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Abstract: Researchers concerned with the control of various 
complex systems have become quite enthusiastic about fuzzy ap­
proaches. The need to transform observed data into fuzzy numbers 
and then to defuzzify the fuzzy numbers into control actions causes 
some problems when a general design paradigm for fuzzy controllers 
is sought. Now, a control system is essentially a knowledge-based 
system and its knowledge is uncertain, often being described in prob­
abilistic terms. This prompts us to consider application of any of the 
available approaches to handling uncertain knowledge to control. In 
particular, approaches based on probability theory are attractive. 

The Dempster-Shafer theory of evidence has proved powerful 
for handling uncertainty in other domains, and yet little work has 
been done in applying it in control. We have previously proposed a 
method, called the Combination- Update ( CU for short) method, for 
handling uncertainty based on the theory. We also outlined a way 
to apply the CU method to system control. 

In this paper we indicate a way of applying non-truth functional 
methods in complex system control. In our method, instead of us­
ing fuzzy logic as the decision making system, Belief Logic, which 
has been developed for the capture of the logical properties of the 
Dempster-Shafer theory of evidence , is adopted. Since Belief Logic 
is consistent with the two-valued logics our method will not suffer 
the documented problems associated with fuzzy logic. 

Keywords: control system, uncertainty, probabilistic reasoning, 
belief logic. 

1. Introduction 

Fuzzy control (for survey see Yamakawa and Hirota, 1989; Lee, 1990) is now a 
very active research area in the application of fuzzy set theory, Zadeh (1965). 
It has been shown to be successful, in Japan especially, for the control of simple 
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electric devices and in car components, for example. Now in addition to a knowl­
edge base/database storing expert knowledge which is essentially uncertain, and 
a reasoning engine which is based on fuzzy logic, a typical fuzzy controller also 
consists of a fuzzifier and a defuzzifier. These are required because knowledge 
representation in a fuzzy controller is based on fuzzy sets and fuzzy logic, while 
the behaviour of the system to be controlled is usually measured by statistics or 
probabilities. The observed data has to be transformed into fuzzy numbers by 
a fuzzifier, and control commands which are fuzzy numbers have to be mapped 
to control actions by a defuzzifier. 

The facts that knowledge in a control system is uncertain and the behaviour 
of controlled systems are often measured by statistics or probabilities suggests 
that other approaches to handling uncertainty based on probability theory can 
be candidates in complex system control. An example is the Dempster-Shafer 
theory of evidence , Shafer (1976), Guan, Bell (1991). 

On the other hand, logical systems are necessary for making decisions in a 
control system. An approach for handling uncertainty to be applied to system 
control must be accompanied by a logical component. When extending standard 
two-valued logics to enable them to handle uncertainty, we would hope that 
the extended system is consistent with standard two-valued logics. That is, if 
all propositions are certain then the logical system should be identical to the 
standard two-valued logic. If so, the logical system is said to be consistent with 
the standard two-valued logic. 

In more detail, if there exists a function f defined on all formulas of a logical . 
system that can be decomposed with logical connectives then the logical system 
is said to be truth functional with respect to f. One way to ensure that a logical 
system handling uncertainty is consistent with the standard logical system is to 
define such a function to represent uncertainties of propositions1 , i.e. to make 
the system truth functional with respect to the uncertainty measure. 

But there is a difficulty here. Bundy (1985) has proved a general result that 
the simple combination of any purely numerical method for handling uncer­
tainties and standard two-valued logic may result in inconsistencies, i.e., "the 
logical connectives cannot be truth functional with respect to probabilities, or 
any other purely numeric uncertainty measure." So a direct extension of stan­
dard logical systems with the mechanism of handling uncertainty cannot give 
the desired result - that two-valued logics should be trivial cases. This fact 
gives the motivation for the present study. 

In this paper we indicate a way of applying non-truth functional methods 
in complex system control. The Dempster-Shafer theory of evidence is adopted 
as a basis for our approach. This has been proved to provide a powerful tool 
for handling uncertainty, Guan, Bell (1991), and some knowledge-based systems 
based on the Dempster-Shafer theory of evidence have been established, see for 
example Kak (1990), Sa:ffiotti, Umkehrer (1991). 

1 A particular case is when f is a set membership function. 
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An important feature of the Dempster-Shafer theory of evidence is that it 
permits an explicit representation of ignorance and does not assume that degrees 
of beliefs in a set of propositions are uniformly allocated to the individual propo­
sitions. The investigation of the logical properties of ignorance has resulted in a 
new logical system, Belief Logic, Bell, Shi, Hull (1995), which can express igno­
rance. This offers the possibility of expressing uncertainty without conforming 
to the requirement that a complete specification of uncertainties must be given 
before conducting reasoning, Pearl (1988). Furthermore, it allows our attention 
to be focussed on interesting propositions by ignoring all other factors. Since 
Belief Logic is not truth functional, it promises a solution to the problem that 
fuzzy set theory and probability theory have left unsolved. 

Some researchers have tried to apply the Dempster-Shafer theory of eviden­
ce to control systems, see Inagaki (1991), Murphy (1991). We have previously 
suggested this also: Bell, Shi, Hull (1994), Shi, Hull, Bell (1994). In this paper 
we supplement the approach based on our previous work on dealing with un­
certainty, which is called the Combination- Update ( CU for short) method, Shi, 
Hull, n this method, the control processes are considered as repeatedly com­
bining and updating beliefs of an agent ( or controller) using Dempster's rule of 
combination - Shafer (1976) - and the proportional sum which is proposed in 
Shi, Hull, Bell (1994). Control decisions are made within the framework of Be­
lief Logic. An immediate advantage of adopting the Dempster-Shafer theory of 
evidence in system control is that the observed data of controlled systems is con­
sistent with the controller's internal representation, since the Dempster-Shafer 
theory of evidence is a generalization of probability theory. 

The rest of this paper is organized as follows. In the next section we give a 
brief introduction to the Dempster-Shafer theory of evidence and Belief Logic 
and our rule for updating beliefs. In section 3 we describe how to apply the CU 
method in control systems. 

2. Representing beliefs 

In this section we give a description of Belief Logic, Bell, Hull, Shi (1995). 
First we introduce some basic concepts of the Dempster-Shafer theory of evi­
dence . An updating rule, the proportional sum, Shi, Hull, Bell (1994), is 
also presented. For more details of the Dempster-Shafer theory of evidence the 
reader may consult Shafer (1976), or Guan, Bell (1991). 

2.1. Mass and belief functions 

The Dempster-Shafer theory of evidence generalizes the Bayesian method and 
gives an approach to inference with uncertainty in artificial intelligence, see 
Goodman, Nguyen (1985), Abel (1988). Each given piece of evidence supports 
a set of propositions which are represented as subsets of a set, called a frame 
of discernment. Informally, a frame of discernment is a set of all the possible 
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truth-values that some propositions of interest can take. Each proposition is 
related to one subset of the frame of discernment. The basic propositions are 
exhaustive and mutually exclusive. The power set of a frame of discernment is 
called an evidential space. If a subset of a frame of discernment is considered as a 
set of possible worlds in which the corresponding propositions are true, then the 
subset represents a proof of the related proposition, where each possible world 
is an element of the proof. Because of the correspondence between a proof and 
a proposition, we may consider a proof as a proposition. 

It is because a proof may not establish a proposition completely that the 
uncertainty arises. From the relationship of the proposition to the proof we 
have a subjective degree of belief for the proposition. To express this the mass 
of a proposition is introduced, which represents the weightiness of a proof of the 
associated proposition. The masses of all propositions of an evidential space are 
given by a mass function. 

Let e be a frame of discernment. A mass function m on frame 8 is a 
mapping from evidence space 28 to the real interval [0, 1] with the following 
restriction: 

(ml) m(0) = 0, 
(m2) LAE2e m(A) = 1 
We are interested only in propositions whose proofs have non-zero masses. 

We call such proofs focal proofs ( or focal elements) of a mass function. The union 
of all focal proofs is called the core of the mass function. When we present a 
mass function we give values to focal proofs only. We define Me to be the set 
of all mass functions defined on the frame of discernment 8, and use P(m) to 
denote the set of all focal elements (or propositions) of the mass function m, 
i.e., suppose e is a frame of discernment, then 

P(m) ={AI A E 28 and m(A) > 0} 

Some other functions are used when conducting reasoning with uncertainty. 
Examples are the belief function and the plausibility function. These functions 
are collectively called evidential functions. 

Let 8 be a frame of discernment and m be a mass function on 8. The belief 
function bel and plausibility function pls induced by m are defined as follows. 
For each proposition A of 8 

bel(A) = L m(B) 
B<:;;A 

pls(A) = l - bel(A) = l - L m(B) 
B<:;;A 

PROPOSITION 2.1 (Shafer, 1976) Let bel : 28 -+ [0, 1] be a mapping. bel is a 
belief function if it satisfies the following conditions: 

(bl) bel(0) = 0, 



An appr6ach to systen1 control based on combination-update of belief 257 

(b2) bel(8) = 1, 
(b3) for any collection { A1, A2, ... , An} (n ~ 1) of subsets of 8, 

Ic;;;{l,2, ... ,n},I# 

Intuitively, a belief function defines a lower bound on the uncertainty of a 
proposition, while the corresponding plausibility function gives an upper bound. 
Therefore we can use the ordered pair (bel(A),pls(A)) to describe the uncer­
tainty of the proposition A. 

2.2. Representing ignorance explicitly 

Ignorance arises when drawing conclusions from an incomplete set of proposi­
tions. Given a set of propositions, if all possibilities are shared by the proposi­
tions, then no ignorance exists, since we know all possibilities. A special case is 
where there are only two propositions: A and its negation ,A. A belief function 
bel may not satisfy bel(A) + bel(,A) = 1, because ignorance may be present. 

Let 8 be a frame of discernment. Suppose m is a mass function on 8. For 
any subsets A1,, .. , An of e, n ~ 2, the ignorance 8A1, .. ,,An of A1, ... , An is defined 
as follows: 

m(B) 

The following proposition shows that if we add ignorance to the right hand 
of (b3), we then obtain an equality. 

PROPOSITION 2.2 Let 8 be a frame of discernment. Suppose bel is a belief 
function on 8. For any subsets A1 , ... , An of 8, n ~ 2, we have 

bel(A1 U A2 u ... U An) = 
Ic;;;{1,2, ... ,n},J#0 

By this proposition, we can rewrite (b3) as follows, 
(b3') bel(A1 UA2U ... UAn) = I:rc;;;{i,2, ... ,n},J#©(-l)IIl+lbeZ(niEI A)+8A1, ... ,An. 
A belief function therefore is an extension of probability measure function 

by introducing ignorance explicitly, and hence, the Dempster-Shafer theory of 
evidence is an extension of probability theory. The above definition of ignorance 
is not particularly clear. The following proposition which is a special case of 
Proposition 2.2 can allow a interpretation to the ignorance. 

PROPOSITION 2.3 Let 8 be a frame of discernment. Suppose bel is a belief 
function on 8. Then 

bel(A) + bel( ,A) + DA,~A = 1 
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Ignorance arises from interactions among some events. For a particular 
subset A, a belief function reflects all information about it. Because of ignorance 
we cannot derive bel(,A) merely from bel(A) 2 . By the proposition 2.3 we have 

bel( ,A) = l - bel(A) - 8A,,A 

So, if we know the ignorance associated with events A and ,A we can derive 
bel( ,A) from bel(A) and the ignorance. On the other hand, in probability theory 
if we know the probability that A occurs then we also know the probability of 
event ,A. It is easy to see that the following proposition holds. 

PROPOSITION 2.4 Let 0 be a frame of discernment. Suppose bel is a belief 
function on e. If for any subsets A1, ... , An of e, n 2 2, 8A1, .. ,,An = 0, then 
bel is a probability measure. 

2.3. Combining and updating evidence 

In the Dempster-Shafer theory of evidence each mass function defines degrees 
of belief for a set of propositions. Given two mass functions on a frame which 
stem from two pieces of evidence we need a method to combine them. That is, 
we require to combine two mass functions so that we can get new, combined 
degrees of belief for the propositions. Dempster's rule of combination allows us 
to do this. 

Let 0 be a frame and m 1 and m 2 be two mass functions on 8. If 
LBnkf@ m1(A) · m2(B)-=/- 0 then m1 and m2 are said to be combinable. 

Let m 1 and m2 be two combinable mass functions on frame of discernment 
0. The combination m 1 ffi m2 is defined as follows. For each subset A =I- 0 of 0, 

( )(A) _ LA,,Bj<;;G;A,nBj=A m1(Ai) · m2(B1) 
m1 ffi m2 - " ( ) ) 

L.,A,,Bj<;;G;A,nBj#0 m1 Ai · m2(B.i 

This is called Dempster-'s rule of combination. There are different interpre­
tations of it corresponding to different interpretations of the Dempster-Shafer 
theory of evidence, Halpern, Fagin (1992). The first viewpoint is of Dempster­
Shafer theory as a generalization of Bayesian statistics, where the belief is given 
as generalized objective probability. The second is as a way of representing 
evidence, where the belief represents credibility. 

Dempster's rule of combination gives a way to combine two agents' beliefs. 
On the other hand we also need to consider another case: where an agent's 
beliefs are revised in the light of another agent's beliefs. When we say that 
one agent's belief is updated3 by another agent's belief, this means that all focal 
proofs related to the first agent remain unchanged, but the degrees of belief 

2This indicates the absence of truth-functionality in this case 
3We use the term update in this sense here. It should be noted that this term is sometimes 

reserved for a different concept - to reflect changes in the "world" being modelled. 
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of the propositions may be modified and therefore some focal proofs may no 
longer be focussed since their masses may be changed to zero. On the other 
hand, when combining two agents' beliefs, this means that a new set of focal 
proofs is obtained, which is an aggregated result for two agents, and the degrees 
of belief of focal proofs are also changed. This suggests a new rule for updating 
(rather than combining) evidence in the Dempster-Shafer theory of evidence . 
Since it uses a proportion to represent a combined mass, we call the new rule 
the proportional sum. 

Let 8 be a frame of discernment. Let m 1 and m 2 be two combinable mass 
functions on 8. Then the proportional rule of update or the proportional sv.m, 
m 1 0 m 2, of m1 and m2 is defined as follows: For all A E P(m1), 

( , )(A) - I:BEP(m2);AnHf0 m1(A). l~~fl . m2(B) 
m1 0 m.2 - -----'---------~-'----­

c 

where 

c= 

and we say that m 1 is updated by m2. 
The intuitive idea of the proportional sum is clear: when updating a mass 

function, we only consider the masses of subsets which remain and we reallocate 
masses according to the insufficient reasoning principle, a principle which is 
conspicuously not used for belief combination. This states that if there is no 
other information about the probabilities of a set of events, we assume that 
these events occur with equal probabilities. It is not difficult to verify that 
when using a mass function m2 to update another mass function m1, all focal 
proofs of the updated result m 1 0 m 2 are also focal proofs of m 1. 

Jeffrey (1983) considers the generalization of conditional probability, the 
Bayesian rule, which gives a way to update probabilities when more than one 
events occur. 

Suppose (M, S, µ) is a finite probability space, where M is a non-empty set, 
called universe; Sis a o--algebra consisting of subsets of Mandµ is a complete 
probability measure4 . Let (M, S', µ') be a finite probability space, where S' is 
a sub-algebra of S. Let B = {A1 , ... , An} be a base of S'. Jeffrey defines his 
generalized rule of conditionalization as follows: 

µ3(B) = L µ(Ai n B) • µ'(Ai)/ µ(A) 
AiEB 

We use the notation µ0µ' instead of µ3 in the above rule and we say that 
µ0µ' is the result of updating µ with µ'. As we have shown in Bell, Hull, Shi 

4If µ is not a complete probability measure, we can handle non-measurable subsets using 
the techniques of inner and outer probabilities, see Halpern, Fagin (1992). 
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(1995), if there is no ignorance for two mass functions m 1 and m 2, i.e. where m 1 
and m2 are probability measures, the proportional sum of m 1 and m2 turns out 
to be Jeffrey's rule of conditionalization. That is, when there is no ignorance 0 
and 0 give the same result. 

PROPOSITION 2.5 Suppose that m 1 and m 2 are probability measv,res. Then 

(µ0µ')(A) = (m1 0 m2)(A) 

This proposition is important in system control when there is enough in­
formation to establish a probability measure for the behaviour of a controlled 
system. In this case techniques based on probability theory can be applied. In 
cases where there is insufficient information, we need to include ignorance and 
hence use EB. 

2.4. Belief logic 

Since classical logics are not suitable for representing some features of knowledge 
such as uncertainty, imprecision and fuzziness in artificial intelligence, various 
extensions have been proposed, e.g. fuzzy logic, probabilistic logic, Nilsson 
(1984), and Incidence calculus, Bundy (1985). A weakness of systems based on 
probability theory is that all subsets must be assigned subjective probabilities 
in such a way that all axioms of probability theory are satisfied. In other words, 
it requires a complete specification of probabilities of all subsets. Although we 
can use some methods to reduce the number of assignments of probabilities, 
we are not permitted to concentrate only on some interesting propositions and 
ignore all other propositions. 

Belief Logic can be considered as an extension of Incident Calculus which 
is based on the Dempster-Shafer theory of evidence . Therefore, it allows the 
explicit expression of ignorance. In Bell, Shi, Hull (1995) we have shown that if 
no ignorance exists or if we have enough information to establish a probability 
structure, beliefs turns out to be probabilities. 

Let 8 be a frame of discernment. A Belief Logic is a structure: 

EL=< 8, bel, £, Ac, t > 

where ,C is a logic language, bel is a belief function, t is a truth assignment defined 
on a set of propositions of£, t assigns a subsets of 8 to each proposition. 

(11) For any a E £, ift(a) is defined then t(a) ~ 8. 
(12) t(true) = 8, t(false) = 0 
(13) t(,a) = 8 - t(a) 
(14) t(a A (3) = t(a) n t((J) 
(15) t(a V (3) = t(a) U t((J) 
(16) t( a --+ (3) = t( ,Q!) U t((J) 
Generally a truth assignment is not necessarily a total function. For example, 

it can be defined on the set of axioms used in Incidence Calculus, Bundy (1985). 
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Figure 1. Basic diagram of CU controllers. 
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Belief Logic retains the main advantage of Incidence Calculus - that logical 
connectives are truth functional with respect to truth assignment. It should 
be noted that, in Belief Logic, logical connectives are not truth functional with 
respect to uncertainty measure or the belief function. The method of finding a 
legal assignment in Incidence Calculus, Bundy (1986) can then be used in Belief 
Logic. 

3. CU controllers 

In this section we describe the basic ideas of applying the Dempster-Shafer the­
ory of evidence in system control. The controllers are called CU controllers, 
since the reasoning process is a repeated application of the combining and up­
dating rules described in Section 2. 

3.1. A general scheme 

The application of the Dempster-Shafer theory of evidence to system control is 
inspired by the CU method, Shi, Hull, Bell (1994), for handling uncertainty in 
Knowledge Based systems. A control system is considered as a special Know­
ledge Based system ( CU controller). 

Figure 1 gives a basic configuration of a CU controller which, apart from the 
controlled system (process), consists of three components: belief transformation, 
Knowledge Base and decision making logic. 
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The behaviour of a controlled system is captured by sensors and then trans­
formed into mass/belief functions by belief builders BB1, ... , BBn, All these 
mass/belief functions are combined together using Dempster's rule of combi­
nation. The combined result is then used to update the system state which is 
also represented as a mass/belief function. Knowledge of application domain 
is stored in the Knowledge Base. The core of a CU controller is the decision 
making logic which is based on Belief Logic. 

Notice that representation of the system states requires 3 evidence-handling 
operations - transformation by uncertain rules ( each having a rule strength) 
is required as well as the combination and update discussed above. The trans­
formation process is application domain based. The rules represent knowledge 
about the system. Some of them permit translation to be made between eviden­
ce items referring to different entities. These can be used to homogenise sensor 
evidence. For example, if a controlled system state transition depends on tem­
perature change, but pressure (rather than temperature) is monitored by the 
sensors, then a rule relating temperature to pressure can be used to translate 
the pressure evidence to temperature evidence. The evidence qualities might 
be further compromised by the use of this (uncertain) rule. A simple function 
of rules for transformation is to adjust the amount of belief (confidence) that 
we assign to some evidence from a sensor which is itself not entirely trustwor­
thy. For example, if a sensor registers "vehicles in any monitoring range" with 
a certain degree of confidence, it is surely interesting if that sensor has only a 
90% reliability. The degree of confidence must be adjusted or transformed in 
the light of this imperfection. 

The reasoning process is as follows. I<rom sensors a set of pieces of evidence 
is obtained and from each piece of evidence a mass/belief function is derived, 
i.e. mi/beli, ... , mn/beln, Beliefs represented by mi/bel1, ... , mn/bel.,,, are 
combined by Dempster's rule of combination. A combined result which is also 
a mass/belief function is obtained, i.e. 

m,c = m,1 EB ·m2 · · · EB m.,,,. 

or 

belc = bel1 EB bel2 · · · EB beln. 

The (initial) state of system is represented as a mass/belief function m 8 /bel 8 

which is updated by the combined belief mc/belc. The system state is trans­
formed, by rules in the Knowledge Base. Actions are decided by the Decision 
Making Logic Unite - used to control the system. The new behaviour of 
the controlled system is continually captured by sensors and then the above 
combining-v,pdating process is repeated. 

3.2. Belief transformation 

The essential part of a CU controller is the Belief Transformation which com­
prises three parts: sensors, belief builders and state space as shown in Figure 
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1. Observed data related to the behaviour of the controlled system is often 
expressible in a statistical or probabilistic form. A belief builder associates the 
observed data with beliefs or masses. Since the Dempster-Shafer theory of evi­
dence permits an explicit representation of ignorance and does not assume that 
degrees of beliefs in a set of propositions are uniformly allocated to the individu­
al propositions, a sensor's attention can be concentrated by the corresponding 
belief builder on some interesting states. 

EXAMPLE 3.1 Many factors such as temperature, wind direction and wind 
strength will affect a sensor in detecting the speed of a flying object. However, 
if the wind direction and strength are the main factors, we might want to focus 
on them by ignoring the others. A frame of discernment is formed. 

8 = { same - direction, ;trong - wind, high - temperature} 

where same - direction represents that the flying object has the same direction 
as the wind; and the other factors, strong -wind and high - temperature have 
the obvious meanings. A mass function which focusses as described above can 
be given as fallows. 

m( { same - direction}) = 0.45, m( { strong - wind}) = 0.35, m( e) = 0.2 

Note that the joint effect of temperature, wind direction and wind strength is 
expressed by mass of e - the ignorance associated with m. 

A CU controller allows multiple evidence, i.e. more than one sensor can be 
used to detect the same parameter of the controlled system. This is particu­
larly useful for critical system control, where the reliability of observed data is 
enhanced by multiple sensors. Dempster's rule of combination presents a way 
to combine the beliefs given by such a collection of sensors. Suppose that beli, 
.... , beln are belief functions produced by belief builders BB1 , ... , BBn, Then 

bel = beli E9 · · · beln 

gives the combined results of observed data. 
The system state is also expressed by a mass/belief function, which can be 

considered as the current state of the system. The reason for introducing the 
system state is that, in general, beliefs of rules in Knowledge Bases are not 
allowed to be changed, i.e. non-monotonic reasoning is not permitted. On 
the other hand, the uncertainty of knowledge of controlled systems requires 
modification of the confidence strengths or beliefs. This transitory knowledge, 
as opposed to the relatively "timeless" knowledge in the Knowledge Base is 
knowledge of the controlled system's state. 

A new system state is produced by updating the previous state using the 
combined result of observed data. The system state triggers rules in the Knowl-
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edge Base, and causes the system to make decisions on actions to control the 
system5 • 

As illustrated in the last section, when belc and bel8 become probability 
measures, Belief Logic will become a probabilistic logic, see Nilsson (1984), 
Bundy (1985). This indicates a way of dealing with observed data in probability 
theory. 

3.3. Representing uncertain knowledge 

When applying rule-based methods to represent knowledge in knowledge-based 
systems, we form two spaces: one is the evidence space which can be considered 
as a set of premises; and the other is the hypothesis space. Then a rule -is a 
mapping from the evidence space to the hypothesis space. Evidence associated 
with rules is used to represent "rule strength" as in Figure 2. 

As indicated in Guan, Bell, Lesser (1990) it is difficult to apply the Dempster­
Shafer theory of evidence directly to rule-based systems since the application 
of Dempster's rule of combination to combine beliefs of two spaces may result 
in inconsistencies. Yen (1989) introduces a probabilistic mapping between the 
evidence space and hypothesis space and uses conditional probabilities to rep­
resent uncertain relationships between evidence and hypotheses. Conditional 
probability can only deal with a simple case, i.e. where one event occurs. How-

5Of course, in an ideal world, rules in the Knowledge Base could be updated as well, and 
we are interested in this problem (e.g. in data mining, Piatetsky-Shapiro, Frawley 1991), but 
we exclude that possibility here, for clarity of the main ideas of the CU controller. 



An approach to system control based on combination-update of belief 265 

ever, Jeffrey's generalization - Jeffrey (1983) - of conditional probability can 
be applied to arbitrarily many events. Another problem is that the mixture 
of two theories is not convenient since we have two interpretations to evidence 
and hypothesis spaces. Guan, Bell and Lesser (1990) generalize Yen's method 
from probability theory to the Dempster-Shafer theory by giving an evidential 
mapping that uses mass functions to express these uncertain relationships. 

We follow these ideas and use the proportional sum in Dempster-Shafer the­
ory of evidence , which corresponds to Jeffrey's generalization of conditional 
probability, to represent uncertain relationships between evidence and hypothe­
ses. In our method a rule has the following form: 

If e1 then hu, ... , hlk1 with m1 else 

If en then hn1, ... , hnkrn with mn 

where e1 , ... ,en are pieces of evidence which form an evidence space and for each 
i, hil, ... , hiki are hypotheses represented by subsets of a frame of discernment 
0, and mi is a mass function on hil, ... , hiki. A Knowledge Base is a set of such 
rules that have the same frame of discernment. 

The following proposition gives a method for transforming beliefs using rules. 

PROPOSITION 3 .1 Given an uncertain rule as above and a mass function m on 
e1, ... ,en, the function m/ : e1, ... , en --+ [O, l] 

n 

m'(hj) = L m(ei) · mi(hj) 
i=l 

for j = 1, ... , n, is a mass function. 

3.4. Inference mechanism 

A system state represented as a mass/belief function is transformed into a 
mass/belief function by use of above propositions. Actions for controlling a 
system are associated with propositions which are represented as subsets of a 
frame of discernment. In Example 1, the following propositions 

(1) Flight is in the same direction as the wind 
(2) Wind is strong 

represented as subsets 

{ same - direction} and { strong - wind} 

respectively, are associated with actions 
(1) Reduce flying speed, and 
(2) Change flying direction. 
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Then the proposition "flight is in the same direction as the wind:' or "wind 
is strong" is represented by subset { {same-direction}, {strong-wind}} which 
is associated with actions Reduce flying speed or Change flying direction. 

Decision making is performed in Belief Logic. Since Belief Logic is truth 
functional with respect to truth assignment, only a set of propositions ( called 
axioms) are assigned to subsets of the frame of discernment. Propositions which 
are the most believable, i.e. those where the corresponding subsets which have 
the largest associated beliefs, are chosen and the associated actions are per­
formed to control the system. 

4. Discussion 

In this paper we have proposed a new method, called the CU method, for 
control systems based upon the Dempster-Shafer theory of evidence and our 
previous work on dealing with uncertainty. The motivation for this work stems 
from the inconvenient fact that the behaviour of a system to be controlled, 
usually measured by statistics or probabilities and the observed data, has to 
be transformed into fuzzy numbers by a fuzzifier, and control commands which 
are fuzzy numbers have to be mapped to control actions by a defuzzifier. The 
fact that knowledge in a control system is uncertain suggests the hypothesis for 
our study that other approaches for handling uncertainty based on probability 
theory can be candidates in complex system control. 

There are some advantages of applying the Dempster-Shafer theory of evi­
dence in system control. First, the Dempster-Shafer theory of evidence is based 
on probability theory and, therefore, the behaviour of a controlled system can 
be represented directly. This overcomes the fuzzifying/ defuzzifying inefficiency 
noted above. Second, the Dempster-Shafer theory of evidence permits an ex­
plicit representation of ignorance and does not assume that degrees of beliefs 
in a set of propositions are uniformly allocated to the individual propositions. 
This allows a sensor to be concentrated by the corresponding Belief Builder on 
to some interesting states. Furthermore, the Decision Logic, which is based on 
Belief Logic, retains the main advantage of Incidence Calculus - that logical 
connectives are truth functional with respect to truth assignment. The method 
of finding a legal assignment in Incidence Calculus can then be used in Belief 
Logic. 

Further work is required on the efficiency of the algorithms of combining and 
updating beliefs. In general, the computation of Dempster's rule of combina­
tion and the proportional sum on arbitrary structures of a frame of discernment 
is exponentially complex. Care must be taken when using these operations 
in general, because they are not commutative. One way to reduce the com­
plexity is to find a simpler structure to represent evidence which still retains 
applicabability in practice. For example, in some applications, a simple hierar­
chy, Gordon, Shortliff (1985), which has been used to represent knowledge in 
Knowledge Based syst~ms, can be adopted to represent uncertainty. Algorithms 
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of combining and updating beliefs, Guan, Bell (1992), Shi, Hull, Bell (1994), 
which have linear complexities have been proposed. Parallelism is another pos­
sible route to efficiency. The techniques of applying the approach proposed in 
this paper to practical system control should be also investigated. 
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