opments in this area, and the last section, concluding the paper, offers some 
additional discussion on issues of parallel models and self-adaptation. 

2. Evolutionary computation: an overview
For the sake of clarity, we shall try to introduce a general framework accounting 
as much as possible for most of existing Evolutionary Algorithms. 

Let the search space be a metric space E, and let F be a function E ---+ IB, 
called the objective function. The problem of evolutionary optimization is to 
find the maximum of F on E ( the case of minimization is easily handled by 
considering - F). 

A pop11,lation of size P E N is a set of P individ11,als (points of E) not 
necessarily distinct. This population is generally initialized randomly (at time 
t = 0) and uniformly on E. The .fitnesses of all individuals are computed (on 
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the basis of the values of the objective function); a fitness value is represented as 
a positive real number the higher the number, the better the individual. The 
population then undergoes a succession of generations; the process is illustrated 
in Fig. 1: 

p rocedure evolutionary algorithm 
begin 

t +-- 0 
initialize population 
evaluate population 
while (not termination-condition) do 
begin 

t+--t+l 
select individuals for reproduction 
apply operators 
evaluate newborn offspring 
replace some parents by some offspring 

end 
end 

Figure 1. The structure of an evolutionary algorithm 

Several aspects of the evolutionary procedure (Fig. 1) require additional 
comments: 

• Statistics and stop p ing criterion: The simplest stopping criterion is 
based on the generation counter t ( or on the number of function evalu-
ations). However, it is possible to use more complex stopping criteria,
which depend either on the evolution of the best fitness in the popula-
tion along generations (i.e., measurements of the gradient of the gains
over some number of generations), or on some measure of diversity of the
population.

• Selection: Choice of some individuals that will generate offspring. Nu-
merous selection processes can be used, either deterministic or stochastic.
All are based on the fitness of the individuals. Depending on the selection
scheme used, some individuals can be selected more than once. At that
point, selected individuals give birth to copies of themselves (clones). 

• A p p licat ion o f  evolution op erat ors : To each one of these copies some 
operator(s) are applied, giving birth to one or more offspring. The choice 
among possible operators is stochastic, according to user-supplied proba-
bilities. These operators are always stochastic operators, and one usually
distinguishes between crossover ( or recombination) and mutation opera-
tors:

- crossover operators arc operators from E k into E ,  i.e., some parents
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exchange genetic material to build up one offspring2 . In most cases, 
crossover involves just two parents (k = 2), however, it need not be 
the case. In a recent study, Eiben, Raue and Ruttkay (1994), fur-
ther continued in this volume, Eiben and van Keremade (1997), the 
authors investigated the merits of 'orgies', where more than two par-
ents are involved in the reproduction process. Evolution Strategies, 
Schwefel (1995), and Scatter Search techniques, Glover (1977), also 
proposed the use of multiple parents. 

mutation operators are stochastic operators from E into E. 

• Evaluation:  Computation of the fitnesses of all newborn offspring. As
mentioned earlier, the fitness measure of an individual is directly related
to its objective function value.

• Replacement :  Choice of which individuals will be part of next gener-
ation. The choice can be made either from the set of offspring only (in 
which case all parents "die") or from both sets of offspring and parents.
In either case, the this replacement procedure can be deterministic or 
stochastic.

Sometimes the operators are defined on the same space as the objective 
function ( called phenotype space or behavioral space); in other cases, an in-
termediate space is introduced ( called genotype space or representation space). 
The mapping from the phenotype space in the genotype space is termed coding. 
The inverse mapping from the genotype space in the phenotype space is termed 
decoding. Genotypes undergo evolution operators, and their fitness is evaluated 
on the corresponding phenotype. The properties of the coding mappings can 
greatly modify the global behavior of the evolutionary algorithm. 

There is a general "agreement" that EC is "made up" of 4 main branches 
(by alphabetical order): 

• Evolution Strategies, born in Germany in the 60's, Rechenberg (1973),
Schwefel (1995), to deal with parameter optimization problems.

• Evolutionary Programming, a branch that appeared in California in the
60's as well, and was first applied on Finite State Automata (Fogel, Owens
and Walsh, 1966).

• Genetic Algorithms, which emerged in Michigan in the late 60's, Holland
(1975), and were primarily designed to optimally solve sequential decision
processes more than to perform function optimization, De Jong (1992).

• Genetic Programming, Koza (1994), at first considered a subset of GAs,
but now turning into a research field by itself, 3 addressing the challenging
problem of employing evolution to teach computers to do things without
being explicitly programmed to do so. 

2Many authors define crossover operators from E X E into EX E (two parents generate 
two offspring), but no significant difference was ever reported between both variants. 

3The first International GP Conference was held in July 96 and the second in July 97 
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In the following subsections we discuss in turn the main historical paradigms of 
these evolutionary computation techniques. 

2.1. Genetic algorithms 

In the canonical genetic algorithm (GA), Holland (1975), Goldberg (1989), the 
genotype space is {O, 1 } n . Note that the phenotype space can be any space, 
as long as it can be coded into bitstring genotypes. The selection scheme is 
proportional selection (the best-known being the roulette wheel selection): P 
random choices are made in the whole population, each individual having a 
probability of being selected proportional to its fitness. The crossover operators 
replace a segment of bits in the first parent string by the corresponding segment 
of bits from the second parent, and the mutation operator randomly flips the bits 
of the parent according to a fixed user-supplied probability. In the replacement 
phase, all P offspring replace all parents. Due to that generational replacement, 
the best fitness in the population can decrease: the original GA strategy is not 
elitist. 

In more recent works, Michalewicz (1996), Radcliffe (1991), the genotype 
space can be almost any space, as long as some crossover and mutation operators 
are provided. Moreover, proportional selection has been gradually replaced by 
ranking, selection (the selection is performed on the rank of the individuals 
rather than on their actual fitness), or tournament selection (one selects the 
best individual among a uniform choice of T individuals, T ranging from 2 
to 10). See, e.g., Goldberg and Deb (1991), Back (1995), Chakraborty, Deb 
and Chakraborty (1996) for a discussion on these selection schemes. Finally, 
most users use the elitist variant of replacement, in which the best individual 
of generation t is included in generation t + 1, whenever the best fitness value 
in the population decreases. 

2.2. Evolution strategies 

The original evolution strategy (ES) algorithm, Rechenberg (1973), Schwefel 
(1995) handles a "population" made of a single individual given as a real valued 
vector. This individual undergoes a Gaussian mutation: addition of zero-mean 
Gaussian variable of standard deviation er. The fittest from the parent and 
the offspring becomes the parent of next generation. The critical feature is the 
choice of parameter er: Originally, the so-called 1/5 thumb rule4 was used to 
adjust parameter er along evolution. 

More recent ES algorithms, Schwefel (1995), Back (1995), are population-
based algorithms, termed (µ, >.)-ES or ( µ + > . ) - E S :  µ parents generate >. off-
spring5 . 

4When more than 1/5 of mutations are successful (respectively unsuccessful), increase 
(respectively decrease) u. A geometrical modification is advocated by Schwefel (1995). 

5There is no selection at that level, i.e., every parent produces>../µ offspring on average. 



Evolutionary computation 313 

The main operator remains mutation. When working on real-valued vectors 
(still their favorite universe) ESs generally use the powerful paradigm of self-
adaptive mutation: the standard deviations of Gaussian mutations are part of 
the individuals, and undergo mutation as well. Last, ESs now frequently use a 
global recombination operator involving all individuals in the population. 

The replacement step is deterministic, i.e., the b e s t µ  individuals-become the 
parents of the next generation, chosen among the µ + ,\ parents plus offspring 
in the elitist ( µ + > . ) - E S  scheme, or among the ,\ offspring in the non-elitist 
(µ, >.)-ES scheme (wi th , \   11,). Typical values for(µ,>.) are (1, 7), (10,100) or 
(30,200). 

2.3. Evolutionary programming 

Originally designed to evolve finite state machines, Fogel, Owens and Walsh 
(1966), evolutionary programming (EP) emphasizes the phenotype space. As in 
ESs, there is no initial selection: Every individual in the population generates 
one offspring. Moreover, the only evolution operator is mutation. Finally, the 
best P individuals among parents and offspring become the parents of the next 
generation. 

Recent advances, Fogel (1995), handle any space, still emphasize the use of 
mutation as the only operator, with independently designed the self-adaptive 
Gaussian deviations for real-valued variables, Fogel, Fogel, Atmar and Fogel 
(1992), and now use a stochastic tournament replacement scheme: each indi-
vidual (among the 2 P  parents plus offspring) encounters T random opponents, 
increasing its score by one point if it has better fitness. The P individuals having 
the highest scores get along to the next generation. Note that E P  replacement 
scheme is always elitist. 

2.4. Genetic programming 

Genetic Programming as a method for evolving computer programs first ap-
peared as an application of GAs, Koza (1994) to tree-like structures. Original 
GP evolves tree structures representing LISP-like S-expressions. This allows to 
define very easily a closed crossover operator (by swapping sub-trees between 
two valid S-expressions, one always gets a valid S-expression). The usual evo-
lution scheme is the steady state genetic algorithm (SSGA), Whitley (1989), 
Syswerda (1991): a parent is selected by tournament (of size 2 to 7 typically), 
generates an offspring by crossover only ( the other parent is selected by a tourna-
ment of a usually smaller size). The offspring is then put back in the population 
using a death-tournament: T individuals are uniformly chosen, and the one with 
the worse fitness gets replaced by the newborn offspring. 

l\!Iore recently, mutation operators, e.g., random replacement of a subtree 
or random change of a node or a leaf, have been used (see the state-of-the-art 
books, Kinnear, 1996, Angeline and Kinnear, 1996, and the GP paper of this 
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volume, Nordin and Banzhaf, 1997). But, though GP can be considered now 
as the fourth wheel of EC, its actual efficiency is still passionately debated, 
O'Reilly (1995). 

2.5. Modern trends: hybrid methods 

Many researchers modified further evolutionary algorithms by 'adding' some 
problem specific knowledge to the algorithm. Several papers have discussed 
initialization techniques, different representations, decoding techniques (map-
ping from genetic representations to phenotypic representations), and the use of 
heuristics for genetic operators. Davis (1989) wrote (in the context of classical, 
binary GAs): 

"It has seemed true to me for some time that we cannot handle most 
real-world problems with binary representations and an operator set 
consisting only of binary crossover and binary mutation. One reason 
for this is that nearly every real-world domain has associated domain 
knowledge that is of use when one is considering a transformation 
of a solution in the domain [ ... ] I believe that genetic algorithms 
are the appropriate algorithms to use in a great many real-world 
applications. I also believe that one should incorporate real-world 
knowledge in one's algorithm by adding it to one's decoder or by 
expanding one's operator set." 

Such hybrid/nonstandard systems enjoy a significant popularity in evolutionary 
computation community. Very often these systems, extended by the problem-
specific knowledge, outperform other classical evolutionary methods as well 
as other standard techniques. For example, in a system called Genetic-2N, 
Michalewicz ( 1993), constructed for the nonlinear transportation problem used 
a matrix representation for its chromosomes, a problem-specific mutation (main 
operator, used with probability 0.4) and arithmetical crossover (background op-
erator, used with probability 0.05). It is hard to classify this system: it is not 
really a genetic algorithm, since it can run with mutation operator only with-
out any significant decrease of quality of results. Moreover, all matrix entries 
are floating point numbers. It is not an evolution strategy, since it did not use 
Gaussian mutation, nor did it encode any control parameters in its chromosomal 
structures. Clearly, it has nothing to do with genetic programming and very 
little (matrix representation) with evolutionary programming approaches. It is 
just ari evolutionary computation technique aimed at a particular problem. 

3. Evolutionary computation: a discussion
In this section we provide a discussion on some aspects of genetic algorithms, 
evolution strategies, evolutionary programming, and genetic programming. We 
start with some remarks on comparison between these directions, then we sum-
marize briefly some theoretical results, and we conclude this section by providing 
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a (personal) perspective on the development in this field. 

3. 1. Comparison

Many papers have been written on the similarities and differences between these 
approaches, Back and Schwefel (1993), Fogel (1995), Back (1995). Clearly, 
different points of view can be adopted. 

• The representation issue:
Original EP, ESs and GAs address only finite state machines, real num-
bers and bitstrings, respectively. However, recent tendencies (as discussed
briefly in section 2.5.) indicate that this is not a major difference. More
important is the adequation of the operators to the chosen representa-
tion and the objective function (i.e., the fitness landscape), Michalewicz
(1996), Radcliffe (1991).

• Bottom-up versus top-down, and the usefulness of crossover:
According to the Schema Theorem, Holland (1975), Goldberg (1989) (see
also the complete survey in this volume Venturini, Rochet and Slimane,
1997, GA's main strength comes from the crossover operator: better and
better solutions are built by exchanging building blocks from partially good
solutions previously built, in a bottom-up approach. The mutation oper-
ator is then considered as a background operator. On the other hand,
the philosophy behind E P  and ESs is that such building blocks might not
exist, at least for most real world problems. This top-down view considers
that selective pressure plus genotypic variability brought by mutation are
sufficient.
The discussion on crossover has been going on for a long time, Eshelman,
Caruana and Schaffer (1989), Fogel and Stayton (1994). And even when
crossover was experimentally demonstrated beneficial to evolution, it could
be because it acts like a large mutation; recent experiments, Jones (1995)
suggest that the answer is highly problem dependent.
Yet another example of the duality between crossover and mutation comes
from GP's history: the original GP algorithm, Koza (1994) used only
crossover, with no mutation at all, the very large population size being
supposed to provide all the necessary building blocks to represent at least
one sufficiently good solution. But more recent works on GP (including
the one presented in this volume, Nordin, Banzhaf, 1997) accommodate
mutation also, on a much smaller population.

• Mutation operators:
The way mutation operators arc applied differ from one algorithm to an-
other.
GA uses a static mutation rate, or user-prescribed evolution scheme to
globally adjust either the mutation rate (i.e., the number of individuals
that undergo mutation) or the strength of mutation (i.e., the average
number of bits that are flipped in an individual undergoing mutation).
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Originally, E S  used a heuristic adaptation mechanism ( the 1/5 rule, Rechen-
berg, 1973), which was later turned into the modern self-adaptive muta-
tion, Schwefel (1995): All individuals carry their own copy of the standard 
deviation(s) of the mutation. These variances undergo in turn mutation, 
and the individual is further modified according to the new value of the 
variance, which is therefore evolved and optimized "for free" ( see also 
Section 4.2. of this paper). The strength of mutation in E P  is historically 
defined as a function of the relative fitness of the individual at hand, Fo-
gel (1992), before independently turning to self-adaptation Fogel, Fogel, 
Atmar and Fogel (1992). 
Note that self-adaptive mutation rates (i.e., dependent on the individual) 
have a significant impact only when all individuals undergo mutation, 
which is not true for GAs where the mutation rate is generally low. How-
ever, the importance of local mutation is confirmed by theoretical results 
in ESs  (see Section 3.2.). A prerequisite for convergence is the strong 
causality principle emphasized in Rechenberg (1973) for ESs: small mu-
tations should have small effects on fitness. This is not the case when 
floating point numbers are encoded into binary strings ( as the case is in 
classical GAs). 

• The selection-replacement mechanisms range from the totally stochas-
tic fitness proportional selection of GAs with generational replacement,
to the deterministic (µ, >..) replacement of ES, through the stochastic,
but elitist tournament replacement of E P  and the Steady-State scheme
(tournament selection and death tournament replacement) used in GP.
Though some studies have been devoted to selection/replacement mecha-
nisms (see e.g., Back, 1995, Miller, Goldberg, 1996, Chakraborty, Deb and
Chakraborty, 1996), the choice of a selection scheme for a given problem
(fitness-representation-operators) is still an open question (and probably
is problem-dependent).

The current trend in the E C  community is to mix up all these features to best 
fit the application at hand, on a few pragmatic basis: some ESs applications deal 
with discrete or mixed real-integer spaces, Back and Schutz, (1995), the "binary 
is the best" credo of GAs has been successfully attacked, Antonisse, (1989), and 
the Schema Theorem extended to any representation, Radcliffe (1991). Note 
that some ESs variations incorporate crossover, mutation has been added to 
GP, etc. And the different selection operators are more and more being used 
now by the whole community. 

On the other hand, such hybrid algorithms, by getting away from the simple 
original algorithms, also escape the few available theoretical results. Thus, the 
study of the actual complexity of the resulting algorithms remains unreachable. 
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3. 2. Theoretical results

Theoretical studies of Evolutionary Algorithms are of two types: an Evolution-
ary Algorithm can be viewed as a Markov chain in the space of populations, 
as population at time t + 1 only depends on population at time t ( at least in 
the standard algorithms). The full theory of Markov chains can then be ap-
plied. On the other hand, the specific nature of Evolution Strategies allowed 
precise theoretical. studies on the rate of convergence of these algorithms using 
probability calculus (at least for locally convex functions). 

Results based on Markov chains analysis are available for the standard GA 
scheme (proportional selection with fixed mutation rate), Eiben, Aarts and Van 
Hee (1991), Nix and Vose (1992). The need for an elitist strategy is emphasized 
by Rudolph (1994). When the mutation rate is allowed to decrease along gen-
erations, techniques borrowed from the field of Simulated Annealing give more 
precise convergence results in probability, Davis and Principe (1991;1993). Yet a 
different approach is used by Cerf (1995), who considers the GA as a stochastic 
perturbation of a dynamical system (a caricature GA). The powerful Friedlin-
Wentzell theory can then be applied, resulting in a lower bound on the popula-
tion size for a convergence in finite time of a modified GA (in which the selection 
strength and mutation rate are carefully modified along generations). However, 
even this last result is non-constructive, i.e., of limited use when actually de-
signing an instance of Evolutionary Algorithm for a particular problem. 

On the other hand, ESs have considered theoretical studies from the very 
beginning: studies on the sphere and corridor models gave birth to the 1/5 
rule, Rechenberg (1973), with determination of the optimal update coefficients 
for the mutation rate, Schwefel (1995). The theory of ESs  later developed to 
consider global convergence results in probability for the elitist models, Ba.ck, 
Rudolph and Schwefel (1993), as well as for the non-elitist (1, , \ ) -ES ,  Rudolph 
(1994). The whole body of work by Beyer (1993;1994;1995a;b) concentrates 
on the optimal progress rate for different variants of Evolution Strategies ( and 
for instance justify some parameter settings for self-adaptive mutation given by 
Schwefel, 1995). An example of such result is given in Rudolph's paper in this 
volume, Rudolph (1997). The main weakness of these results remains in that 
they were derived from simple models of function; their main results (e.g., op-
timal parameter settings) are nevertheless applied without further justification 
to any function - and usually prove to be efficient hints. 

However, one should keep in mind that all the above theoretical analyses ad-
dress some simple models of Evolutionary Algorithms. As stated in Section 2.5., 
the modern trends of EC gave birth to hybrid algorithms, for which generally 
no theory is applicable. 
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3.3. A perspective 

The most popular textbook on EC techniques (namely, genetic algorithms) has 
long been the book by Goldberg (1989). The book provided an easy introduction 
to binary string GAs and influenced many researchers and practitioners at that 
time. Most of us, while developing the first evolutionary system, wrote a pure 
a la Goldberg bitstrings GA, which looks like: 

randomly i n i t i a l i z e  the population 
do forever 

decode and evaluate each chromosome (application-specific) 
s t a t i s t i c s  and display 
stopping c r i t e r i o n ?  

i f  yes then 
return best chromosome(s) 

s e l e c t  the parents 
crossover and mutate 
replace a l l  parents by offspring 

end 

The specific part is limited to the decoding and evaluation of chromosomes. 
The s t a t i s t i c s  and display part allows a posteriori plots of the best and 
mean values of the fitness along generations, as well as close examination of 
the whole population. The stopping criterion is either a maximum total 
number of generations, or a number of generations without improvement of 
the best-so-far fitness, whichever comes first. User-supplied parameters other 
than these stopping parameters are the population size,  the se lec t ive  
pressure6 for the roulette wheel selection and the crossover and mutation 
rates.  Their adjustment is a trial-and-error process (sec Davis, 1991, for a 
survey of some possible alternative techniques). 

Then, at some stage of experimenting, trying to apply the developed algo-
rithm to a particular real-world problem, most of us realized that some modifi-
cations are necessary. For example, when the first author experimented with the 
constrained trajectory planning problem several years ago, Desquilbet (1992), 
he realized the need for a varying length representation for the trajectories, 
and that was the end of the bitstring representation for him: why enforce all 
problems to fit into a bitstring representation while handling varying length 
representations is both feasible and more powerful? 

The second author experimented with the nonlinear transportation prob-
lem (see Vignaux and Michalewicz, 1991, Michalewicz, Vignaux and Hobbs, 
1991) and realized that binary representation is not appropriate for this prob-
lem. Consequently, the chromosome (in the developed system, Genetic-2N) 
was represented as a matrix of real values ( the genes), and some operators 

6The expected number of offspring of the best individual in the population.
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Figure 2. Genetic algorithm approach (up) versus the general EC approach 
(down) 

(arithmetical crossover and mutations), which drove the evolution process, were 
defined. These first experiments from 8 years ago lead to a conclusion that 
classical genetic algorithms, which operate on binary strings, require a modifi-
cation of an original problem into appropriate (suitable for GA) form (see the 
upper part of Fig. 2); this would include mapping between potential solutions 
and binary representation and need not be an easy task. On the other hand, a 
general evolutionary algorithm would leave the problem unchanged, modifying 
a chromosome representation of a potential solution and applying appropriate 
operators (the lower part of Fig. 2). 

So, at that time, the issue was as follows: to solve a nontrivial problem us-
ing an evolutionary approach, we can either transform the problem into a form 
appropriate for the genetic algorithms (upper part of Fig. 2), or we can build 
a special evolutionary system (this was viewed as transformation of the genetic 
algorithm at that time, lower part of Fig. 2) to suit the problem. The experi-
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mental evidence indicated that the latter approach was much more successful. 
The idea of building specialized evolutionary system which captures char-

acteristics of the problem matured further with additional experiments; few 
years later (in 1992) the first edition of Genetic Algorithms + Data Strn,ctures 
= Evolution Programs was published7 Michalewicz (1996). 

With a closer look at a classical GA it becomes clear that some of its steps are 
related to phenotypes whereas others were related to genotypes. More precisely, 
selection and replacement only know of individuals from their fitness (phenotype 
space) while recombination and mutation only deal with the actual representa-
tion of individuals, i.e., their genotypes. This allows to encapsulate the domain 
dependent knowledge within the representation of genotypes, with their specific 
random initialization and operators. The second personal GA simulator ( of the 
first author) witnessed that change of perspective: written in C++, it did sep-
arate the evolutionary part of GAs from the application-specific design of the 
individuals. A specific representation is a derived class of the abstract class 
individual, and must provide tho basic methods: random i n i t i a l i z a t i o n ,  
copy, cross over and mutation (plus i / o  functions). The evolution part 
( concerned with the population) only knows about the abstract class. 

randomly i n i t i a l i z e  the population 
do forever 

end 

evaluate each individual 
s t a t i s t i c s  
display 
stopping c r i t e r i o n ?  

i f  yes then return best individual(s) 
s e l e c t  the parents 
apply evolution operators 
replace a l l  parents by offspring 

<specific> 

<specific> 

<specific> 

<specific> 

At that stage, the selection and replacement mechanisms concerned with 
genotypes wore still the standard GAs': proportional selection, crossover and 
global mutation (same operator for the whole population), all offspring replacing 
their parents. Apart from problem-specific parameters, the same evolution pa-
rameters as in the bitstring algorithm have to be supplied. The sharing scheme 
Goldberg and Richardson (1987) has been added in the s t a t i s t i c s  procedure: 
the actual fitness of each individual is modulated according to the density of 
the population around it: the fitness of isolated individuals is increased, while 
that of individuals in well-represented regions of the search space is decreased. 

The final step came with applications which required a chromosomal repre-
sentation for which crossover operators fail to make sense: the problem is that 

7Note some inconsistency in terminology: in Michalewicz (1996), general evolutionary
algorithms were called "evolution programs", since at that time the author was not aware of 
developments in the evolutionary programming area, and a similar term was used. 
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of function identification using recurrent Neural Nets, Fadda and Schoenauer 
(1995). Taking into account the developments in evolution strategies and evolu-
tionary programming, which were based primarily (or exclusively) on mutations, 
it is not surprising that mutation-only evolutionary systems represent another 
alternative in this field. 

Thus the next stage of the development of the GA simulator ( of the first 
author) reflected this change of perspective. A population of individuals (still 
viewed as an abstract class by the population) undergoes evolution using specific 
operators. Both the selection step and the replacement step are now performed 
using derived class of an abstract class selector. Moreover, two new selection-
related features have been added. The choice of a mate now depends on the 
first selected parent, allowing to use advanced techniques like restricted mating, 
Goldberg (1989) or the SelSed scheme, Ronald (1995). An intermediate selec-
tion among one (or two) parent(s) and their possibly multiple offspring allows 
hybrid schemes like the simulated annealing-like tournament between parents 
and offsprings described in Mahfoud and Goldberg (1992), and successfully used 
for many difficult problems. 

Of course, the number of user-supplied parameters has increased. The 
i n i t i a l  selection, intermediate selection and replacement mechanisms 
have to be designated. Furthermore, even for the same problem, the dependency 
of the operators on the individual has to be chosen, e.g., the standard deviation 
for the Gaussian mutation of real-valued variables can be fixed8 , depending on 
the relative performance of the individual at hand or coded in the individual 
itself, i.e., determined in a GA-like, EP-like or ES-like manner. 

Depending upon the choice of those parameters, the standard evolution 
schemes of GAs (both generational and steady state), ESs and E P  (with or 
without adaptive mutations) can be reproduced. Note that standard simulated 
annealing takes place in that framework, using the Metropolis tournament on 
a population of size 1. Moreover, any new combinations can be experimented 
with. 

4. Evolutionary computation: a summary
There is a huge experimental evidence of successful applications of Evolution-
ary Algorithms to difficult optimization problems. Most of these problems could 
hardly be solved by standard deterministic methods, and often resisted other 
stochastic or heuristic-based optimization methods. We feel that one key of the 
successes for applying E A  lies in the careful adaptation of the algorithm to the 
problem at hand. The design of the search space (the genotype space, defined 
by the representation) is the first crucial step, as demonstrated on different ap-
plications over the last twenty years. But the choice of evolution operators has 
also a critical impact on both the quality of the solution and the computing 

8or obeying a fixed evolution scheme, e.g., geometric decrease along generations.
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time to find it. Finally, the definition of the objective function can also turn 
successful evolutionary optimization into a disaster. The selection of the objec-
tive function often depends on additional, problem-specific requirements (e.g., 
almost all optimization problems include various types of constraints). The is-
sue of constraint-handling is quite complex (see Michalewicz and Schoenauer, 
1996, Michalewicz, 1995) and often the choice of an appropriate method depends 
heavily on the characteristics of the problem, e.g., (1) the type of the objective 
function, (2) the number of variables, (3) the number of constraints,. (4) the 
types of constraints, (5) the number of active constraints at the optimum, (6) 
the ratio between the sizes of the feasible search space and the whole search 
space, (7) topology of the feasible search space, etc. Additional considerations 
should be given to other aspects of evolutionary technique, like the selection 
method, probabilities of selected operators, population size, etc. 

Following Michalewicz (1996), we would compare the present situation of 
EC to that of AI regarding problem solvers some years ago: during a first 
enthusiastic phase, people had been looking for the general problem solver that 
would address all possible problems; it progressively occurred that this was 
merely a mirage, and that taking into account the specificities of the problem 
at hand could indeed be beneficial. 

Recent works in Evolutionary Computation witness the same phenomenon: 
the idea of a general evolutionary optimizer, mainly present in canonical GAs, 
has to be abandoned. When facing an optimization problem resisting classi-
cal deterministic methods, whatever domain knowledge is available should be 
sought for and used to design and improve an evolutionary algorithm. 

There are several interesting developments and research opportunities in the 
field of evolutionary computation; these are summarized nicely in a separate 
article in this volume by Ken De Jong (1997). Our article provides only some 
comments on two research directions, which, in our opinion, are of utmost im-
portance. These are (1) parallel developments of evolutionary systems and (2) 
self-adaptation capabilities of evolutionary algorithms. We discuss these two 
aspects in the following two subsections. 

4.1. Parallel EC 

The computational cost is the Achilles heel of all evolutionary algorithms. A 
partial solution can be provided by parallelism. Many approaches have been 
experimented with parallel9 evolutionary algorithms, from the simple master-
slave model, in which only the evaluation of individuals (function F of Section 
2.) is performed in parallel, to the massively parallel algorithm (called also: 
finely grained diffusion model), in which each node hosts between one and a 
few individuals (these mate with their neighbors only), Tamaki and Nishikawa 

9Probably a better term is 'distributed' De Jong (1997), since the key issue in· designing 
such evolutionary algorithm is to decide how to decentralize the global control of the algorithm 
and what are the implications of a such decentralization? 
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(1993), through the island model (called also: marsely grained island model), 
where a small number of sub-populations evolve on different nodes, exchanging 
individuals with neighboring populations, Petty, Leuze and Grefenstette (1987). 
Due to the high cost of the computation of evaluation of a single individual 
in many applications we have been working on, we feel the simplest model 
(i.e., master-slave model) offers the best ratio of (programming work)/(increase 
of performance), though the increase of performance due to other models can 
sometimes be super-linear, Ahuactzin, Talbi, Bessiere and Mazer (1992). 

There are several interesting issues connected with parallel evolutionary al-
gorithms. The central questions to be answered include: 

• how do they differ from traditional evolutionary algorithms?
• what are the expected speed improvements?
• what are the expected improvements in the quality of solutions?
• what is the underlying theory behind parallel evolutionary algorithms?

Additionally, all particular approaches of parallel implementations of evolution-
ary algorithms have their own specific issues. For example, the island model 
requires decisions on the following parameters, De Jong (1997): 

1. the total number of subpopulations,
2. the number of individuals in each subpopulation,
3. the type of evolutionary algorithm operating on each subpopulation,
4. the connectivity topology between subpopulations,
5. selection of a migration mechanism: 

(a) the frequency of migration process,
(b) selection of individual( s) to migrate,
(c) selection of individual(s) for replacement.

Needless to say, each of the above decisions may have a significant influence 
on the performance (in terms of computational effort or quality of the final 
solution) of the algorithm. It might be that (for a particular application) the 
best performance is achieved with three subpopulations of size 70 individuals 
each, low migration rate, with a random individual replacing another random 
individual in one of the two other subpopulations. Moreover, it may happen 
that a change in the population size, or in the migration rate, or in selection 
of the individual for migration (e.g., the best instead of random), decreases the 
performance of the algorithm. What does it prove? 

It seems that not that much. It would be nice to get some partial results 
(theoretical or experimental) which would demonstrate a relationship between 
some factors (e.g., connection between migration rates and selection of indi-
viduals for migration). However, such results would be most likely valid for a 
particular configuration of other decisions (type of evolutionary algorithm, se-
lection of individuals for replacement, etc); it is also quite likely, that the choices 
listed earlier are (to some degree) problem-dependent. 

Anyway, in the above case of an island model, the most typical decision is to 
have f rom a few to several subpopulations, all of the same, fixed size. The same 
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evolutionary algorithm (e.g., whether GA or ES) is executed over all subpopula-
tions ( eventually with different parameter settings, Back, Heistermann, Kappler 
and Gzamparelli, 1996), which are either fully connected or interconnected in 
some special way ( e.g., ring, hypercube, etc). The migration rules usually are set 
in arbitrary way ( or they are fixed after some initial runs of the algorithm-in a 
very much the same way as standard parameters for an evolutionary algorithm 
for a particular application are determined). 

In Cantu-Paz (1995) the author stated that the study of parallel systems is 
flourishing and that evolutionary algorithms 

" ... are easy to parallelize and many variants on the basic models 
have been tried with good results on different classes of problems. 
However, most of the research has been empirical ( ... ] We found 
that the research in this field is dominated by the description of 
experimental results and that very little work has been conducted 
to give an analytical explanation of what is observed". 

Clearly, parallel ( distributed) evolutionary algorithms constitute an interesting 
direction for future research. 

4.2. Self-adaptation 

As evolutionary algorithms implement the idea of evolution, and as evolution 
itself must have evolved to reach its current state of sophistication, it is natural 
to expect adaptation to be used not only for finding solutions to a problem, but 
also for tuning the algorithm to the particular problem. 

In EAs, not only do we need to choose the algorithm, representation and 
operators for the problem, but we also need to choose parameter values and 
operator probabilities for the evolutionary algorithm so that it will find the so-
lution and, what is also important, find it efficiently. This is a time consuming 
task and a lot of effort has gone into automating this process. Researchers have 
used various ways of finding good values for the strategy parameters as these can 
affect the performance of the algorithm significantly. Many researchers experi-
mented with problems from a particular domain, tuning the strategy parameters 
on the basis of such experimentation (tuning "by hand"). Later, they reported 
their results of applying a particular EA to a particular problem, stating: 

For these experiments, we have used the following parameters: 
population s i z e =  80, probability of crossover= 0.7, etc. 

without much justification of the choice made. Other researchers tried to modify 
the values of strategy parameters during the run of the algorithm; it is possible 
to do this by using some (possibly heuristic) rule, by taking feedback from the 
current state of the search, or by employing some self-adaptive mechanism. Note 
that these changes may affect a single component of a chromosome, the whole 
chromosome (individual), or even the whole population. Clearly, by changing 
these values while the algorithm is searching for the solution of the problem, 
further efficiency gains can be achieved. 
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Self-adaptation, based 011 the evolution of evolution, was pioneered in Evo-
lution Strategies to adapt mutation parameters to suit the problem during the 
run. The method was very successful in improving efficiency of the algorithm. 
This technique has been extended to other areas of evolutionary computation, 
but fixed representations, operators, and control parameters are still the norm. 

Other research areas based on the inclusion of adapting mechanisms are: 
• Representation of individuals (as proposed by Schaffer, 1987; the Dy-

namic Parameter Encoding technique, Schraudolph & Belew, 1992, and
the messy genetic algorithms, Goldberg, Deb and Korb, 1991, also fall
into this category).

• Operators. It is clear that different operators play different roles at differ-
ent stages of the evolutionary process. The operators should adapt (e.g.,
adaptive crossover Schaffer & Morishima Schaffer and Morishima, 1987,
Spears, 1995). This is true especially for time-varying fitness landscapes.

• Control parameters. There have been various experiments aimed at adap-
tive probabilities of operators, Davis (1989), Julstrom (1995), Srinivas and
Patnaik (1994). However, much more remains to be done.

The action of determining the variables and parameters of an EA to suit the 
problem has been termed adapting the algorithm to the problem, and in EAs 
this can be done while the algorithm is finding the problem solution. 

In Hinterding, Michalewicz and Eiben (1996), a comprehensive classification 
of adaptation was provided. The classification is based on the mechanism of 
adaptation and the level (in the EA) it occurs: these two classifications are 
orthogonal and encompass all forms of adaptation within EAs. 

For example, one of the possible mechanisms for adaptation is deterministic 
dynamic adaptation, which takes place if the value of a strategy parameter is 
altered by some deterministic rule; this rule modifies the strategy parameter 
deterministically without using any feedback from the EA. Usually, the rule 
will be used when a predefined number of generations have elapsed since the 
last time the rule was activated. 

This method of adaptation can be used to alter the probability of mutation 
so that the probability of mutation changes with the number of generations. 
For example: 

mut% = 0.5 + 0.3 ·  ' 

where g is the generation number from {1 . . .  G}. Here the mutation probability 
mut% will increase from 0.5 to 0.8 as the number of generations increases to G. 

This method of adaptation was used also in defining a mutation operator 
for floating-point representations, Michalewicz (1994): non-uniform mutation. 
For a parent x, if the element Xk was selected for this mutation, the result is 
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x '  = (x 1 , . . .  ,x , . . .  , xn ) , where 

{ Xk + !::,(t, right(k) - x k )

, if a random binary digit is 0
x k  = I\( l f (k)),'Ek - Ll. t, Xk - ,e t 

if a random binary digit is 1. 

The function !::,(t, y) returns a value in the range [O, y] such that the probability 
of !::,(t, y) being close to O increases as t increases (t is the generation number). 
This property causes this operator to search the space initially (when t is small) 
uniformly, and very locally at later stages. 

Deterministic dynamic adaptation was also used for changing the objective 
function of the problem; the point was to increase the penalties for violated 
constraints with evolution time, Joines and Houck (1994), Michalewicz and 
Attia (1994). Joines & Houck used the following formula: 

m 

F(x) = J(x) + (C x t) ° '  L ff (x), 
.i=l 

whereas Michalewicz and Attia experimented with 

F(x, T )  = f(x) +     J1
2(x). 2T   ,i=l 

In both cases, functions f.i measure the violation of the j-th constraint. 
On the other hand, adaptive dynamic adaptation takes place if there is some 

form of feedback from the EA that is used to determine the direction and/ or 
magnitude of the change to the strategy parameter. The assignment of the 
value of the strategy parameter may involve credit assignment, and the action 
of the E A  may determine whether or not the new value persists or propagates 
throughout the population. 

Early examples of this type of adaptation include Rechcnberg's '1/5 success 
rule', which was used to vary the step size of mutation, Rcchenberg (1973). 
This rule states that the ratio of successful mutations to all mutations should 
be 1/5, hence: if the ratio is greater than 1/5 then: decrease the step size, and 
if the ration is less than 1/5 then: decrease the step size. Another example is 
Davis's 'adaptive operator fitness', which used feedback from the performance of 
reproduction operators to adjust their probability of being used, Davis (1989). 

Adaptation was also used to change the objective function by increasing 
or decreasing penalty coefficients for violated constraints. For example, Bean 
& Hadj-Alouane (1992), designed a penalty function where its one component 
takes a feedback from the search process. Each individual is evaluated by the 
formula: 

m

F(x) = J(x) + >-(t) L f;(:r),
.i=l 
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where >.(t) is updated at every generation t in the following way: 

>.(t + 1) =

(1/ (3i) · >.(t), 
if b(i) E :F for all 
t - k + l - : ; _ i - : ; _ t  

/32 · >.(t), 
if b(i) E S  - :F for all 
t - k + l - : ; _ i - : ; _ t  

>.(t), otherwise, 
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where b( i) denotes the best individual, in terms of function eval, in generation 
i, (31 , (32 > 1 and (31 #- /32 ( to avoid cycling). In other words, the method (1) 
decreases the penalty component >.(t + 1) for the generation t + l ,  if all best
individuals in the last k generations were feasible, and (2) increases penalties, 
if all best individuals in the last k generations were infeasible. If there are some 
feasible and infeasible individuals as best individuals in the last k generations, 
>.(t + 1) remains without change.

Other examples include adaptation of probabilities of eight operators for 
adaptive planner/navigator, Xiao, Michalewicz, Zhang and Trojanowski (1997), 
where the feedback from the evolutionary process includes, through the operator 
performance index, effectiveness of operators in improving the fitness of a path, 
their operation time, and their side effect to future generations. 

The most challenging idea in this context is that the evolution of evolution 
can be used to implement the self-adaptation of parameters. Here the param-
eters to be adapted are encoded onto the chromosome(s) of the individual and 
undergo mutation and recombination. These encoded parameters do not affect 
the fitness of individuals directly, but "better" values will lead to "better" indi-
viduals and these individuals will be more likely to survive and product offspring 
and hence propagate these "better" parameter values. 

Schwefel (1977) pioneered this method to self-adapt the mutation step size 
and the mutation rotation angles in Evolution Strategies. Self-adaptation was 
extended to E P  by Fogel, Angeline and Fogel (1995) and to GAs by Back (1992) 
and Hinterding (1995). 

The parameters to self adapt can be parameter values or probabilities of 
using alternative processes, and as these are numeric quantities this type of 
self-adaptation has been used mainly for the optimization of numeric functions. 
This has been the case when single chromosome representations are used (which 
is the overwhelming case), as otherwise numerical and non-numerical represen-
tations would need to be combined on the same chromosome. Examples of 
self-adaptation for non-numerical problems are given in Fogel, Angeline and Fo-
gel (1995), where authors self-adapted the relative probabilities of five mutation 
operators for the components of a finite state machine. The other example is 
Hinterding (1995), where a multi-chromosome GA is used to implement the self-
adaptation in the Cutting Stock Problem with contiguity. Here, self-adaptation 
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is used to adapt the probability of using one of the two available mutation 
operators, and the strength of the group mutation operator. 

We can also define at what level within the EA and the solution represen-
tation adaptation takes place: level of environment, population, individual or 
component. These levels of adaptation can be used with each of the types of 
adaptation, and a mixture of levels and types of adaptation can be used within 
an EA (for a full discussion, see Hinterding, Michalewicz and Eiben, 1996). 
These types can be mixed together: the classic example of combining forms of 
adaptation is in ESs, where the algorithm can be configured for individual level 
adaptation ( one mutation step size per individual), component level adaptation 
( one mutation step size per component), or with two types of component level 
adaptation where both the mutation step size and rotation angle is self-adapted 
for individual components, Schwefel (1977). 

Hinterding, Michalewicz and Peachey (1996) combine global level adaptation 
of the population size with individual level self-adaptation of the mutation step 
size for optimizing numeric functions. 

Combining the forms of adaptation has not been used much as the inter-
actions are complex, hence deterministic or adaptive rules will be difficult to 
work out. But self-adaptation where we use evolution to determine the benefi-
cial interactions (as in finding solutions to problems) would seem to be the best 
approach. 
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