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Abstract: The issue of ORPD (Optimal Reactive Power Dis-
patch) for enhancing security and economy of a power system has
been given substantial consideration in recent days. The major in-
spiration behind deploying an ORPD system for enhancing power
system efficiency is to reallocate the RP (reactive power) in such a
manner that power loss be minimized, and voltage profiles get en-
hanced. Hence, this paper concerns the major objectives, namely,
reduction of power loss and voltage deviation that are related to
solving ORPD problem under unbalanced condition. To attain these
objectives, an amalgamation of two algorithms, called CS (Cuckoo
Search) and GWSO (Glow Worm Swarm), is adopted for optimiz-
ing, and hence the proposed model is referred to as CP-GWSO.
This algorithm functions with the control parameters, namely load
reactance, voltage and transformer tap settings that are tuned to
attain the optimum outcome. The entire empirical part of the in-
vestigations is performed on two IEEE standard test bus systems,
the IEEE 14 and the IEEE 39 bus systems. Finally, the proposed
scheme is compared to the conventional methods, and its efficiency
is confirmed.

Keywords: ORPD, power loss, voltage profile, Cuckoo Search,
Glow Worm Swarm

1. Introduction

The problem of ORPD refers to the effective service for setting up and func-
tioning of power systems, and it was initially introduced in the 1960s. ORPD
is regarded as one of the most significant fields within the OPF (optimal power
flow). It is a critical problem for safe functioning, since voltage control is very
much related to power networks (see, e.g., Ghasemi et al., 2014; Heidari, Ab-
baspour and Jordehi, 2017). Moreover, management of power in modern power
networks has become a major issue, as any negligence can endanger the security
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of the system. The ORPD has become a point of raising awareness over the
previous years (Nuaekaew et al., 2017; Mei et al., 2017; Rajan and Malakar,
2015). The cause is that ORPD brings about a significant effect regarding the
economical function of electrical systems (Mouassa, Bouktir and Salhi, 2017).
The intention behind the design of ORPD is to determine the tap ratio of
transformers, the voltage of generators and shunt compensators so as to opti-
mize transmission losses, taking into account the various parameters, considered
through equality and inequality conditions (Jangir et al., 2017; Naderi et al.,
2017; Aydin et al., 2017; Davoodi, Babaei and Mohammadi-ivatloo, 2018).

The abbreviations used throughout the paper:

Acronyms Descriptions

ORPD Optimal Reactive Power Dispatch
RP Reactive Power
CS Cuckoo Search
GWSO Glow Worm Swarm Optimization
CP-GWSO CS probability based GWSO algorithm
OPF Optimal Power Flow
VP Voltage profile
NLP Nonlinear Programming
FF FireFly
ABC Artificial Bee Colony
ABC-FF ABC based FF
IWO Invasive Weed Optimization
NGBWCA Gaussian bare-bones Water Cycle Algorithm
2ArchMGWO Two-Archive Multi-Objective GWO
MFO Moth-Flame Optimization
ALO Ant Lion Optimizer
PSO Particle Swarm Optimization
MVO Multi Verse Optimizer
FAHCLPSO Fuzzy Adaptive Heterogeneous Comprehensive-Learning PSO
APL Active Power Loss

To mitigate the potential shortcomings, related to the ORPD systems (Grover-
Silva, Girard and Kariniotakis, 2018; Attia, Sehiemy and Hasanien, 2018), it is
necessary to reallocate power to the point of least power loss; to develop ap-
propriate VPs; rated capabilities of network and equipment restrictions. In
view of the fact that the problem of ORPD (see Engelmann et al., 2017; Pag-
netti, Ezzaki and Anquoda, 2017) is a highly non-convex, nonlinear, large-scale
static programming problem, with intricate multiple constrains, its (optimum)
solution is by no means easily obtained. The modeled constraints involve, for
instance, discrete variables, along with other hard-to-tackle aspects (Biswas,
Suganthan and Amaratunga, 2017; Mohagheghi et al., 2018). The computa-
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tional schemes, exploited for establishing the improved ORPDs in the past,
have been the derivative based approaches, NLP and the like (El-Fergany and
Hasanien, 2018; Xu et al., 2018).

Even though securing better execution, some of the approaches to date still
involve certain shortcomings, which may negatively affect system reliability (see
Shilaga and Ravi, 2017; Benedito et al., 2017; Roberge, Tarbouchi and Okou,
2016). Accordingly, appropriately modeled objective functions have to be es-
tablished for purposes of tackling the design issues and the system consistency.
Thus, the overall problem becomes largely the one of multi-objective optimiza-
tion (see, in particular, Herrmann et al., 2016; Roald et al., 2015; Kshisundaram
and Sreedharan, 2015; Kumar, Manjunath and Christopher, 2018; Kota and
Gaikwad, 2017; Wagh and Todmal, 2015; Iyapparaja and Tiwari, 2017; Sarkar
and Murugan, 2017).

This paper contributes the methodology for solving the ORPD problem with
reduction of power loss and of voltage deviation using a hybrid algorithm, re-
ferred to as CP-GWSO. The proposed CP-GWSO scheme is compared with the
known algorithms such as GA (Vrionis, Koutiva and Vovos, 2014), FF (Wang
et al., 2017), PSO (Zhang and Xia, 2017), ABC (Gao et al., 2016), ABC-FF
(Shareef and Rao, 2018), GWSO (Zhou et al.,2013) and CS (Mareli and Twala,
2017), and the results are demonstrated. The paper is organized as follows:
Section 2 reports on related research and reviews, related to the topic under
consideration, while Section 3 describes the model of ORPD under unbalanced
condition. Then, Section 4 describes parameter optimization with the use of a
hybrid algorithm, Section 5 discusses the results, and Section 6 concludes the
paper.

2. Literature review

2.1. Related works

In 2014, Ghasemi et al. (2014) introduced a consistent and effective approach
depending on IWO for resolving the ORPD problem. Here, for realisation of
the local search in the neighbourhood of the global best, several modifications
were implemented, so as to improve the convergence rate in attaining a superior
solution quality. Moreover, the hybrid MICA-IWO offered an enhanced outcome
when compared to the conventional algorithms, and this was illustrated with
appropriate results.

In 2017, Heidari, Abbaspour and Jordehi (2017) presented the NGBWCA
approach, which was applied in dealing with the ORPD problem. Voltage vari-
ations and resistive losses were the objectives considered in this contribution.
The effectiveness of the established NGBWCA scheme was analyzed and com-
pared with the conventional approaches, and promising results were achieved.
The experimental results and numerical tests clearly revealed the effectiveness
of the NGBWCA algorithm in resolving the ORPD problem.

Also in 2017, Nuaekaew et al. (2017) presented the novel 2ArchMGWO
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technique for resolving the ORPD problem. Here, the optimizer was enhanced
from its original form by updating the reproduction function and applying the 2-
archive theory to the scheme. Moreover, the optimum outcomes, obtained from
a variety of optimizers were assessed on the basis of the hypervolume indicator,
and the results reported demonstrated that the adopted scheme was obviously
better than the others in the comparison presented.

Then, Mei et al. (2017) suggested a novel method, termed MFO, to deal
with the ORPD problem. MFO was applied to the ORPD problem to examine
the optimal grouping of control constraints for attaining the reduced total power
loss and reduced voltage variations. The experimentation results, reported with
respect to this work demonstrated that MFO has the capability of generating
better outcomes when compared to the conventional techniques.

Earlier, Rajan and Malakar (2015) introduced a new hybrid methodology
that combines the FF scheme for resolving the problems, related to ORPD.
The paper showed that the introduced methodology improved the convergence
features and robustness in comparison with the original version of FF and other
traditional schemes.

Mouassa, Boukir and Salhi (2017) presented the application of a newly de-
veloped approach, which was motivated by the hunting behavior of antlions,
referred to as ALO, for resolving the ORPD problem, considering a large-scale
power system. Evaluation of the obtained outcomes in comparison with those
of the conventional studies demonstrated the advantage of the ALO scheme in
terms of computational time and the magnitude of losses.

Jangir et al. (2017) adopted a novel scheme, based on hybrid PSO-MVO,
which was checked on certain test functions and the ORPD was optimized by
means of this novel proposed technique. The results obtained with this hybrid
technique were compared with other methods, namely PSO and MVO. The
effects of this comparison confirmed the efficiency of the new method relative
to the benchmark PSO and MVO schemes.

Naderi et al. (2017) presented a novel FAHCLPSO technique for resolving
the problems persisting in ORPD. After implementation, the results of the de-
veloped algorithm were compared with those of the conventional PSO, and the
results obtained showed the superiority of the new technique in resolving the
multifaceted optimization difficulties.

2.2. Review

Table 1 shows the methods, features, and challenges of the techniques referred
to in terms of solving the ORPD problems. Thus, in the case of MICA,
which was adopted by Ghasemi et al. (2014), which offers reduced power loss
and minimized voltage deviation, more complicated engineering issues have to
be solved. Concerning the NGBWCA, presented by Heidari, Abbaspour and
Jordehi (2017), this approach provided for improved efficiency and also solved
the convergence issues, but the recently developed heuristic schemes were not
considered in that work. The GWO technique, adopted by Nuaekaew et al.
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(2017), offers better exploration consistency along with the improved rate of con-
vergence, but provides no capacity of solving the multi-objective ORPD prob-
lem. Then, the MFO, proposed by Mei et al. (2017), which secures the reduced
transmission loss and is a simple approach, entailed more complex engineering
issues that have to be solved. The FA and NM methodology, implemented by
Rajan and Malakar (2015), offers better convergence and robustness, together
with minimized real power loss, but this approach is more complex. Then, the
ALO approach, which was proposed by Mouassa, Bouktir and Salhi (2017), and
which offers reduced computational time and minimized loss of power, requires,
though, an adequate empirical analysis. The PSO-MVO technique, presented
in Jangir et al. (2017), which provides better convergence features along with
minimization of fuel cost, requires more consideration of the RP loss. Finally,
FAHCLPSO, which was introduced in Naderi et al. (2017), providing minimized
voltage deviation along with reduced loss of power, offers no consideration as to
solving the ORDP problem in very large systems. The limitations mentioned
have, therefore, to be considered for solving the ORPD problems effectively.

3. The model of ORPD under unbalanced condition

3.1. The objective model

The APL minimization and improvement of the stability and voltage profile are
the major objectives of ORPD. The constraints considered as a vector are listed
in Eq. (1). In (1), PG indicates the slack bus power, Vli denotes the voltage
bus PQ, indexed by i (i = 1, 2, ,. . .NPQ), QGi symbolizes the RP output
of generator, again indexed by i (i = 1, 2, . . . , NG), where NG denotes the
generator bus count, and NPQ – the count of PQ bus. The control variable
vector is given by Eq. (2).

X = [PG1, Vl,1.......Vl,NPQ, QG,1......QG,NG] (1)

U = [VG,1, .....VG,NG, QC,1.....QC,NC , T1, .....TNT ]. (2)

In Eq. (2), VGi denotes the terminal voltage of the voltage controlled bus,
indexed by i (i = 1, 2, . . . , NG), QCi indicates the output of the shunt VAR
compensator, also indexed by i (i = 1, 2, . . . , NC ), Ti signifies the tap setting
of the tap changing transformer, again indexed by i (i = 1, 2, . . . , NG), NC
denotes the shunt VAR compensator count, and NT symbolizes the tap clanging
transformer count.

The chosen parameters are bound by the equality and inequality conditions,
and the overall objective function is given by Eq. (3), in which Fa indicates
the APL part of the problem considered, while Fb signifies the one related to
voltage deviation:

fi = αFa + (1− α)Fb. (3)
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Table 1. Review of state-of-the-art ORPD problem-solving techniques

Reference Methodology Features Challenges

Ghasemi et
al. (2014)

MICA - Reduced power loss
- Minimized voltage devia-
tion

- More complex engineering issues have to be solved

Heidari,
Abbaspour
& Jordehi
(2017)

NGBWCA - Improved efficiency
- Solves the convergence is-
sues

- No consideration of the recently developed heuristic schemes

Nuaekaew et
al. (2017)

GWO - Exploration consistency
- Improved rate of conver-
gence

- No consideration of solving multi-objective ORPD

Mei et al.
(2017)

MFO - Reduced transmission loss
- Simpler approach

- More complex engineering issues have to be solved

Rajan and
Malakar
(2015)

FA and NM - Better convergence and
robustness
- Minimized real power loss.

- Methodology is more complex

Mouassa,
Bouktir &
Salhi (2017)

ALO - Reduced computational
time
- Minimized loss of power.

- Requires adequate empirical analysis

Jangir et al.
(2017)

PSO-MVO - Better convergence fea-
tures
- Minimization of fuel cost.

- Requires more consideration regarding RP loss

Naderi et al.
(2017)

FAHCLPSO - Minimized voltage devia-
tion
- Reduced loss of power.

- No consideration of solving ORDP in very large systems
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3.2. Active power loss minimization

The APL minimization is performed with respect to the function, given by Eq.
(4):

Fa = Pl =

N
∑

k=1

gk[V
2
m + V 2

n − 2VmVn cos(δm − δn)]. (4)

In Eq. (4), Pl indicates the APL of the system, N denotes the count of trans-
mission lines and gk signifies the kth branch conductance between the mth and
nth buses. In addition, δm and δn indicate voltage phase angles of the mth and
nth buses, correspondingly.

3.3. Voltage deviation

The reduction of the voltage magnitude (Vi) of a bus at different loads from a
predetermined reference value (V ref ) of Vi is used to measure the improvement
of the voltage profile.

The voltage profile improvement is given by Eq. (5), in which ψ(x) denotes
the step function, given by Eq. (6).

Fb = VD =

LB
∑

i=1

Pfψ(V
min − Vm) + Pfψ(Vm − V max) (5)

ψ(x) =

{

1; if x ≥ 0
0; otherwise

. (6)

In Eq. (5), LB denotes the count of load buses, in which, in addition,

|Vm|
2
= |Vi|

2
− 2(r∼imPim + x∼imQim) + cim(P,Q). (7)

In Eq. (7), Vi signifies the voltage from load flow measurement at the balanced
condition. Then, Q and P indicate the reactive and real power magnitudes,
respectively. Furthermore, x and r denote the susceptance and the resistance
of the line, correspondingly.

r∼im = Re
{

aaH
}

⊗ rim + Im
{

aaH
}

⊗ xim (8)

x∼im = Re
{

aaH
}

⊗ xim − Im
{

aaH
}

⊗ rim (9)

a =
[

1 e
−j2π/3 e

j2π/3

]

(10)

cim = [zim[S∗

im./V
∗

i ]]⊗ [z∗im[Sim0
./Vi]] (11)

zim = r + jx (12)

Sim = [Pim + jQim]⊗ [z∼im(Pim − jQim)] (13)



316 Sk. Mahammad Shareef and R. Srinivasa Rao

z∼im = zim ⊗ (aia
H
i

−

). (14)

The power system has to maintain the voltage at all of the buses that are under
the normal functioning conditions, and it must be able to adapt to the interfer-
ences like the variation of load and the configuration of the system. Recently,
numerous main networks have been collapsing owing to voltage instability. The
voltage stability indicator is introduced in order to assess and maintain the
stability of voltage. L index value, calculated for each bus (Ln), denotes the
(potentially distorted) voltage condition of that specific bus. The value of Ln

for the nth bus is given through Eq. (15), in which n = 1, 2, ......., NPQ.

Ln =

∣

∣

∣

∣

∣

1−

NPV
∑

m=1

Fnm

Vm
Vn

∣

∣

∣

∣

∣

(15)

Fnm = [Ya]
−1 [Yb] . (16)

In Eq. (15), NPV denotes the PV bus count, while Yb and Ya in Eq. (16)
denote appropriate sub-matrices. The values of IPQ and IPV are given by (17),
following the separation of constraints regarding the PQ and PV buses.

[

IPQ

IPV

]

=

[

YaYb
YcYd

] [

VPQ

VPV

]

. (17)

The L index value is calculated for the all of the PQ buses and the value of Ln

is fixed as zero or one, based on the voltage collapse and no load condition of
the nth bus. Hence, the objective function could be as given by Eq. (18), where
n = 1, 2, . . . , NPQ.

Fc = max(Ln). (18)

3.4. Inequality and equality constraints

The equality conditions control the power system, including the load flow con-
dition formulations that are given below.

PGm − PDm − Vm
NB
∑

n=1
Vn [Bmn sin(δm − δn) +Gmn cos(δm − δn)] = 0

m = 1, 2........., NB
(19)

QGm −QDm − Vm
NB
∑

n=1
Vn [Bmn sin(δm − δn) +Gmn cos(δm − δn)] = 0

m = 1, 2.........., NB.
(20)

Accordingly, in Eq. (20), NB denotes the bus count, QGm and PGm denote,
respectively, production of reactive and active power of the system at the mth

bus, QDm and PDm represent the demand related to the reactive and active
power at the mth bus, respectively, and Gmn signifies the transfer conductance
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between the mth and nth buses. In addition, Bmn represents the susceptance
between the mth and nth buses.

The design prescription must include the capacity to restrict the magnitude
of RP and output voltage of generator and therefore, the respective upper and
lower limits are formulated as given by Eq. (21) and Eq. (22):

Qmin
Gm ≤ QGm ≤ Qmax

Gm , m = 1, 2, ......., NG (21)

V min
Gm ≤ VGm ≤ V max

Gm , m = 1, 2, ......., NG. (22)

The lower and upper limits on the RP at output in shunt VAR compensators
are determined as in Eq. (23).

Qmin
Cm ≤ QCm ≤ Qmax

Cm , m = 1, 2, ......., NC. (23)

The physical aspects restrain the lower and upper values of the transformer tap
setting in the way given by Eq. (24).

Tmin
m ≤ Tm ≤ Tmax

m , m = 1, 2, ......., NT. (24)

The transmission line loadings and voltage magnitude at the PQ buses are
incorporated in the security parameters. There exists a certain bound for the
voltage in the buses, and hence each line flow is appropriately constrained as in
Eq. (25) and Eq. (26).

V min
Lm ≤ VLm ≤ V max

Lm , m = 1, 2, ......., NPQ (25)

Slm ≤ Smax
lm , m = 1, 2, ......., N. (26)

4. Parameter optimization using a hybrid algorithm

4.1. Solution encoding

The constraints, such as those on RP (Q), voltage magnitude (V ) and trans-
former tap setting (T ), are given as input to the proposed CP-GWSO model
for solving the ORPD problem. The RP of five generator buses (bus numbers:
one, two, three, six and eight), voltage magnitudes of buses thirteen and three,
transformer tap settings of three buses: numbers eight, nine and ten, are opti-
mally fixed by means of the adopted CP-GWSO model that can minimize the
power loss and voltage deviation.

Q
1

Q
3
Q
6
Q
8 V13 V3 T8Q

2 T9 T10 Xi

Figure 1. Solution encoding
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4.2. The Cuckoo Search algorithm

The Cuckoo Search (CS) algorithm is a method that has been developed by
mimicking the reproduction of cuckoos (Mareli and Twala, 2017). Usually,
cuckoos lay their eggs in the nests of former cuckoos with the expectation of
their babies being grown up by the alternative parents. During a certain period
the alternative parents can find out that the eggs in their nests do not actually
belong to them. In such circumstances, the unfamiliar eggs are pushed out from
the nests or the nests are deserted. The resulting approach is sketched through
the subsequent three conditions:

1. Every cuckoo chooses a nest arbitrarily and lays one egg in it.
2. The best nests with increased quality of eggs would be taken over for the

subsequent generation.
3. For a predetermined quantity of nests, a host cuckoo can find out an alien

egg with the probability P ∈ [0, 1]. Under such conditions, the host
cuckoo can either throw the egg or leave the nest and construct a new
nest in another place.

The final condition can be estimated by substituting a fraction of the v host
nests with the new ones. The fitness or quality qi of a solution can be measured
with the value of the objective function. From the execution point of view,
every egg in a nest indicates a solution, and every cuckoo can lay only one egg,
i.e. produce one solution. Moreover, no importance shift can be performed
among an egg, a cuckoo or a nest. The objective is to use the novel and capable
cuckoo egg (i.e. solution) to substitute for the worst solution in the nest. The
balance among global and local random walks is adjusted by a switching con-
straint G ∈ [0,1]. The global and local random walks are performed as shown
in Eqs. (27) and (28), respectively. Accordingly, in Eq. (27), Xi(U) and Xk(U)
denote the present positions, chosen by arbitrary permutation, β indicates the
positive step size scaling factor, Xi(U+1) designates the subsequent position,
s denotes the step size, ⊗ indicates the entry-wise product of two vectors, O
signifies the Heaviside step function, G symbolizes a variable that is exploited
to switch among the global and random walks, ε denotes an arbitrary variable
from the uniform distribution. Further, in Eq. (28), M(s,τ) indicates the Levy
distribution exploited to describe the step size of arbitrary walk.

Xi(U + 1) = Xi(U) + β s⊗ O (G− ε)⊗ (Xj(U)−Xk(U)) (27)

Xi(U + 1) = Xi(U) + βM (s, τ ) . (28)

4.3. Glow Worm Swarm optimization

The glow worms (see Zhou et al., 2013) hold a quantity of a luminescent sub-
stance named luciferin inside them. These insects have the habit of making
their own decisions based on their decision domain Zdi (0 < Zdi ≤ Zu). Assume
i glow worm that considers the k as the neighbor glow worm only if k lies within
its neighborhood limit.
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Particularly, the neighborhood is described as a local decision domain with
Zdi, which includes a variable neighborhood range that is limited by a radial
sensor range of Zu (0 < Zdi ≤ Zu).

• Initialization: During this phase, the glow worms are dispersed arbitrar-
ily in the search space, endowed with the objective of moving towards high
luminescence intensity. In addition, these glow worms hold the identical
luciferin intensity within the identical decision domain Z0, where Z0 is the
initial radiant sensor range.

• Luciferin-update: The position or location of glow worm i at time U is
Xi (U) and the relevant value of the objective function at ith glow worm lo-
cation at U is C (Xi (U)). Subsequent to this, we place C (Xi (U)) in place
of Ii (U), where Ii (U) denotes the level of luciferin, which is associated
to glow worm j at U . In Eq. (29), υ denotes the luciferin decay constant
(0 < υ < 1), while γ indicates the improvement constant of luciferin.

Ii (U) = (1− υ) Ii (U − 1) + γ (C (Xi (U))) (29)

• Movement: Here, every glow worm chooses its neighbor and further
shifts towards it with a specific probability; the j’s neighbor glow worm
is required to satisfy two conditions: (i) the glow worm is within the
decision domain of the jth glow worm; (2) luciferin value is superior to
the luciferin value of the jth glow worm; jth glow worm shifts toward
neighbour k, which originates from Wi (U) with a specific probability,
given by Kik (U), as shown in Eq. (30).

Kik (U) =
Ik (U)− Ii (U)

∑

l∈Wi(U) Il (U)− Ii (U)
. (30)

After the movement of the jth glow worm, the position is updated, which is
portrayed by Eq. (31), in which size denotes the step size.

Xi (U + 1) = Xi (U) + size ∗

(

Xk (U)−Xi (U)

||Xk (U)−Xi (U) ||

)

. (31)

• Neighborhood range update: The update model is given by Eq. (32),
in which α signifies a constant and nU represents a variable for controlling
the neighbor count.

Zid (U + 1) = min {Zud,max {0, Zid (U) + α(nU − |Wi(U)|)}} . (32)

4.4. The proposed CP-GWSO algorithm

The conventional GWSO includes more iterations and also exploits large swarms.
The here proposed GWSO algorithm constitutes an improvement by hybridiz-
ing through addition of the CS algorithm. Initially, the switching constraint G
of the CS algorithm is set at 0.25. In addition, an auxiliary random variable
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(rand) has been introduced into the proposed model. The new CP-GWSO al-
gorithm for optimal power flow is updated using the GWSO algorithm if the
value, relative to the switching constraint G, is greater than this random num-
ber. Or else, the proposed model will be updated using the Levy flight of the
CS algorithm, see formula (28). The pseudocode of the proposed CP-GWSO is
given by Algorithm 1.

Algorithm 1: Pseudocode of CP-GWSO algorithm

Set d- the number of dimensions
Set n- the number of glow worms
Consider size as the step size
Let Zid (U) be the position or location of i glow worm at U
time
Arbitrarily arrange the agents
for i =1 to n do Ii (0) = I0
Zid (0) = Z0

Set maxit as the maximum iteration number
Set U =1

while
(

U ≤ maxit
)

do
{

For each i glow worm, evaluate Ii (U) as defined in Eq.
(29)
For each i glow worm do
{
Set G as 0.25 as CS algorithm
If rand > G
Update position using GWSO algorithm

Wi (U) = {k : dik (U) < Zid (U) : Ii (U) < Ik (U)} ;
For each j ∈ Wi (U) do
Evaluate Kik (U) as per Eq. (30)

k = choose glow worm ( ~K)
Evaluate Xi (U + 1) as per Eq. (31)
Evaluate Zid (U + 1) as per Eq. (32)

Or else
Update position using Eq. (28) of CS algorithm
}end for
U = U + 1

}
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5. Results and discussion

5.1. Simulation procedure

The proposed CP-GWSO algorithm for enhanced solution to the ORPD problem
was implemented in MATLAB, and the experiments were performed on the
IEEE 14 and IEEE 39 standard bus systems. The investigations were carried
out for solving ORPD problems under certain loading conditions like APL (Fb)
and voltage penalty (Fa). Moreover, the performance of the CP-GWSO model
was compared with seven well known optimization models, namely, GA (Vrionis,
Koutiva and Vovos, 2014), FF (Wang et al., 2017), PSO (Zhang and Xia, 2017),
ABC (Gao et al., 2016), GWSO (Zhou et al., 2013), ABC-FF (Shareef and Rao,
2018), and CS (Mareli and Twala, 2017). As all of these schemes are stochastic
in nature and significantly depend upon the initial (arbitrary) solutions, the final
examination was made by carrying out tests more than five times. Consequently,
the best, worst, median and mean performances were noticed. In addition, the
standard deviation was also evaluated, in order to assess the consistency of the
model.

5.2. Comparative analysis

In order to achieve a better ORPD, the RP of five generator buses were fixed
optimally by means of the adopted CP-GWSO model. In this context, the
proposed scheme was compared with other schemes, as mentioned before, and
the results obtained are demonstrated in Table 2.

From this table, it can be seen that the overall cost function, obtained using
CP–GWSO for the IEEE 14 test bus system is by 1.39% better than for GA,
by 0.57% better than for FF, PSO, and ABC, by 1.76% better than for GWSO,
by 0.57% better than for ABC-FF, and by 1.31% better than for CS algorithms
(the values are obtained by expressing in per cent the ratio of the difference
of performance of the new and compared technique, divided by that for the
compared technique; a similar measure is also used further on in the subsequent
comparisons).

The performance of the techniques considered for IEEE 39 standard bus
system was examined in an analogous manner as this was done for the IEEE 14
bus. The results of the performance examination for the IEEE 39 standard bus
system are shown in Table 3. The analysis performed with respect to the other
algorithms considered shows that the cost function for the adopted scheme is by
0.29% better than for the GA, by 0.3% better than for the FF, by 0.7% better
than for the PSO, by 0.3% better than for the ABC, by 0.3% better than for
the GWSO, by 0.29% better than for the ABC-FF, and by 0.29% better than
for the CS.
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Table 2. Optimal control parameters and cost function reduction for IEEE 14 bus system

Optimal
control
param-
eters

Without
ORPD

With ORPD

CP-
GWSO

GAa FFa PSOa ABCa ABC-
FFa

GWSOa CSa

Q1 0 1.0702 3.7031 8.862 8.5772 3.7402 8.4847 9.2259 6.221
Q2 12.7 12.327 13.08 4.6506 2.9578 9.9836 19.854 10.873 13.193
Q3 19 2.8097 7.9879 8.0045 3.7 10.393 16.746 20 6.1003
Q6 7.5 17.172 6.6635 8.165 2.0333 1 7.3906 19.978 1.9331
Q8 0 2.8407 15.615 14.842 8.845 19.027 3.7973 1 11.013
V13 1.05 0.99065 0.98627 0.9605 0.92844 1.1 1.022 0.98625 1.1
V3 1.01 0.90079 1.0997 0.98461 0.94751 0.9 0.92425 0.98713 1.1
T8 0.978 0.95 0.95 0.94021 1.0415 0.89552 0.95 0.95 0.95
T9 0.969 0.95 0.95 1.01 0.97696 0.98732 0.95 0.95 0.95
T10 0.932 0.95 0.95 0.93552 0.98368 0.95 0.95 0.95 0.95
Fa 13.393 13.364 13.364 13.418 13.368 13.388 13.348 13.364 13.386
Fb 1.4817 1.4694 1.4694 1.4868 1.5929 1.4613 1.4804 1.4694 1.461
Final
fitness

0.29742 0.29496 0.29496 0.29844 0.29496 0.29333 0.29715 0.29496 0.29327

athese algorithms are implemented according to the previously mentioned references, here and in the following tables
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Table 3. Optimal control parameters and cost function reduction for IEEE 39 bus system

Optimal
control
param-
eters

Without
ORPD

With ORPD

Metrics GA FF PSO ABC ABC-FF GWSO CS
Q31 4.6 0.93619 0.82819 0.33262 0.13958 -0.98668 -0.60778 -0.99 -0.60778
Q32 0 -0.69109 -0.08438 -0.50416 0.52142 -0.39638 -0.8088 0.94075 -0.8088
Q35 0 0.38439 0.85027 -0.63735 -0.63288 -0.78022 0.28178 -0.45557 -0.93019
Q38 1.0265 1.0753 1.0259 1.0484 1.1 1.0715 1.0241 0.9 0.99502
Q33 0.9972 1.088 1.0828 0.97989 0.92709 1.0828 1.0152 0.90952 1.0152
Q34 1.0123 1.0868 1.0522 1.013 1.045 0.90138 1.0059 1.0859 1.0059
T44 1.025 0.96451 1.0099 0.98367 0.96439 0.96534 1.0025 0.96534 0.96619
T38 1.07 1.05 1.05 1.0528 1.05 1.05 1.0338 1.05 1.05
T35 1.006 1.0299 1.037 1.0135 1.0093 1.036 1.0327 1.0393 1.05
T36 1.006 1.0418 1.05 1.0187 1.0138 1.0465 1.0408 1.0498 1.05
Fa 43.591 43.147 43.637 42.755 43.28 43.142 43.088 43.142 43.078
Fb 50.352 8.9004 12.334 11.325 8.5168 8.9218 14.49 8.922 8.651
Final
fitness

38.995 36.298 36.304 36.469 36.327 36.298 37.368 36.298 36.192
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5.3. Statistical analysis

The statistical analysis of the results, obtained by the proposed CP-GWSO
algorithm in the attempts of attaining better ORPD is provided in Table 4 for
the IEEE 14 bus system. From the table, it is clear that the best performance
of the adopted scheme is by 0.57% better than that of GA, by 0.5% better than
that of FF, by 0.92% better than that of ABC, by 2.04% better than that of
ABC-FF, by 0.57% better than that of GWSO, and by 0.57% better than that
of the CS algorithm. Further, the worst performance of the CP-GWSO scheme
is by 1.16% superior to that of PSO and by 1.05% superior to that of the ABC-F
technique. Then, the mean performance of the presented method is by 0.12%
better than that of GA, by 0.12% better than that of FF, by 0.78% better than
that of ABC, by 0.12% better than that of ABC-FF, by 0.11% better than that
of GWSO, and by 0.22% better than that of the CS algorithm.

Analogously, Table 5 shows the comparative statistical analysis of the results,
obtained with the adopted scheme for the IEEE 39 bus system. So, its mean
best performance is by 0.29% superior to that of GA, by 0.29% superior to that
of FF, by 0.24% superior to that of PSO, by 0.29% superior to that of ABC-FF
and FF, by 0.29% superior to that of GWSO and by 3.09% superior to that
of the CS method. Then, the mean performance of the proposed CP-GWSO
approach is by 4.13% better than that of GA, by 4.68% better than that of FF,
by 0.35% better than that of PSO, by 0.2 % better than that of ABC, by 3.3%
better than that of ABC-FF, by 2.89% better than that of GWSO, and by 3.3%
better than that of CS.

Table 4. Statistical analysis of the results for the IEEE 14 bus system obtained
by various techniques

Techniques
Metrics

Best Worst Mean Median Standard

deviation

GA 0.29496 0.29496 0.29496 0.29496 6.67× 10−9

FF 0.29496 0.29496 0.29496 0.29496 1.66×10−10

PSO 0.296 0.29844 0.29694 0.29693 0.000933

ABC 0.29496 0.29496 0.29496 0.29496 3.26× 10−9

ABC-FF 0.29333 0.29806 0.2948 0.29424 0.001938

GWSO 0.29432 0.29715 0.29527 0.29496 0.001086

CS 0.29496 0.29496 0.29496 0.29496 1.41×10−15

CP-GWSO 0.29327 0.29496 0.29462 0.29496 0.000752

5.4. Analysis by altering the value of α

The proposed CP-GWSO model achieves the reduced loss also by altering the
variable α of the fitness function as given by Eq. (3). The graphical demon-
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Table 5. Statistical analysis of the results for the IEEE 39 bus system obtained
by various techniques

Techniques
Metrics

Best Worst Mean Median Standard

deviation

GA 36.298 36.305 36.301 36.299 0.003591

FF 36.298 36.313 36.303 36.302 0.006306

PSO 36.28 36.491 36.413 36.469 0.09631

ABC 36.298 36.482 36.359 36.327 0.077518

ABC-FF 36.298 36.298 36.298 36.298 5.11× 10−9

GWSO 37.347 37.368 37.364 37.368 0.00955

CS 36.298 36.298 36.298 36.298 2.38×10−14

CP-GWSO 36.192 36.322 36.286 36.304 0.05332

stration of the results from the proposed scheme by altering α is shown in Fig.
2.

Thus, in Fig.2 (a), for the IEEE 14 bus system, the α value in fitness function
is altered, and the voltage penalty, loss, as well as the final fitness are evaluated.
The loss is similar for the entire range of values of α. The voltage penalty is
minimum for the value of α = 0.4, and the most reduced final fitness is attained
for α = 0.8. In Fig.2 (b), for the IEEE 39 standard bus system, it is shown that
loss is the lowest when choosing α = 0.6, voltage penalty is most reduced for
α = 0.6, and best possible final fitness is attained in choosing α = 0.2.

Figure 2. Graphical representation of the results for the ORPD problem with
altering of the value of α for (a) IEEE 14 bus system (b) IEEE 39 bus system
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6. Conclusions

The adopted CP-GWSO algorithm is described in this paper as used for the
aim of solving the ORPD problem. Here, the ORPD problem was represented
as a non-linear optimization problem. It is being resolved by considering the
twin objectives of reduction of power loss and reduction of voltage deviation.
For achieving such objectives, CS and GWSO schemes were hybridized, and the
resulting procedure was termed CP-GWSO. The performance of the CP-GWSO
scheme was compared with that of a number of other techniques, here also re-
ferred to, and satisfactory results have been obtained. In terms of statistical
analysis, the best performance of the adopted scheme was by 0.57% better than
that of GA, by 0.5% better than that of FF, by 0.92% better than that of ABC,
by 2.04% better than that of ABC-FF, by 0.57% better than that of GWSO,
and by 0.57% better than that of the CS algorithm for IEEE 14 bus system.
For the IEEE 39 bus system the mean best performance of the adopted new
scheme was by 0.29% superior to that of GA, by 0.29% superior to that of FF,
by 0.24% superior to that of PSO, by 0.29% superior to that of ABC-FF and
FF, by 0.29% superior to that of GWSO, and by 3.09% superior to that of the
CS method. Hence, the superiority of the adopted method in the terms of the
results for the ORPD problem has been substantiated successfully.
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