
C o n t r o l a n d C y b e r n e t i c s

vol. 2 6 (1997) No. 3

E v o l u t i o n a r y c o m p u t a t i o n

by

M a r c Schoenauer* a n d Zbigniew Michalewicz**

* CMAP - URA CNRS 756, Ecole Polytechnique,
Palaiseau 91128, France,

e-mail: marc.schoenauer@polytechnique.fr.

** Department of Computer Science, University of North Carolina,
Charlotte, NC 28223, USA

e-mail: zbyszek@uncc.edu and
Institute of Computer Science, Polish Academy of Sciences,

ul. Ordona 21, 01-237 Warsaw, Poland
e-mail: zbyszek@ipipan.waw.pl

A b s t r a c t : Evolutionary computation techniques have received
a lot of attention regarding their potential as optimization tech-
niques for complex real-world problems. These techniques, based on
the powerful principle of "survival of the fittest", model some natu-
ral phenomena of genetic inheritance and Darwinian strife for sur-
vival; they also constitute an interesting category of modern heuris-
tic search. This introductory article presents the main paradigms
of evolutionary algorithms (genetic algorithms, evolution strategies,
evolutionary programming, genetic programming) as well as other
(hybrid) methods of evolutionary computation. Two particular re-
search directions (parallel evolutionary techniques and self-adapta-
tion) are discussed further in the last part of this paper.

Keywords : Evolutionary computation, self-adaptation, paral-
lelism

1 . I n t r o d u c t i o n

The evolutionary computation (EC) techniques are stochastic algorithms whose
search methods model some natural phenomena: genetic inheritance and Dar-
winian strife for survival. As stated in Davis and Steenstrup (1987):

308 M. SCHOEN AUER and Z. MICHALEWICZ

" the metaphor underlying genetic algorithms1 is that of natu-
ral evolution. In evolution, the problem each species faces is one
of searching for beneficial adaptations to a complicated and chang-
ing environment. The 'knowledge' that each species has gained is
embodied in the makeup of the chromosomes of its members."

It seems that EC, as a domain of Computer Sciences, is presently reaching a
steady and more mature state. There are several, well established international
conferences that attract hundreds of participants ("International Conferences on
Genetic Algorithms"-ICGA, Grefenstette, 1985;1987, Schaffer, 1989, Belew,
1991, Forrest, 1993, Eshelman, 1995, Back, 1997, "Parallel Problem Solving
from Nature"-PPSN, Schwefel and Manner, 1991, Manner and Manderick,
1992, Davidor, Schwefel and Manner, 1994, Voigt, Ebeling, Rechenberg and
Schwefel, 1996, "Annual Conferences on Evolutionary Programming"-EP, Fo-
gel and Atmar, 1992;1993, Sebald and Fogel, 1994, McDonnell, Reynolds, and
Fogel, 1995, Fogel, Angeline, Back, 1996); new annual conferences are getting
started, e.g., "IEEE International Conferences on Evolutionary Computation",
Proceedings of the First I E E E International Conference on Evolutionary Com-
putation 1994, Proceedings of the Second I E E E International Conference on
Evolutionary Compv,tation 1995, Proceedings of the Third I E E E International
Conference on Evolutionary Compv,tation 1996, Proceedings of the Forth I E E E
International Conference on Evolutionary Computation 1996. Also, there are
many workshops, special sessions, and local conferences every year, all around
the world. A relatively new journal, Evolutionary Computation (MIT Press)
is devoted entirely to evolutionary computation techniques; the first issue of
the next journal, I E E E Transactions on Evolutionary Compv,tation, appeared
in May 1997. Many other journals organized special issues on evolutionary
computation (e.g., Fogel, 1994, Michalewicz, 1994). Many excellent tutorial pa-
pers, Beasley, Bull and Martin (1993a;b), Reeves (1993), Whitley (1994), Fogel
(1994), and technical reports provide more-or-less complete bibliographies of
the field, Alander (1994), Goldberg, Milman and Tidd (1992), Saravanan and
Fogel (1993), Nissen (1993). There is also The Hitch-Hiker's Guide to Evo-
lutionary Computation prepared initially by Jorg Heitkotter and currently by
David Beasley, Heitkotter (1993), available on comp.ai.genetic interest group
(Internet), and a new text, Handbook of Evolv,tionary Computation, has just
appeared, Back, Fogel and Michalewicz (1997).

From the point of view of optimization, EC is a powerful stochastic zeroth

order method (i.e., requiring only values of the function to optimize) that can
find the global optimum of very rough functions. This allows EC to tackle
optimization problems for which standard optimization methods (e.g., gradient-
based algorithms requiring the existence and computation of derivatives) are not

1The best known evolutionary computation techniques are genetic algorithms; very often
the terms evol'Utionary comp'Utation methods and GA-based methods are used interchangeably.
Is i t because of their fashionable name and concepts, or due to better marketing policy of the
corresponding community, the question is beyond the scope of this article.

Evolutionary computation 309

applicable. Moreover, most traditional methods are local in scope, thus they
identify only the local optimum closest to their starting point.

Also, it is worthwhile to note that the process of problem solving usually is
a two-step activity:

Problem = = } Model = = } Solution

and for most real-world problems, the model must be simplified to allow clas-
sical methods to be applied. For example, transportation problems are often
approximated by linear cost functions, since, in a general case, no algorithm
will guarantee a global solution for non-linear cost functions. So the question
is whether it is better to use an approximate (i.e., simplified) model of the real
problem and then find its precise solution, or rather to use an exact model of
the problem and find its approximate solution? Very often the latter approach
provides with much better results!

However, the price to pay is twofold: firstly, because of its stochastic na-
ture, EC does not offer any guarantee as to its convergence during a given run
(the few convergence studies prove some convergence in probability results, or
address very restricted classes of functions - see section 3.2.); furthermore, the
computational cost of an EC run is generally very high, and a large number of
function evaluations must be performed for a satisfying result to be (hopefully)
found. The first common-sense conclusion (unfortunately often forgotten) is
that EC should not be used whenever some quality deterministic optimization
method is applicable! On the other hand, there are some clear benefits; the
evolutionary paradigm is an example of a weak method, which makes few as-
sumptions about problem domain, so it can be used as an optimization engine
for almost any optimization problem.

In this introductory paper we provide with a general outline of a structure
of an evolutionary algorithm (EA), discuss the main paradigms of evolutionary
computation, and summarize theoretical foundations of E C techniques. The
next section provides a personal perspective (of both authors) on the devel-
opments in this area, and the last section, concluding the paper, offers some
additional discussion on issues of parallel models and self-adaptation.

2. Evolutionary computation: an overview
For the sake of clarity, we shall try to introduce a general framework accounting
as much as possible for most of existing Evolutionary Algorithms.

Let the search space be a metric space E, and let F be a function E ---+ IB,
called the objective function. The problem of evolutionary optimization is to
find the maximum of F on E (the case of minimization is easily handled by
considering - F).

A pop11,lation of size P E N is a set of P individ11,als (points of E) not
necessarily distinct. This population is generally initialized randomly (at time
t = 0) and uniformly on E. The .fitnesses of all individuals are computed (on

310 M. SCHOENAUER and Z. MICHALEWICZ

the basis of the values of the objective function); a fitness value is represented as
a positive real number the higher the number, the better the individual. The
population then undergoes a succession of generations; the process is illustrated
in Fig. 1:

p rocedure evolutionary algorithm
begin

t +-- 0
initialize population
evaluate population
while (not termination-condition) do
begin

t+--t+l
select individuals for reproduction
apply operators
evaluate newborn offspring
replace some parents by some offspring

end
end

Figure 1. The structure of an evolutionary algorithm

Several aspects of the evolutionary procedure (Fig. 1) require additional
comments:

• Statistics and stop p ing criterion: The simplest stopping criterion is
based on the generation counter t (or on the number of function evalu-
ations). However, it is possible to use more complex stopping criteria,
which depend either on the evolution of the best fitness in the popula-
tion along generations (i.e., measurements of the gradient of the gains
over some number of generations), or on some measure of diversity of the
population.

• Selection: Choice of some individuals that will generate offspring. Nu-
merous selection processes can be used, either deterministic or stochastic.
All are based on the fitness of the individuals. Depending on the selection
scheme used, some individuals can be selected more than once. At that
point, selected individuals give birth to copies of themselves (clones).

• A p p licat ion o f evolution op erat ors : To each one of these copies some
operator(s) are applied, giving birth to one or more offspring. The choice
among possible operators is stochastic, according to user-supplied proba-
bilities. These operators are always stochastic operators, and one usually
distinguishes between crossover (or recombination) and mutation opera-
tors:

- crossover operators arc operators from E k into E , i.e., some parents

Evolutionary computation 311

exchange genetic material to build up one offspring2 . In most cases,
crossover involves just two parents (k = 2), however, it need not be
the case. In a recent study, Eiben, Raue and Ruttkay (1994), fur-
ther continued in this volume, Eiben and van Keremade (1997), the
authors investigated the merits of 'orgies', where more than two par-
ents are involved in the reproduction process. Evolution Strategies,
Schwefel (1995), and Scatter Search techniques, Glover (1977), also
proposed the use of multiple parents.

mutation operators are stochastic operators from E into E.

• Evaluation: Computation of the fitnesses of all newborn offspring. As
mentioned earlier, the fitness measure of an individual is directly related
to its objective function value.

• Replacement : Choice of which individuals will be part of next gener-
ation. The choice can be made either from the set of offspring only (in
which case all parents "die") or from both sets of offspring and parents.
In either case, the this replacement procedure can be deterministic or
stochastic.

Sometimes the operators are defined on the same space as the objective
function (called phenotype space or behavioral space); in other cases, an in-
termediate space is introduced (called genotype space or representation space).
The mapping from the phenotype space in the genotype space is termed coding.
The inverse mapping from the genotype space in the phenotype space is termed
decoding. Genotypes undergo evolution operators, and their fitness is evaluated
on the corresponding phenotype. The properties of the coding mappings can
greatly modify the global behavior of the evolutionary algorithm.

There is a general "agreement" that EC is "made up" of 4 main branches
(by alphabetical order):

• Evolution Strategies, born in Germany in the 60's, Rechenberg (1973),
Schwefel (1995), to deal with parameter optimization problems.

• Evolutionary Programming, a branch that appeared in California in the
60's as well, and was first applied on Finite State Automata (Fogel, Owens
and Walsh, 1966).

• Genetic Algorithms, which emerged in Michigan in the late 60's, Holland
(1975), and were primarily designed to optimally solve sequential decision
processes more than to perform function optimization, De Jong (1992).

• Genetic Programming, Koza (1994), at first considered a subset of GAs,
but now turning into a research field by itself, 3 addressing the challenging
problem of employing evolution to teach computers to do things without
being explicitly programmed to do so.

2Many authors define crossover operators from E X E into EX E (two parents generate
two offspring), but no significant difference was ever reported between both variants.

3The first International GP Conference was held in July 96 and the second in July 97

312 M. SCHOENAUER and Z. MICHALEWICZ

In the following subsections we discuss in turn the main historical paradigms of
these evolutionary computation techniques.

2.1. Genetic algorithms

In the canonical genetic algorithm (GA), Holland (1975), Goldberg (1989), the
genotype space is {O, 1 } n . Note that the phenotype space can be any space,
as long as it can be coded into bitstring genotypes. The selection scheme is
proportional selection (the best-known being the roulette wheel selection): P
random choices are made in the whole population, each individual having a
probability of being selected proportional to its fitness. The crossover operators
replace a segment of bits in the first parent string by the corresponding segment
of bits from the second parent, and the mutation operator randomly flips the bits
of the parent according to a fixed user-supplied probability. In the replacement
phase, all P offspring replace all parents. Due to that generational replacement,
the best fitness in the population can decrease: the original GA strategy is not
elitist.

In more recent works, Michalewicz (1996), Radcliffe (1991), the genotype
space can be almost any space, as long as some crossover and mutation operators
are provided. Moreover, proportional selection has been gradually replaced by
ranking, selection (the selection is performed on the rank of the individuals
rather than on their actual fitness), or tournament selection (one selects the
best individual among a uniform choice of T individuals, T ranging from 2
to 10). See, e.g., Goldberg and Deb (1991), Back (1995), Chakraborty, Deb
and Chakraborty (1996) for a discussion on these selection schemes. Finally,
most users use the elitist variant of replacement, in which the best individual
of generation t is included in generation t + 1, whenever the best fitness value
in the population decreases.

2.2. Evolution strategies

The original evolution strategy (ES) algorithm, Rechenberg (1973), Schwefel
(1995) handles a "population" made of a single individual given as a real valued
vector. This individual undergoes a Gaussian mutation: addition of zero-mean
Gaussian variable of standard deviation er. The fittest from the parent and
the offspring becomes the parent of next generation. The critical feature is the
choice of parameter er: Originally, the so-called 1/5 thumb rule4 was used to
adjust parameter er along evolution.

More recent ES algorithms, Schwefel (1995), Back (1995), are population-
based algorithms, termed (µ, >.)-ES or (µ + > .) - E S : µ parents generate >. off-
spring5 .

4When more than 1/5 of mutations are successful (respectively unsuccessful), increase
(respectively decrease) u. A geometrical modification is advocated by Schwefel (1995).

5There is no selection at that level, i.e., every parent produces>../µ offspring on average.

Evolutionary computation 313

The main operator remains mutation. When working on real-valued vectors
(still their favorite universe) ESs generally use the powerful paradigm of self-
adaptive mutation: the standard deviations of Gaussian mutations are part of
the individuals, and undergo mutation as well. Last, ESs now frequently use a
global recombination operator involving all individuals in the population.

The replacement step is deterministic, i.e., the b e s t µ individuals-become the
parents of the next generation, chosen among the µ + ,\ parents plus offspring
in the elitist (µ + > .) - E S scheme, or among the ,\ offspring in the non-elitist
(µ, >.)-ES scheme (wi th , \ 11,). Typical values for(µ,>.) are (1, 7), (10,100) or
(30,200).

2.3. Evolutionary programming

Originally designed to evolve finite state machines, Fogel, Owens and Walsh
(1966), evolutionary programming (EP) emphasizes the phenotype space. As in
ESs, there is no initial selection: Every individual in the population generates
one offspring. Moreover, the only evolution operator is mutation. Finally, the
best P individuals among parents and offspring become the parents of the next
generation.

Recent advances, Fogel (1995), handle any space, still emphasize the use of
mutation as the only operator, with independently designed the self-adaptive
Gaussian deviations for real-valued variables, Fogel, Fogel, Atmar and Fogel
(1992), and now use a stochastic tournament replacement scheme: each indi-
vidual (among the 2 P parents plus offspring) encounters T random opponents,
increasing its score by one point if it has better fitness. The P individuals having
the highest scores get along to the next generation. Note that E P replacement
scheme is always elitist.

2.4. Genetic programming

Genetic Programming as a method for evolving computer programs first ap-
peared as an application of GAs, Koza (1994) to tree-like structures. Original
GP evolves tree structures representing LISP-like S-expressions. This allows to
define very easily a closed crossover operator (by swapping sub-trees between
two valid S-expressions, one always gets a valid S-expression). The usual evo-
lution scheme is the steady state genetic algorithm (SSGA), Whitley (1989),
Syswerda (1991): a parent is selected by tournament (of size 2 to 7 typically),
generates an offspring by crossover only (the other parent is selected by a tourna-
ment of a usually smaller size). The offspring is then put back in the population
using a death-tournament: T individuals are uniformly chosen, and the one with
the worse fitness gets replaced by the newborn offspring.

l\!Iore recently, mutation operators, e.g., random replacement of a subtree
or random change of a node or a leaf, have been used (see the state-of-the-art
books, Kinnear, 1996, Angeline and Kinnear, 1996, and the GP paper of this

314 M. SCHOENAUER and Z. MICHALEWICZ

volume, Nordin and Banzhaf, 1997). But, though GP can be considered now
as the fourth wheel of EC, its actual efficiency is still passionately debated,
O'Reilly (1995).

2.5. Modern trends: hybrid methods

Many researchers modified further evolutionary algorithms by 'adding' some
problem specific knowledge to the algorithm. Several papers have discussed
initialization techniques, different representations, decoding techniques (map-
ping from genetic representations to phenotypic representations), and the use of
heuristics for genetic operators. Davis (1989) wrote (in the context of classical,
binary GAs):

"It has seemed true to me for some time that we cannot handle most
real-world problems with binary representations and an operator set
consisting only of binary crossover and binary mutation. One reason
for this is that nearly every real-world domain has associated domain
knowledge that is of use when one is considering a transformation
of a solution in the domain [...] I believe that genetic algorithms
are the appropriate algorithms to use in a great many real-world
applications. I also believe that one should incorporate real-world
knowledge in one's algorithm by adding it to one's decoder or by
expanding one's operator set."

Such hybrid/nonstandard systems enjoy a significant popularity in evolutionary
computation community. Very often these systems, extended by the problem-
specific knowledge, outperform other classical evolutionary methods as well
as other standard techniques. For example, in a system called Genetic-2N,
Michalewicz (1993), constructed for the nonlinear transportation problem used
a matrix representation for its chromosomes, a problem-specific mutation (main
operator, used with probability 0.4) and arithmetical crossover (background op-
erator, used with probability 0.05). It is hard to classify this system: it is not
really a genetic algorithm, since it can run with mutation operator only with-
out any significant decrease of quality of results. Moreover, all matrix entries
are floating point numbers. It is not an evolution strategy, since it did not use
Gaussian mutation, nor did it encode any control parameters in its chromosomal
structures. Clearly, it has nothing to do with genetic programming and very
little (matrix representation) with evolutionary programming approaches. It is
just ari evolutionary computation technique aimed at a particular problem.

3. Evolutionary computation: a discussion
In this section we provide a discussion on some aspects of genetic algorithms,
evolution strategies, evolutionary programming, and genetic programming. We
start with some remarks on comparison between these directions, then we sum-
marize briefly some theoretical results, and we conclude this section by providing

Evolutionary computation 315

a (personal) perspective on the development in this field.

3. 1. Comparison

Many papers have been written on the similarities and differences between these
approaches, Back and Schwefel (1993), Fogel (1995), Back (1995). Clearly,
different points of view can be adopted.

• The representation issue:
Original EP, ESs and GAs address only finite state machines, real num-
bers and bitstrings, respectively. However, recent tendencies (as discussed
briefly in section 2.5.) indicate that this is not a major difference. More
important is the adequation of the operators to the chosen representa-
tion and the objective function (i.e., the fitness landscape), Michalewicz
(1996), Radcliffe (1991).

• Bottom-up versus top-down, and the usefulness of crossover:
According to the Schema Theorem, Holland (1975), Goldberg (1989) (see
also the complete survey in this volume Venturini, Rochet and Slimane,
1997, GA's main strength comes from the crossover operator: better and
better solutions are built by exchanging building blocks from partially good
solutions previously built, in a bottom-up approach. The mutation oper-
ator is then considered as a background operator. On the other hand,
the philosophy behind E P and ESs is that such building blocks might not
exist, at least for most real world problems. This top-down view considers
that selective pressure plus genotypic variability brought by mutation are
sufficient.
The discussion on crossover has been going on for a long time, Eshelman,
Caruana and Schaffer (1989), Fogel and Stayton (1994). And even when
crossover was experimentally demonstrated beneficial to evolution, it could
be because it acts like a large mutation; recent experiments, Jones (1995)
suggest that the answer is highly problem dependent.
Yet another example of the duality between crossover and mutation comes
from GP's history: the original GP algorithm, Koza (1994) used only
crossover, with no mutation at all, the very large population size being
supposed to provide all the necessary building blocks to represent at least
one sufficiently good solution. But more recent works on GP (including
the one presented in this volume, Nordin, Banzhaf, 1997) accommodate
mutation also, on a much smaller population.

• Mutation operators:
The way mutation operators arc applied differ from one algorithm to an-
other.
GA uses a static mutation rate, or user-prescribed evolution scheme to
globally adjust either the mutation rate (i.e., the number of individuals
that undergo mutation) or the strength of mutation (i.e., the average
number of bits that are flipped in an individual undergoing mutation).

I I

316 M. SCHOENAUER and Z. MICHALEWICZ

Originally, E S used a heuristic adaptation mechanism (the 1/5 rule, Rechen-
berg, 1973), which was later turned into the modern self-adaptive muta-
tion, Schwefel (1995): All individuals carry their own copy of the standard
deviation(s) of the mutation. These variances undergo in turn mutation,
and the individual is further modified according to the new value of the
variance, which is therefore evolved and optimized "for free" (see also
Section 4.2. of this paper). The strength of mutation in E P is historically
defined as a function of the relative fitness of the individual at hand, Fo-
gel (1992), before independently turning to self-adaptation Fogel, Fogel,
Atmar and Fogel (1992).
Note that self-adaptive mutation rates (i.e., dependent on the individual)
have a significant impact only when all individuals undergo mutation,
which is not true for GAs where the mutation rate is generally low. How-
ever, the importance of local mutation is confirmed by theoretical results
in ESs (see Section 3.2.). A prerequisite for convergence is the strong
causality principle emphasized in Rechenberg (1973) for ESs: small mu-
tations should have small effects on fitness. This is not the case when
floating point numbers are encoded into binary strings (as the case is in
classical GAs).

• The selection-replacement mechanisms range from the totally stochas-
tic fitness proportional selection of GAs with generational replacement,
to the deterministic (µ, >..) replacement of ES, through the stochastic,
but elitist tournament replacement of E P and the Steady-State scheme
(tournament selection and death tournament replacement) used in GP.
Though some studies have been devoted to selection/replacement mecha-
nisms (see e.g., Back, 1995, Miller, Goldberg, 1996, Chakraborty, Deb and
Chakraborty, 1996), the choice of a selection scheme for a given problem
(fitness-representation-operators) is still an open question (and probably
is problem-dependent).

The current trend in the E C community is to mix up all these features to best
fit the application at hand, on a few pragmatic basis: some ESs applications deal
with discrete or mixed real-integer spaces, Back and Schutz, (1995), the "binary
is the best" credo of GAs has been successfully attacked, Antonisse, (1989), and
the Schema Theorem extended to any representation, Radcliffe (1991). Note
that some ESs variations incorporate crossover, mutation has been added to
GP, etc. And the different selection operators are more and more being used
now by the whole community.

On the other hand, such hybrid algorithms, by getting away from the simple
original algorithms, also escape the few available theoretical results. Thus, the
study of the actual complexity of the resulting algorithms remains unreachable.

Evolutionary computation 317

3. 2. Theoretical results

Theoretical studies of Evolutionary Algorithms are of two types: an Evolution-
ary Algorithm can be viewed as a Markov chain in the space of populations,
as population at time t + 1 only depends on population at time t (at least in
the standard algorithms). The full theory of Markov chains can then be ap-
plied. On the other hand, the specific nature of Evolution Strategies allowed
precise theoretical. studies on the rate of convergence of these algorithms using
probability calculus (at least for locally convex functions).

Results based on Markov chains analysis are available for the standard GA
scheme (proportional selection with fixed mutation rate), Eiben, Aarts and Van
Hee (1991), Nix and Vose (1992). The need for an elitist strategy is emphasized
by Rudolph (1994). When the mutation rate is allowed to decrease along gen-
erations, techniques borrowed from the field of Simulated Annealing give more
precise convergence results in probability, Davis and Principe (1991;1993). Yet a
different approach is used by Cerf (1995), who considers the GA as a stochastic
perturbation of a dynamical system (a caricature GA). The powerful Friedlin-
Wentzell theory can then be applied, resulting in a lower bound on the popula-
tion size for a convergence in finite time of a modified GA (in which the selection
strength and mutation rate are carefully modified along generations). However,
even this last result is non-constructive, i.e., of limited use when actually de-
signing an instance of Evolutionary Algorithm for a particular problem.

On the other hand, ESs have considered theoretical studies from the very
beginning: studies on the sphere and corridor models gave birth to the 1/5
rule, Rechenberg (1973), with determination of the optimal update coefficients
for the mutation rate, Schwefel (1995). The theory of ESs later developed to
consider global convergence results in probability for the elitist models, Ba.ck,
Rudolph and Schwefel (1993), as well as for the non-elitist (1, , \) -ES , Rudolph
(1994). The whole body of work by Beyer (1993;1994;1995a;b) concentrates
on the optimal progress rate for different variants of Evolution Strategies (and
for instance justify some parameter settings for self-adaptive mutation given by
Schwefel, 1995). An example of such result is given in Rudolph's paper in this
volume, Rudolph (1997). The main weakness of these results remains in that
they were derived from simple models of function; their main results (e.g., op-
timal parameter settings) are nevertheless applied without further justification
to any function - and usually prove to be efficient hints.

However, one should keep in mind that all the above theoretical analyses ad-
dress some simple models of Evolutionary Algorithms. As stated in Section 2.5.,
the modern trends of EC gave birth to hybrid algorithms, for which generally
no theory is applicable.

318 M. SCHOEN AUER and Z. MICHALEWICZ

3.3. A perspective

The most popular textbook on EC techniques (namely, genetic algorithms) has
long been the book by Goldberg (1989). The book provided an easy introduction
to binary string GAs and influenced many researchers and practitioners at that
time. Most of us, while developing the first evolutionary system, wrote a pure
a la Goldberg bitstrings GA, which looks like:

randomly i n i t i a l i z e the population
do forever

decode and evaluate each chromosome (application-specific)
s t a t i s t i c s and display
stopping c r i t e r i o n ?

i f yes then
return best chromosome(s)

s e l e c t the parents
crossover and mutate
replace a l l parents by offspring

end

The specific part is limited to the decoding and evaluation of chromosomes.
The s t a t i s t i c s and display part allows a posteriori plots of the best and
mean values of the fitness along generations, as well as close examination of
the whole population. The stopping criterion is either a maximum total
number of generations, or a number of generations without improvement of
the best-so-far fitness, whichever comes first. User-supplied parameters other
than these stopping parameters are the population size, the se lec t ive
pressure6 for the roulette wheel selection and the crossover and mutation
rates. Their adjustment is a trial-and-error process (sec Davis, 1991, for a
survey of some possible alternative techniques).

Then, at some stage of experimenting, trying to apply the developed algo-
rithm to a particular real-world problem, most of us realized that some modifi-
cations are necessary. For example, when the first author experimented with the
constrained trajectory planning problem several years ago, Desquilbet (1992),
he realized the need for a varying length representation for the trajectories,
and that was the end of the bitstring representation for him: why enforce all
problems to fit into a bitstring representation while handling varying length
representations is both feasible and more powerful?

The second author experimented with the nonlinear transportation prob-
lem (see Vignaux and Michalewicz, 1991, Michalewicz, Vignaux and Hobbs,
1991) and realized that binary representation is not appropriate for this prob-
lem. Consequently, the chromosome (in the developed system, Genetic-2N)
was represented as a matrix of real values (the genes), and some operators

6The expected number of offspring of the best individual in the population.

Evolutionary computation 319

Figure 2. Genetic algorithm approach (up) versus the general EC approach
(down)

(arithmetical crossover and mutations), which drove the evolution process, were
defined. These first experiments from 8 years ago lead to a conclusion that
classical genetic algorithms, which operate on binary strings, require a modifi-
cation of an original problem into appropriate (suitable for GA) form (see the
upper part of Fig. 2); this would include mapping between potential solutions
and binary representation and need not be an easy task. On the other hand, a
general evolutionary algorithm would leave the problem unchanged, modifying
a chromosome representation of a potential solution and applying appropriate
operators (the lower part of Fig. 2).

So, at that time, the issue was as follows: to solve a nontrivial problem us-
ing an evolutionary approach, we can either transform the problem into a form
appropriate for the genetic algorithms (upper part of Fig. 2), or we can build
a special evolutionary system (this was viewed as transformation of the genetic
algorithm at that time, lower part of Fig. 2) to suit the problem. The experi-

320 M. SCHOENAUER and Z. MICHALEWICZ

mental evidence indicated that the latter approach was much more successful.
The idea of building specialized evolutionary system which captures char-

acteristics of the problem matured further with additional experiments; few
years later (in 1992) the first edition of Genetic Algorithms + Data Strn,ctures
= Evolution Programs was published7 Michalewicz (1996).

With a closer look at a classical GA it becomes clear that some of its steps are
related to phenotypes whereas others were related to genotypes. More precisely,
selection and replacement only know of individuals from their fitness (phenotype
space) while recombination and mutation only deal with the actual representa-
tion of individuals, i.e., their genotypes. This allows to encapsulate the domain
dependent knowledge within the representation of genotypes, with their specific
random initialization and operators. The second personal GA simulator (of the
first author) witnessed that change of perspective: written in C++, it did sep-
arate the evolutionary part of GAs from the application-specific design of the
individuals. A specific representation is a derived class of the abstract class
individual, and must provide tho basic methods: random i n i t i a l i z a t i o n ,
copy, cross over and mutation (plus i / o functions). The evolution part
(concerned with the population) only knows about the abstract class.

randomly i n i t i a l i z e the population
do forever

end

evaluate each individual
s t a t i s t i c s
display
stopping c r i t e r i o n ?

i f yes then return best individual(s)
s e l e c t the parents
apply evolution operators
replace a l l parents by offspring

<specific>

<specific>

<specific>

<specific>

At that stage, the selection and replacement mechanisms concerned with
genotypes wore still the standard GAs': proportional selection, crossover and
global mutation (same operator for the whole population), all offspring replacing
their parents. Apart from problem-specific parameters, the same evolution pa-
rameters as in the bitstring algorithm have to be supplied. The sharing scheme
Goldberg and Richardson (1987) has been added in the s t a t i s t i c s procedure:
the actual fitness of each individual is modulated according to the density of
the population around it: the fitness of isolated individuals is increased, while
that of individuals in well-represented regions of the search space is decreased.

The final step came with applications which required a chromosomal repre-
sentation for which crossover operators fail to make sense: the problem is that

7Note some inconsistency in terminology: in Michalewicz (1996), general evolutionary
algorithms were called "evolution programs", since at that time the author was not aware of
developments in the evolutionary programming area, and a similar term was used.

Evolutionary computation 321

of function identification using recurrent Neural Nets, Fadda and Schoenauer
(1995). Taking into account the developments in evolution strategies and evolu-
tionary programming, which were based primarily (or exclusively) on mutations,
it is not surprising that mutation-only evolutionary systems represent another
alternative in this field.

Thus the next stage of the development of the GA simulator (of the first
author) reflected this change of perspective. A population of individuals (still
viewed as an abstract class by the population) undergoes evolution using specific
operators. Both the selection step and the replacement step are now performed
using derived class of an abstract class selector. Moreover, two new selection-
related features have been added. The choice of a mate now depends on the
first selected parent, allowing to use advanced techniques like restricted mating,
Goldberg (1989) or the SelSed scheme, Ronald (1995). An intermediate selec-
tion among one (or two) parent(s) and their possibly multiple offspring allows
hybrid schemes like the simulated annealing-like tournament between parents
and offsprings described in Mahfoud and Goldberg (1992), and successfully used
for many difficult problems.

Of course, the number of user-supplied parameters has increased. The
i n i t i a l selection, intermediate selection and replacement mechanisms
have to be designated. Furthermore, even for the same problem, the dependency
of the operators on the individual has to be chosen, e.g., the standard deviation
for the Gaussian mutation of real-valued variables can be fixed8 , depending on
the relative performance of the individual at hand or coded in the individual
itself, i.e., determined in a GA-like, EP-like or ES-like manner.

Depending upon the choice of those parameters, the standard evolution
schemes of GAs (both generational and steady state), ESs and E P (with or
without adaptive mutations) can be reproduced. Note that standard simulated
annealing takes place in that framework, using the Metropolis tournament on
a population of size 1. Moreover, any new combinations can be experimented
with.

4. Evolutionary computation: a summary
There is a huge experimental evidence of successful applications of Evolution-
ary Algorithms to difficult optimization problems. Most of these problems could
hardly be solved by standard deterministic methods, and often resisted other
stochastic or heuristic-based optimization methods. We feel that one key of the
successes for applying E A lies in the careful adaptation of the algorithm to the
problem at hand. The design of the search space (the genotype space, defined
by the representation) is the first crucial step, as demonstrated on different ap-
plications over the last twenty years. But the choice of evolution operators has
also a critical impact on both the quality of the solution and the computing

8or obeying a fixed evolution scheme, e.g., geometric decrease along generations.

322 M. SCHOENAUER and Z. MICHALEWICZ

time to find it. Finally, the definition of the objective function can also turn
successful evolutionary optimization into a disaster. The selection of the objec-
tive function often depends on additional, problem-specific requirements (e.g.,
almost all optimization problems include various types of constraints). The is-
sue of constraint-handling is quite complex (see Michalewicz and Schoenauer,
1996, Michalewicz, 1995) and often the choice of an appropriate method depends
heavily on the characteristics of the problem, e.g., (1) the type of the objective
function, (2) the number of variables, (3) the number of constraints,. (4) the
types of constraints, (5) the number of active constraints at the optimum, (6)
the ratio between the sizes of the feasible search space and the whole search
space, (7) topology of the feasible search space, etc. Additional considerations
should be given to other aspects of evolutionary technique, like the selection
method, probabilities of selected operators, population size, etc.

Following Michalewicz (1996), we would compare the present situation of
EC to that of AI regarding problem solvers some years ago: during a first
enthusiastic phase, people had been looking for the general problem solver that
would address all possible problems; it progressively occurred that this was
merely a mirage, and that taking into account the specificities of the problem
at hand could indeed be beneficial.

Recent works in Evolutionary Computation witness the same phenomenon:
the idea of a general evolutionary optimizer, mainly present in canonical GAs,
has to be abandoned. When facing an optimization problem resisting classi-
cal deterministic methods, whatever domain knowledge is available should be
sought for and used to design and improve an evolutionary algorithm.

There are several interesting developments and research opportunities in the
field of evolutionary computation; these are summarized nicely in a separate
article in this volume by Ken De Jong (1997). Our article provides only some
comments on two research directions, which, in our opinion, are of utmost im-
portance. These are (1) parallel developments of evolutionary systems and (2)
self-adaptation capabilities of evolutionary algorithms. We discuss these two
aspects in the following two subsections.

4.1. Parallel EC

The computational cost is the Achilles heel of all evolutionary algorithms. A
partial solution can be provided by parallelism. Many approaches have been
experimented with parallel9 evolutionary algorithms, from the simple master-
slave model, in which only the evaluation of individuals (function F of Section
2.) is performed in parallel, to the massively parallel algorithm (called also:
finely grained diffusion model), in which each node hosts between one and a
few individuals (these mate with their neighbors only), Tamaki and Nishikawa

9Probably a better term is 'distributed' De Jong (1997), since the key issue in· designing
such evolutionary algorithm is to decide how to decentralize the global control of the algorithm
and what are the implications of a such decentralization?

Evolutionary computation 323

(1993), through the island model (called also: marsely grained island model),
where a small number of sub-populations evolve on different nodes, exchanging
individuals with neighboring populations, Petty, Leuze and Grefenstette (1987).
Due to the high cost of the computation of evaluation of a single individual
in many applications we have been working on, we feel the simplest model
(i.e., master-slave model) offers the best ratio of (programming work)/(increase
of performance), though the increase of performance due to other models can
sometimes be super-linear, Ahuactzin, Talbi, Bessiere and Mazer (1992).

There are several interesting issues connected with parallel evolutionary al-
gorithms. The central questions to be answered include:

• how do they differ from traditional evolutionary algorithms?
• what are the expected speed improvements?
• what are the expected improvements in the quality of solutions?
• what is the underlying theory behind parallel evolutionary algorithms?

Additionally, all particular approaches of parallel implementations of evolution-
ary algorithms have their own specific issues. For example, the island model
requires decisions on the following parameters, De Jong (1997):

1. the total number of subpopulations,
2. the number of individuals in each subpopulation,
3. the type of evolutionary algorithm operating on each subpopulation,
4. the connectivity topology between subpopulations,
5. selection of a migration mechanism:

(a) the frequency of migration process,
(b) selection of individual(s) to migrate,
(c) selection of individual(s) for replacement.

Needless to say, each of the above decisions may have a significant influence
on the performance (in terms of computational effort or quality of the final
solution) of the algorithm. It might be that (for a particular application) the
best performance is achieved with three subpopulations of size 70 individuals
each, low migration rate, with a random individual replacing another random
individual in one of the two other subpopulations. Moreover, it may happen
that a change in the population size, or in the migration rate, or in selection
of the individual for migration (e.g., the best instead of random), decreases the
performance of the algorithm. What does it prove?

It seems that not that much. It would be nice to get some partial results
(theoretical or experimental) which would demonstrate a relationship between
some factors (e.g., connection between migration rates and selection of indi-
viduals for migration). However, such results would be most likely valid for a
particular configuration of other decisions (type of evolutionary algorithm, se-
lection of individuals for replacement, etc); it is also quite likely, that the choices
listed earlier are (to some degree) problem-dependent.

Anyway, in the above case of an island model, the most typical decision is to
have f rom a few to several subpopulations, all of the same, fixed size. The same

324 M. SCHOENAUER and Z. MICHALEWICZ

evolutionary algorithm (e.g., whether GA or ES) is executed over all subpopula-
tions (eventually with different parameter settings, Back, Heistermann, Kappler
and Gzamparelli, 1996), which are either fully connected or interconnected in
some special way (e.g., ring, hypercube, etc). The migration rules usually are set
in arbitrary way (or they are fixed after some initial runs of the algorithm-in a
very much the same way as standard parameters for an evolutionary algorithm
for a particular application are determined).

In Cantu-Paz (1995) the author stated that the study of parallel systems is
flourishing and that evolutionary algorithms

" ... are easy to parallelize and many variants on the basic models
have been tried with good results on different classes of problems.
However, most of the research has been empirical (...] We found
that the research in this field is dominated by the description of
experimental results and that very little work has been conducted
to give an analytical explanation of what is observed".

Clearly, parallel (distributed) evolutionary algorithms constitute an interesting
direction for future research.

4.2. Self-adaptation

As evolutionary algorithms implement the idea of evolution, and as evolution
itself must have evolved to reach its current state of sophistication, it is natural
to expect adaptation to be used not only for finding solutions to a problem, but
also for tuning the algorithm to the particular problem.

In EAs, not only do we need to choose the algorithm, representation and
operators for the problem, but we also need to choose parameter values and
operator probabilities for the evolutionary algorithm so that it will find the so-
lution and, what is also important, find it efficiently. This is a time consuming
task and a lot of effort has gone into automating this process. Researchers have
used various ways of finding good values for the strategy parameters as these can
affect the performance of the algorithm significantly. Many researchers experi-
mented with problems from a particular domain, tuning the strategy parameters
on the basis of such experimentation (tuning "by hand"). Later, they reported
their results of applying a particular EA to a particular problem, stating:

For these experiments, we have used the following parameters:
population s i z e = 80, probability of crossover= 0.7, etc.

without much justification of the choice made. Other researchers tried to modify
the values of strategy parameters during the run of the algorithm; it is possible
to do this by using some (possibly heuristic) rule, by taking feedback from the
current state of the search, or by employing some self-adaptive mechanism. Note
that these changes may affect a single component of a chromosome, the whole
chromosome (individual), or even the whole population. Clearly, by changing
these values while the algorithm is searching for the solution of the problem,
further efficiency gains can be achieved.

Evolutionary computation 325

Self-adaptation, based 011 the evolution of evolution, was pioneered in Evo-
lution Strategies to adapt mutation parameters to suit the problem during the
run. The method was very successful in improving efficiency of the algorithm.
This technique has been extended to other areas of evolutionary computation,
but fixed representations, operators, and control parameters are still the norm.

Other research areas based on the inclusion of adapting mechanisms are:
• Representation of individuals (as proposed by Schaffer, 1987; the Dy-

namic Parameter Encoding technique, Schraudolph & Belew, 1992, and
the messy genetic algorithms, Goldberg, Deb and Korb, 1991, also fall
into this category).

• Operators. It is clear that different operators play different roles at differ-
ent stages of the evolutionary process. The operators should adapt (e.g.,
adaptive crossover Schaffer & Morishima Schaffer and Morishima, 1987,
Spears, 1995). This is true especially for time-varying fitness landscapes.

• Control parameters. There have been various experiments aimed at adap-
tive probabilities of operators, Davis (1989), Julstrom (1995), Srinivas and
Patnaik (1994). However, much more remains to be done.

The action of determining the variables and parameters of an EA to suit the
problem has been termed adapting the algorithm to the problem, and in EAs
this can be done while the algorithm is finding the problem solution.

In Hinterding, Michalewicz and Eiben (1996), a comprehensive classification
of adaptation was provided. The classification is based on the mechanism of
adaptation and the level (in the EA) it occurs: these two classifications are
orthogonal and encompass all forms of adaptation within EAs.

For example, one of the possible mechanisms for adaptation is deterministic
dynamic adaptation, which takes place if the value of a strategy parameter is
altered by some deterministic rule; this rule modifies the strategy parameter
deterministically without using any feedback from the EA. Usually, the rule
will be used when a predefined number of generations have elapsed since the
last time the rule was activated.

This method of adaptation can be used to alter the probability of mutation
so that the probability of mutation changes with the number of generations.
For example:

mut% = 0.5 + 0.3 · '

where g is the generation number from {1 . . . G}. Here the mutation probability
mut% will increase from 0.5 to 0.8 as the number of generations increases to G.

This method of adaptation was used also in defining a mutation operator
for floating-point representations, Michalewicz (1994): non-uniform mutation.
For a parent x, if the element Xk was selected for this mutation, the result is

326 M. SCHOEN AUER and Z. MICHALEWICZ

x ' = (x 1 , . . . ,x , . . . , xn) , where

{ Xk + !::,(t, right(k) - x k)

, if a random binary digit is 0
x k = I\(l f (k)),'Ek - Ll. t, Xk - ,e t

if a random binary digit is 1.

The function !::,(t, y) returns a value in the range [O, y] such that the probability
of !::,(t, y) being close to O increases as t increases (t is the generation number).
This property causes this operator to search the space initially (when t is small)
uniformly, and very locally at later stages.

Deterministic dynamic adaptation was also used for changing the objective
function of the problem; the point was to increase the penalties for violated
constraints with evolution time, Joines and Houck (1994), Michalewicz and
Attia (1994). Joines & Houck used the following formula:

m

F(x) = J(x) + (C x t) ° ' L ff (x),
.i=l

whereas Michalewicz and Attia experimented with

F(x, T) = f(x) + J1
2(x). 2T ,i=l

In both cases, functions f.i measure the violation of the j-th constraint.
On the other hand, adaptive dynamic adaptation takes place if there is some

form of feedback from the EA that is used to determine the direction and/ or
magnitude of the change to the strategy parameter. The assignment of the
value of the strategy parameter may involve credit assignment, and the action
of the E A may determine whether or not the new value persists or propagates
throughout the population.

Early examples of this type of adaptation include Rechcnberg's '1/5 success
rule', which was used to vary the step size of mutation, Rcchenberg (1973).
This rule states that the ratio of successful mutations to all mutations should
be 1/5, hence: if the ratio is greater than 1/5 then: decrease the step size, and
if the ration is less than 1/5 then: decrease the step size. Another example is
Davis's 'adaptive operator fitness', which used feedback from the performance of
reproduction operators to adjust their probability of being used, Davis (1989).

Adaptation was also used to change the objective function by increasing
or decreasing penalty coefficients for violated constraints. For example, Bean
& Hadj-Alouane (1992), designed a penalty function where its one component
takes a feedback from the search process. Each individual is evaluated by the
formula:

m

F(x) = J(x) + >-(t) L f;(:r),
.i=l

Evolutionary computation

where >.(t) is updated at every generation t in the following way:

>.(t + 1) =

(1/ (3i) · >.(t),
if b(i) E :F for all
t - k + l - : ; _ i - : ; _ t

/32 · >.(t),
if b(i) E S - :F for all
t - k + l - : ; _ i - : ; _ t

>.(t), otherwise,

327

where b(i) denotes the best individual, in terms of function eval, in generation
i, (31 , (32 > 1 and (31 #- /32 (to avoid cycling). In other words, the method (1)
decreases the penalty component >.(t + 1) for the generation t + l , if all best
individuals in the last k generations were feasible, and (2) increases penalties,
if all best individuals in the last k generations were infeasible. If there are some
feasible and infeasible individuals as best individuals in the last k generations,
>.(t + 1) remains without change.

Other examples include adaptation of probabilities of eight operators for
adaptive planner/navigator, Xiao, Michalewicz, Zhang and Trojanowski (1997),
where the feedback from the evolutionary process includes, through the operator
performance index, effectiveness of operators in improving the fitness of a path,
their operation time, and their side effect to future generations.

The most challenging idea in this context is that the evolution of evolution
can be used to implement the self-adaptation of parameters. Here the param-
eters to be adapted are encoded onto the chromosome(s) of the individual and
undergo mutation and recombination. These encoded parameters do not affect
the fitness of individuals directly, but "better" values will lead to "better" indi-
viduals and these individuals will be more likely to survive and product offspring
and hence propagate these "better" parameter values.

Schwefel (1977) pioneered this method to self-adapt the mutation step size
and the mutation rotation angles in Evolution Strategies. Self-adaptation was
extended to E P by Fogel, Angeline and Fogel (1995) and to GAs by Back (1992)
and Hinterding (1995).

The parameters to self adapt can be parameter values or probabilities of
using alternative processes, and as these are numeric quantities this type of
self-adaptation has been used mainly for the optimization of numeric functions.
This has been the case when single chromosome representations are used (which
is the overwhelming case), as otherwise numerical and non-numerical represen-
tations would need to be combined on the same chromosome. Examples of
self-adaptation for non-numerical problems are given in Fogel, Angeline and Fo-
gel (1995), where authors self-adapted the relative probabilities of five mutation
operators for the components of a finite state machine. The other example is
Hinterding (1995), where a multi-chromosome GA is used to implement the self-
adaptation in the Cutting Stock Problem with contiguity. Here, self-adaptation

328 M. SCHOEN AUER. and Z. MICHALEWICZ

is used to adapt the probability of using one of the two available mutation
operators, and the strength of the group mutation operator.

We can also define at what level within the EA and the solution represen-
tation adaptation takes place: level of environment, population, individual or
component. These levels of adaptation can be used with each of the types of
adaptation, and a mixture of levels and types of adaptation can be used within
an EA (for a full discussion, see Hinterding, Michalewicz and Eiben, 1996).
These types can be mixed together: the classic example of combining forms of
adaptation is in ESs, where the algorithm can be configured for individual level
adaptation (one mutation step size per individual), component level adaptation
(one mutation step size per component), or with two types of component level
adaptation where both the mutation step size and rotation angle is self-adapted
for individual components, Schwefel (1977).

Hinterding, Michalewicz and Peachey (1996) combine global level adaptation
of the population size with individual level self-adaptation of the mutation step
size for optimizing numeric functions.

Combining the forms of adaptation has not been used much as the inter-
actions are complex, hence deterministic or adaptive rules will be difficult to
work out. But self-adaptation where we use evolution to determine the benefi-
cial interactions (as in finding solutions to problems) would seem to be the best
approach.

References
AHUACTZIN, M., TALBI, E., BESSIERE, P. and MAZER, E. (1992) Using ge-

netic algorithms for robot motion planning. In: Proceedings of European
Conference on Artfficial Intelligence.

ALANDER, J .T. (1994) An Indexed Bibliography of Genetic Algorithms: Years
1951-1998. Department of Information Technology and Production Eco-
nomics, University of Vaasa, Finland, Report Series 94-1.

ALLIOT, J.-M., LUTTON, E., RONALD, E. and ScHOENAUER, M., eels. (1994)
Actes de la Conference Evolution Art ficielle. Toulouse, Cepadues.

ALLIOT, J.-M., LUTTON, E., RONALD, E., SCHOENAUER, M. and SNYERS,
D., eels. (1995) Artificial Evolution. Brest, Springer Verlag.

ANGELINE, P . J . (1995) Adaptive and Self-Adaptive Evolutionary Computa-
tion. In: Palaniswami, M., Attikiouzel, Y., Marks, RJ .II , Fogel, D., and
Fukuda, T., eds., Compv,tational Intelligence, A Dynamic System Perspec-
tive, IEEE Press, 152-161.

ANGELINE, P . J . and KINNEAR, JR K.E., eds. (1996) Advances in Genetic Pro-
gramming II, Cambridge, MA. MIT Press.

ANGELINE, P . J . , SAUNDERS, G.M. and POLLACK, J .B . (1993) An evolution-
ary algorithm that constructs recurrent neural networks. IEEE Transac-
tions on Nev,ral Networ·ks, 5, 2, 86-91.

ANTONISSE, J . (1989) A new interpretation of schema notation that overturns

Evolutionary computation 329

the binary encoding constraint. In: Schaffer, J.D., ed. (1989) Proceedings
of the Third International Conference on Genetic Algorithms, 86-91.

ARABAS, J . , MICHALEWICZ, Z. and MULAWKA, J . (1994) GAVaPS a Ge-
netic Algorithm with Varying Population Size. In: Proceedings of the
First IEEE International Conference on Evolutionary Computation, Or-
lando, 26 June - 2 July, 1994, 73-78.

BACK, T. (1992) Self-adaption in genetic algorithms. In: Proceedings of the
First E11,ropean Conference on Art fi.cial Life, Cambridge, MIT Press, 263-
271.

BACK, T . (1995A) Generalized convergence models for tournament- and (µ,
>-)-selections. In: Eshelman, L.J. , ed., Proceedings of the 6th International
Conference on Genetic Algorithms, 2-8. Morgan Kaufmann.

BACK, T . (1995B) Evol11,tionary Algorithms in theory and practice. New-York:
Oxford University Press.

BACK, T. , ed. (1997) Proceedings of the Seventh International Conference on
Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

BACK, T. , FOGEL, D. and MICHALEWICZ, Z. (1997) Handbook of Evolntion-
ary Comp11,tation. Oxford University Press, New York.

BACK, T. , RUDOLPH, G. and SCHWEFEL, H.-P. (1993) Evolutionary program-
ming and evolution strategies: Similarities and differences. In: Fogel D.B.
and Atmar W., eds. Proceedings of the Second Ann11,al Conference on
Evolv.tionary Programming, L a Jolla, 1993, Evolutionary Programming
Society, 11-22.

BACK, T . and SCHUTZ, M. (1995) Evolution strategies for mixed-integer op-
timization of optical multilayer systems. In: McDonnell, J .R., Reynolds,
R.G. and Fogel, D.B., eds. Proceedings of the Fov,rth Ann11,al Conference
on Evolntionary Programming. The MIT Press, 1995.

BACK, T. , HEISTERMANN, J . , KAPPLER, C. and GZAMPARELLI, M. (1996)
Evolutionary Algorithms Support Refueling of Pressurized Water Reac-
tors. In: Proceedings of the Third IEEE International Conference on
Evolutionary Computation, Nagoya, 18-22 May, 1996, 104-108.

BACK, T. and SCHWEFEL, H.-P. (1993) An overview of evolutionary algo-
rithms for parameter optimization. Evol11,tionary Compv,tation, 1, 1, 1-23.

BEAN, J . C . and HAD.J-ALOUANE, A.B. (1992) A dual genetic algorithm for
bounded integer programs. Tr 92-53, Department of Industrial and Oper-
ations Engineering, The University of Michigan.

BEASLEY, D., BULL, D.R. and MARTIN, R . R . (1993A) An overview of ge-
netic algorithms: Part 1, Foundations. University Comp'll,ting, 15, 2,
58-69.

BEASLEY, D., BULL, D.R. and MARTIN, R . R . (1993B) An overview of ge-
netic algorithms: Part 2, Research Topics. University Comp'll,ting, 15,
4, 170-181.

BELEW, R . and BOOKER, L. , eds. (1991) Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms, Morgan Kaufmann Publishers,

330 M. SCHOENAUER and Z. MICHALEWICZ

Los Altos, CA.
BEYER, H.-G. (1993) Toward a theory of evolution strateg-ies: Some asymp-

totical results for the (1, +>.)-theory. Evolutionary Computation, 1, 2,
165-188.

BEYER, H.-G. (1994) Toward a theory of evolution strategies: The (µ, >.)-
theory. Evolv,tionary Computation, 2, 4, 381-407.

BEYER, H.-G. (1995A) Toward a theory of evolution strategies: On the benefit
of sex - the (JL/ µ, >.)-theory. Evolv,tionary Computation, 3, 1, 81-111.

BEYER, H.-G. (1995B) Toward a theory of evolution strategies: Self-adaptation.
Evolutionary Computation, 3, 3, 311-347.

CANTU-PAZ, E. (1995) A sv,mmary of research on parallel genetic algorithms.
IlliGAL Report No. 95007, University of Illinois at Urbana-Champaign,
July.

CERF, R. (1996) An asymptotic theory of genetic algorithms. In: Alliot, J.-
M., Lutton, E., Ronald, E., Schoenauer, M. and Snyers, D., eds., Art ficial
Evolv.tion, 1063 of LNCS. Springer Verlag.

CHAKRABORTY, U., DEB, K. and CHAKRABORTY, M. (1996) Analysis of se-
lection algorithms: A Markov chain approach. Evolutionary Compv.tation,
4, 2, 133-168.

DAVIDOR, Y. , SCHWEFEL, H.-P. and MANNER, R., eds. (1994) Proceedings
of the Third International Conference on Parallel Problem Solving from
Nature (PPSN), Springer-Verlag, New York.

DAVIS, L., ed. (1987) Genetic Algorithms and Simulated Annealing, Morgan
Kaufmann Publishers, Los Altos, CA.

DAVIS, L. (1991) Handbook of Genetic Algorithms. Van Nostram Reinhold,
New York.

DAVIS, L. (1989) Adapting Operator Probabilities in Genetic Algorithms. In:
Schaffer, J.D., ed. (1989) Prnceedings of the Third International Confer-
ence on Genetic Algorithms, 61-69.

DAVIS, L. and STEENSTRUP, M. (1987) Genetic Algorithms and Simulated
Annealing: An Overview. In: Davis, L., ed. (1987) Genetic Algorithms
and Simulated Annealing, Morgan Kaufmann Publishers, Los Altos, CA,
1-11.

DAVIS, L. and PRINCIPE, J .C. (1991) A simulated annealing like convergence
theory for simple genetic algorithm. In: Belew, R.K. and Booker, L.B.,
eds., Prnceedings o f the 4th International Conference on Genetic Algo-
rithms, 17 4-181. Morgan Kaufmann.

DAVIS, L. and PRINCIPE, J.C. (1993) A Markov chain framework for the sim-
ple genetic algorithm. Evolv.tionary Computation, 1, 3, 269-292.

DE JONG, K.A., ed. (1993) Evolutionary Computation, MIT Press.
DE JONG, K.A. (1996) Parallel and distributed evolutionary algorithms. Pre-

sented at the workshop Evolutionary Algorithms, organized by Institute for
Mathematics and Its Applications, University of Minnesota, Minneapolis,
Minnesota, October 21-25, 1996.

Evolutionary computation 331

DE JONG, K.A. (1993) Arc genetic algorithms function optimizers? In: Man-
ner, R. and Manderick, B., eds. (1992) Proceedings of the Second Inter-
national Conference on Parallel Problem Solving from Nafore (PPSN).
North-Holland, Elsevier Science Publishers, Amsterdam, 3-13.

DE JONG, K.A. (1997) Evolutionary computation: recent developments and
open issues. This special issue.

DE JONG, K.A. and SARMA, J . (1995) On decentralizing selection algorithms.
In: Eshelman, L.J., ed. (1995) Proceedings of the Sixth International
Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,
17-23.

DESQUILBET, C. (1992) Determination de trajets optimaux par algorithmes
genetiques. Rapport de stage d'option B2 de !'Ecole Polytechnique. Pa-
laiscau.

DESQUILBET, C. and SAssus, P. (1992) Reconnaissance de details en niveaux
de gris par algorithmes genctiques. Rapport de travail personnel. Majeure
SICS de !'Ecole Polytechnique. Palaiseau.

EIBEN, A.E., AARTS, E.H.L. and VAN HEE, K.M. (1991) Global convergen-
ce of genetic algorithms: a Markov chain analysis. In: Schwefel, H.-P. and
Manner, R., ed., Proceedings of the p t Parallel Problem Solving from Na-
fore, 4-12. Springer Verlag.

EIBEN, A.E., RADE, P.-E. and RUTTKAY, Zs. (1994) Genetic algorithms
with m11,lti-parent recombination. In: Davidor, Y., Schwefel, H.-P. and
Manner, R., eds. Proceedings of the Third International Conference on
Parallel Problem Solving from Nature (PPSN), Springer-Verlag, New York,
78-87.

EIBEN, A.E. and VAN KEREMADE, C.H.M. (1997) Diagonal Crossover in Ge-
netic Algorithms for Numerical Optimization, Control and Cybernetics,
this volume.

ESHELMAN, L . J . , ed. (1995) Proceedings of the Sixth International Confer-
ence on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.

ESHELMAN, L . J . , CARUANA, R.A. and SCHAFFER, J.D. (1989) Biases in the
crossover landscape. In: Schaffer, J.D., ed., Proceedings of the Third In-
ternational Conference on Genetic Algorithms, 10-19.

FADDA, A. and ScHOENAUER, M. (1995) Evolutionary chromatographic law
identification by recurrent neural nets. In: McDonnell, J.R., Reynolds,
R.G. and Fogel, D.B., eds., Proceedings of the 4t h Annual Conference on
Evolutionary Programming, 219-235. MIT Press, March.

FOGEL, D.B. (1992) An analysis of evolutionary programming. In: Fogel,
D.B. and Atmar, W., Proceedings of the First Ann'll,al Conference on Evo-
lutionary Programming, La Jolla, CA, Evolutionary Programming Society,
43-51.

FOGEL, D.B. (1994) An introduction to simulated evolutionary optimization.
I E E E Transactions on Neural Networks, special issue on Evolutionary
Comp11,tation, 5, 1.

332 M. SCH0ENAUER and Z. MICHALEWICZ

FOGEL, D.B. (1995) Evolntionary Computation. Toward a New Philosophy o f
Machine Intelligence. IEEE Press, Piscataway, NJ.

FOGEL, D.B., ed. (1994) I E E E Transactions on Neural Networks, special is-
sue on Evolutionary Computation, 5, 1.

FOGEL, D.B., FOGEL, L . J . , ATMAR, W. and FOGEL, G.B. (1992) Hierarchic
methods of evolutionary programming. In: Fogel, D.B. and Atmar, W.,
Proceedings of the First Annual Conference on Evolv,tionary Programming,
La Jolla, CA, Evolutionary Programming Society, 175-182.

FOGEL, D.B. and STAYTON, L.C. (1994) On the effectiveness of crossover in
simulated evolutionary optimization. BioSystems, 32, 171-182.

FOGEL, D.B. and ATMAR, W. (1992) Proceedings of the First Annual Con-
ference on Evolutionary Programming, La Jolla, CA, Evolutionary Pro-
gramming Society.

FOGEL D.B. and ATMAR W., EDS. (1993) Proceedings of the Second Annual
Conference on Evolutionary Programming, La Jolla, CA, Evolutionary
Programming Society.

FOGEL, L . J . , ANGELINE, P., BACK, T., eds. (1996) Proceedings o f the Fifth
Anrmal Conference on Evolutionary Programming, The MIT Press.

FOGEL, L . J . , ANGELINE, P . J . and FOGEL, D.B. (1995) An evolutionary pro-
gramming approach to self-adaption on finite state machines. In: lVIcDon-
nell, J.R., Reynolds, R.G. and Fogel, D.B., eds., Proceedings of the Fourth
Annual Conference on Evolv,tionary Programming. The MIT Press, 355-
365.

FOGEL, L . J . , OWENS, A . .T. and WALSH, M.J. (1966) Artificial Intelligence
through Simulated Evolv,tion. New York: John Wiley.

FORREST, S., ED. (1993) Proceedings of the Fifth International Conference on
Genetic Algorithms. Morgan Kaufmann Publishers, Los Altos, CA.

GLOVER, F. (1977) Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8, 1, 156-:-166.

GOLDBERG, D.E. (1989) Genetic algorithms in search, optimization and ma-
chine learning. Addison Wesley.

GOLDBERG, D.E. and DEB, K. (1991) A comparative study of selection sche-
mes used in genetic algorithms. In: Rawlins, G.J.E., ed., Foundations o f
Genetic Algorithms, 69-93. Morgan Kaufmann.

GOLDBERG, D.E., DEB, K. and KORB, B. (1991) Do not worry, be messy.
In: Proceedings o f the 4th International Conference on Genetic Algo-
rithms. Morgan Kaufmann, 24-30.

GOLDBERG, D.E., MILMAN, K. and TIDD C. (1992) Genetic Algorithms: A
Bibliography. IlliGAL Technical Report 92008.

GOLDBERG, D.E. and RICHARDSON, J . (1987) Genetic algorithms with shar-
ing for multi-modal function optimization. In: Grefenstette, J .J . , ed.,
Proceedings o f the 2nd International Conference on Genetic Algorithms,
41-49. Lawrence Erlbaum Associates.

GREFENSTETTE, J . J . , ed. (1985) Proceedings of the First International Con-

Evolutionary computation 333

ference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale,
NJ.

GREFENSTETTE, J . J . (1986) Optimization of Control Parameters for Genetic
Algorithms. I E E E Transactions on Systems, Man, and Cybernetics, 16,
1, 122-128.

GREFENSTETTE, J .J . , ed. (1987) Proceedings of the Second International Con-
ference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale,
NJ.

HEITK0TTER, J . (1993) The Hitch-Hiker's Guide to Evolutionary Computa-
tion. FAQ in comp.ai.genetic, issue 1.10, 20 December 1993.

HINTERDING, R., MICHALEWICZ, Z. and EIBEN, A.E. (1996) Adaptation in
Evolutionary Computation: A Survey. In: Proc. of the Fourth IEEE
International Conference on Evolutionary Computation, Indianapolis, 13-
16 April, 1996.

HOLLAND, J.H. (1975) Adaptation in natural and artificial systems. University
of Michigan Press, Ann Arbor.

HINTERDING, R. (1996) Gaussian mutation and self-adaption in numeric ge-
netic algorithms. In: Proceedings of the Third IEEE International Con-
ference on Evolutionary Computation, Nagoya, 18-22 May, 384-389.

HINTERDING, R., MICHALEWICZ, Z. and PEACHEY, T.C. (1996) Self-adap-
tive genetic algorithm for numeric functions. In: Voigt, H.-M., Ebeling,
W., Rechenberg, I. and Schwefel, H.-P., eds., Proceedings of the Fourth In-
ternational Conference on Parallel Problem Solving from Nafore (PPSN).
Springer-Verlag, New York, 420-429.

JANIKOW, C.Z. and MICHALEWICZ, Z. (1991) An experimental comparison of
binary and floating point representations in genetic algorithms. In: Belew,
R. and Booker, L., eds. (1991) Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Los
Altos, CA, 31-36.

JOINES, J .A. and HOUCK, C.R. (1994) On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems with GA's.
In: Proceedings of the First IEEE International Conference on Evolution-
ary Computation, Orlando, 26 June - 2 July, 579-584.

JONES, T. (1995) Crossover, macromutation and population-based search. In:
Eshelman, L.J., ed., Proceedings of the Sixth International Conference on
Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 73-80.

JULSTR0M, B.A. (1995) What have you done for me lately? adapting operator
probabilities in a steady-state genetic algorithm. In: Eshelman, L.J., ed.,
Proceedings of the Sixth International Conference on Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA, 81-87.

KINNEAR, K.E. JR, ed. (1996) Advances in Genetic Programming, Cambridge,
MA, MIT Press.

KOZA, J .R . (1994) Genetic Programming: On the Programming of Computers
by" means o f Naforal Evol1Ltion. MIT Press, Massachussetts.

334 M. SOHOENAUER and Z. MIOHALEWIOZ

MAHFOUD, S.W. and GOLDBERG, D.E. (1992) A genetic algorithm for paral-
lel simulated annealing. In: Manner, R. and Manderick, B., eds., Prnceed-
ings of the Second International Conference on Parallel Problem Solving
from Nature (PPSN). North-Holland, Elsevier Science Publishers, Ams-
terdam, 301-310.

MANNER, R . and MANDERIOK, B. , eds. (1992) Proceedings of the Second In-
ternational Conference on Parallel Problem Solving from Nature (PPSN).
North-Holland, Elsevier Science Publishers, Amsterdam.

McDONNELL, J . R . , REYNOLDS, R .G. and FOGEL, D.B. , eds. (1995) Prnceed-
ings of the Fourth Annual Conference on Evolutionary Programming. The
MIT Press.

MICHALEWIOZ, Z. (1996) Genetic Algorithms+Data Structures=Evolution Pro-
grams. Springer Verlag, New-York, 3rd edition.

MICHALEWIOZ, Z. (1993) A hierarchy of evolution programs: an experimental
study. Evolutionary Computation, 1, 1, 51-76.

MICHALEWIOZ, Z., ed. (1994) Statistics f j Computing, special issue on evolu-
tionary computation, 4, 2.

MICHALEWIOZ, Z. (1995) Heuristic methods for evolutionary computation tech-
niques. Journal of Heuristics, 1, 2, 177-206.

MICHALEWIOZ, Z. and ATTIA, N. (1994) Evolutionary Optimization of Con-
strained Problems. In Sebald, A.V. and Fogel, L.J . , Proceedings of the
Third Annv.al Conference on Evolutionary Programming, San Diego, CA,
World Scientific, 98-108.

MICHALEWICZ, Z., DASGUPTA, D., LE RICHE, R .G. and SCHOENAUER, M.
(HJ96) Evolutionary algorithms for constrained engineering problems. Com-
pv.ters f j Industrial Engineering Journal, 30, 4, 851-870.

MICHALEWICZ, Z. and NAZHIYATH, G. (1995) Genocop III: A Co-evolutionary
Algorithm for Numerical Optimization Problems with Nonlinear Con-
straints. In: Proceedings of the Second IEEE International Conference
on Evolutionary Computation, Perth, 29 November - 1 December, 1995,
647-651.

MICHALEWICZ, Z. and SCHOENAUER, M. (1996) Evolutionary Algorithms for
Constrained Parameter Optimization Problems. Evolutionary Comp11,ta-
tion, 4, 1, 1-32.

MICHALEWICZ, Z., VIGNAUX, G.A. and HOBBS, M. (1991) A non-standard
genetic algorithm for the nonlinear transportation problem. ORSA Jov.r-
nal on Computing, 3, 4, 307-316.

MICHALEWICZ, Z. and XIAO, J . (1995) Evaluation of Paths in Evolutionary
Planner/Navigator. In: Proceedings of the 1995 International Workshop
on Biologically Inspired Evolutionary Systems, Tokyo, Japan, May 30-31,
45-52.

MILLER, B .L . and GOLDBERG, D.E. (1996)
schemes, and the varying effects of noise.
2, 113-132.

Genetic algorithms, selection
Evolutionary Computation, 4,

Evolutionary computation 335

MUHLENBEIN, H. (1989) Parallel Genetic Algorithms, Population Genetics
and Combinatorial Optimization. In: Schaffer, J.D., ed., Proceedings of
the Third International Conference on Genetic Algorithms, 416-421.

MUHLENBEIN, H. and SCHLIERKAMP-VOSEN, D. (1993) Predictive models for
the breeder genetic algorithm. Evol11,tionary Computation, 1, 1, 25-49.

NISSEN, V. (1993) Evolutionary Algorithms in Management Science: An Over-
view and List of References. European Study Group for Evolutionary
Economics.

NIX, A.E. and VOSE, M.D. (1992) Modeling genetic algorithms with Markov
chains. Annals of Mathematics and Art ficial Intelligence, 5, 1, 79-88.

NORDIN, P . and BANZHAF, W. (1997) Real time control of a khepera robot
using genetic programming. Control and Cybernetics, this volume.

O'REILLY, U.-M. (1995) A n Analysis of Genetic Programming. PhD thesis,
Carleton University, Ottawa, Ontario, Canada.

ORVOSH, D. and DAVIS, L. (1995) Shall We Repair? Genetic Algorithms,
Combinatorial Optimization, and Feasibility Constraints. In: Forrest, S.,
ed. (1993) Proceedings of the Fifth International Conference on Genetic
Algorithms. Morgan Kaufmann Publishers, Los Altos, CA, 650.

PALMER, C.C. and KERSHENBAUM, A. (1994) Representing Trees in Genetic
Algorithms. In: Proceedings of the First IEEE International Conference
on Evolutionary Computation, Orlando, 26 June - 2 July, 379-384.

PAREDIS, J . (1993) Genetic State-Space Search for Constrained Optimization
Problems. Proceedings of the Thirteen International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, San Mateo, CA.

PAREDIS, J . (1994) Co-evolutionary Constraint Satisfaction. In: Davidor, Y.,
Schwofel, H.-P. and Manner, R., eds. (1994) Proceedings of the Third In-
ternational Conference on Parallel Problem Solving from Nature (PPSN),
Springor-Vorlag, New York, 46-55.

PETTY, C.B. , LEUZE, M.R. and GREFENSTETTE, J . J . (1995) A parallel ge-
netic algorithm. In: Grefenstetto, J . J . , ed., Proceedings of the Second
International Conference on Genetic Algorithms. Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 155-161.

POWELL, D. and SKOLNICK, M.M. (1995) Using Genetic Algorithms in En-
gineering Design Optimization with Non-linear Constraints. In: Forrest,
S., ed., Proceedings of the Fifth International Conference on Genetic Al-
gorithms. Morgan Kaufmann Publishers, Los Altos, CA, 424-430.

POTTER, M. and DE JONG, K.A. (1994) A Cooperative Coovolutionary Ap- ·
proach to Function Optimization. In: Davidor, Y., Schwefel, H.-P. and
Manner, R., eds., Proceedings of the Third International Conference on
Parallel Problem Solving from Nature (PPSN), Springer-Verlag, Now York,
249-257.

PROCEEDINGS OF THE FIRST I E E E INTERNATIONAL CONFERENCE ON
EVOLUTIONARY COMPUTATION (1994) Orlando, 26 June - 2 July.

PROCEEDINGS OF THE SECOND I E E E INTERNATIONAL CONFERENCE ON

336 M. SCHOEN AUER and Z. MICHALEWICZ

EVOLUTIONARY COMPUTATION (1995) Perth, 29 November - 1 Decem-
ber.

PROCEEDINGS OF THE THIRD I E E E INTERNATIONAL CONFERENCE ON
EVOLUTIONARY COMPUTATION (1996) Nagoya, 18-22 May.

PROCEEDINGS OF THE FORTH I E E E INTERNATIONAL CONFERENCE ON
EVOLUTIONARY COMPUTATION (1997) Indianapolis, 13-16 April.

RADCLIFFE, N.J. (1991) Equivalence class analysis of genetic algorithms. Com-
plex Systems, 5, 183-20.

RECHENBERG, I. (1973) Evolutionstrategie: Optimierv.ng Technisher Systeme
nach Prinzipien des Biologischen Evolv,tfon. Fromman-Holzboog Verlag,
Stuttgart.

REEVES, C.R. (1993) Modern Heuristic Techniques for Combinatorial Prob-
lems, Blackwell Scientific Publications, London.

RONALD, E. (1995) When selection meets seduction. In: Eshelman, L.J., ed.,
Proceedings of the 6th International Conference on Genetic Algorithms,
167-173. Morgan Kaufmann.

RUDOLPH, G. (1994A) Convergence analysis of canonical genetic algorithm.
I E E E Transactions on Nev.ml Networks, 5, 1, 96-101.

RUDOLPH, G. (1994B) Convergence of non-elitist strategies. In: Michalewicz,
Z., Schaffer, J.D., Schwefel, H.-P., Fogel, D.B. and Kitano, H., eds.,
Proceedings of the First I E E E International Conference on Evol11,tionary
Computation, 63--66. IEEE Press.

RUDOLPH, G. (1997) Convergence rates of evolutionary algorithms for a class
of convex objective functions. Control and Cybernetics, this volume.

SARAVANAN, N. and FOGEL, D.B. (1993) ABibliographyofEvolutionaryCom-
putation & Applications. Department of Mechanical Engineering, Florida
Atlantic University, Technical Report No. FAU-ME-93-100.

SCHAFFER, J .D., ed. (1989) Proceedings of the Third International Confer-
ence on Genetic Algorithms. Morgan Kaufmann Publishers, Los Altos,
CA.

SCHAFFER, J .D. and MORISHIMA, A. (1987) An adaptive crossover distribu-
tion mechanism for genetic algorithms. In: Proceedings o f the 2nd Interna-
tional Conference on Genetic Algorithms. Lawrence Erlbaum Associates,
36-40.

ScHOENAUER, M. (1994) Iterated genetic algorithms. Technical Report 304,
Centre de Mathematiques Appliquccs de l'Ecolc Polytechniquc, October.

ScHOENAUER, M., SEBAG, M., JOUVE, F. , LAMY, B. and MAITOURNAM, H.
(1996) 23: Evolutionary identification of macro-mechanical models. In:
Angeline, P.J. and Kinnear, K.E. Jr, ed., Advances in Genetic Program-
ming II, 467-488, Cambridge, MA, MIT Press.

SCHOENAUER, M. and XANTHAKIS, S. (1993) Constrained GA optimization.
In: Forrest, S., ed., Proceedings of the 5t h International Conference on
Genetic Algorithms, 573-580. Morgan Kaufmann.

ScHRAUDOLPH, N. and BELEW, R. (1992) Dynamic parameter encoding for

Evolutionary computation 337

genetic algorithms. Machine Learning, 9, 1, 9-21.
SCHWEFEL, H.-P. (1977) NV,merische Optimierv,ng von CompV,ter-Modellen

mittels der Evol11tionsstrategie, 26 of Interdisciplinary systems research.
Birkhauser, Basel.

SCHWEFEL, H.-P. (1995) Nv,merical Optimization of CompV,ter Models. John
Wiley & Sons, New-York - 2nd edition.

SCHWEFEL, H.-P. and MANNER, R., ed. (1991) Proceedings of the First In-
ternational Conference on Parallel Problem Solving from Nature (PPSN).
Springer-Verlag, Lecture Notes in Computer Science, 496.

SEBALD, A.V. and FOGEL, L . J . (1994) Proceedings of the Third AnnV,al Con-
ference on Evofotionary Programming, San Diego, CA, World Scientific.

SHAEFER, C.G. (1987) The argot strategy: Adaptive representation genetic
optimizer technique. In: Proceedings of the 2nd International Conference
on Genetic Algorithms. Lawrence Erlbaum Associates, 50-55.

SPEARS, W.M. (1995) Adapting crossover in evolutionary algorithms. In:
McDonnell, J.R., Reynolds, R.G. and Fogel, D.B., ed., Proceedings of
the Fourth AnnV,al Conference on EvolV,tionary Programming. The MIT
Press, 367-384.

SRINIVAS, M. and PATNAIK, L.M. (1994) Adaptive probabilities of crossover
and mutation in genetic algorithms. IEEE Transactions on Systems, Man,
and Cybernetics, 24, 4, 17-26.

SYSWERDA, G. (1991) A study of reproduction in generational and steady
state genetic algorithm. In: Rawlins, G.J.E., ed., FoV,ndations of Genetic
Algori:thms, 94-101. Morgan Kaufmann.

TAMAKI, H. and NISHIKAWA, Y. (1992) A parallel genetic algorithm based
on a neighborhood model and its application ot job-shop scheduling. In:
Manner, R. and Manderick, B., eds., Proceedings of the 2nd Conference
on Parallel Problems Solving from Nature, 573-582.

VENTURINI, G., ROCHET, S. and SLIMANE, M. (1997) Schemata and decep-
tion in binary genetic algorithms: a tutorial. Control and Cybernetics,
this volume.

VIGNAUX, G.A. and MICHALEWICZ, Z. (1991) A Genetic Algorithm for the
Linear Transportation Problem. IEEE Transactions on Systems, Man,
and Cybernetics, 21, 2, 445-452.

VOIGT, H.-M., EBELING, W., RECHENBERG, I. and SCHWEFEL, H.-P., eds.
(1996) Proceedings of the FoV,rth International Conference on Parallel

Problem Solving from Nature (PPSN). Springer-Verlag, New York.
WHITLEY, D. (1994) Genetic Algorithms: A Tutorial. In: Michalewicz, Z.,

ed., Statistics e3 CompV,ting, special issue on evolutionary computation, 4,
2, 65-85.

WHITLEY, D. (1989) The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In: Schaffer, J.D., ed.,
Proceedings of the 3r d International Conference on Genetic Algorithms,
116-121. Morgan Kaufmann.

338 M. SCHOENAUER and Z. MICHALEWICZ

XIAO, J . , MICHALEWICZ, Z., ZHANG, L. and TROJANOWSKI, K. (1997)
Adaptive evolutionary planner/navigator for mobile robots. I E E E Trans-
actions on Evolutionary Computation, 1, 1, 18-28.

