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A b s t r a c t :  The use of neural networks in control systems can 
be seen as a natural step in the evolution of control methodology 
to meet new challenges. Many attempts have been made to apply 
the neural networks to deal with non-linearities and uncertainties of 
the control systems. Research in neural network applications to con-
trol can be classified according to the major methods depending on 
structures of the control system, such as NN-based Non-linear Sys-
tem Identification, NN-based Supervised Control, NN-based Direct 
Control, NN-based Indirect Control, NN-based Adaptive Control, 
NN-based Self-learning Control, NN-based Fuzzy Control, and NN 
Variable Structure Control. 

All these control methods cannot, however, effectively guarantee 
system stability, i.e. none of these neural network controls, except 
for NN-based Variable Structure Control, is based on system stabil-
ity. This also limits the application and development of the neural 
networks in control theory. 

The paper shows the effort to solve this difficulty and give a 
way for the design method of the stability based neural networks 
controller using Lyapunov second stability theorem. This kind of 
controller can not only guarantee system stability, but also fully com-
pensate for the influence of system uncertainties and non-linearities. 
Simulation results also show the effectiveness of the controller. 

Keywords :  neural networks control, nonlinear control, stability, 
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1. Introduction
Neural networks control, as an important component of Intelligent Control, has 
widely been used in control engineering. Antsaklis (1990, 1992) made an im-
portant contribution to introduction of neural network in control theory. In 
his papers he summarized some good characteristics of neural networks control 
classifying them into three categories: the ability of self-learning, of perform-
ing massive parallel processing, and of significant fault tolerance. Such control, 
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therefore, can effectively meet the need of dealing with increasingly complex sys-
tems, the need to satisfy the increasingly demanding design requirements, and 
the need to meet these requirements with less precise advance knowledge of the 
plant and its environment - that is, the need to control under increasing uncer-
tainty. Fukuda (1992) also systematically summarized the advance of applica-
tions of neural networks in control engineering. Thus, research in neural network 
applications to control can be classified into the major method groups depending 
on structures of the control system, e.g., NN-based Non-linear System Identi-
fication, Chu (1992), Chen, Khalil (1995), Song, Xu (1997); NN-based Super-
vised Control, Burns (1995), Bouslama (1993), NN-based Direct Control, Gomi; 
Kawata (1993), Sanger (1994), Chen, Khalil (1995), Yabuta, Yamada (1992), 
Yuh, Lakshmi (1993), Yuh (1990), Venugopal, Sudhakar, Pandya (1992); NN-
based Indirect Control, Nguyen, Derrick, Widrow (1990); NN-based Adaptive 
Control, Sartori, Antsaklis (1992), Fukuda, Toshia, Shibata, Takanori (1992), 
Yabuta, Tetsuro, Yamada, Takayuki (1992), Song, Xu (1997); NN-based Self-
learning Control, Chen, Fu-Chuang (1990), Chen, Khalil (1995), Gomi, Hiroaki, 
Kawata, Mitsuo (1993); NN-based Fuzzy Control, Bouslama, Faouzi, Ichikawa, 
Akira (1993), Song, Xu (1997); NN Variable Structure Control, Karakasoglu, 
Sundareshan, Malur (1995). All these papers introduced various kinds of control 
methods using neural networks in different engineering settings. The common 
major shortcoming of these methods is that is none of them, except for the NN-
based variable structure control, can guarantee system stability by applying 
neural networks. Thus, neural networks controller designed under these meth-
ods loses its application value in practical engineering. The present paper is 
trying to solve this problems. In Section 2, we give a design method for a stabil-
ity based neural networks controller for a non-linear system. Section 3 contains 
further discussion for this control method to improve control performance. In 
Section 4 we present the simulation results of application of this control method 
to a subwater robot control. 

2 .  S t a b i l i t y  b a s e d  n e u r a l  n e t w o r k s  c o n t r o l l e r  

Consider a non-linear control system, 

X = g (X) + t::..g (X) + BU + t::..B (U) + t::..f (X, U, t) (1) 

where X is the system state variable, g (X) is state matrix, 6.g (X) is state 
variation matrix, B is control matrix, U is control variable, t::..B (U) is control 
variation matrix, 6.f (X, U, t) is the system's internal and external disturbance. 
The form (1) can be further simplified as follows: 

X = g (X) +EU+ f (2) 

where f = 6.g (X) + t::..B (U) + 6.f (X, U, t) is the overall uncertainty and dis-
turbance of the system, whose values are bounded, 11!11 < M1 .
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Then, we define a hyperplane 

Sa = KerC = {X ICX = O} 
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(3) 

where C7 = [Co, C1, · · · ,  Cn-z] is the coefficient matrix of the hyperplane S ,
and the selection principle of e r = [Co, C1 , • • · ,  Cn-z] satisfies the stability
condition. 

The only restriction on the choice of the hyperplane 

S (x) = 0 

is that it has to be associated with stable dynamics in the sense that 

S (x (t)) = 0, for all t > t0 ::::} lim x (t) = 0 
t-+oo 

for any initial conditions x ( t0). The choice of a linear hyper surface gives: 

S(x) = c-rx 

B y  defining the Lyapunov function: 

1 2 V ( x ) = 2 [S (x)] 

(4) 

(5) 

(6) 

(7) 

we guarantee that the hyper surface S ( x) = 0 is reached in finite time by the
condition: 

S S = - 5 (x) IS (x)I or S = - 5 (x) sgn (S)

where  5 (x) = diag ( 5, 1 (x),  5, 2 (x), · · · ,   5,n (x)), and

{ +1 
y = sgn(x) = cp 

- 1

X > cp 
lxl '5: c/J , c/J > o
X < -cp 

Since S (x) = e r X ,  we can use (8) and (2) to get:

e r (g (X) + BU + f) = - 5sgn (S) 

B y  knowing a bound e (x) on the non-linearity such that

2 11c-r111 (x) > 11c-r Ell 

(8) 

(9) 

(10) 

for all x, the condition (8) with  5  (x) =  2 ( x ) -C7 f can be satisfied by choosing
the control input: 

U = - (C7 B ) - 1 e rg (X) - (C7 B ) -1 e (x) sgn (S) (11) 

or 
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Hence, the feedback control law U is composed of two parts. The first, 

(12) 

is a non-linear feedback law which can compensate for the system disturbance, 
whereas the second, 

{J (X) = - (GT B ) - 1 e (x) sgn (S) (13) 

is also a non-linear feedback with its sign toggling between plus and minus ac-
cording to which side of the hyper plane the system is located in. Two comments 
are in order here: first, [J has to change its sign as the system crosses S (x) = 0. 
Secondly, it is [J which is mainly responsible for driving and keeping the sys-
tem onto the hyperplane S (x) = 0. Provided that the gain t2 (x) has been
chosen large enough, [J can secure the required robustness due to momentary 
disturbances and unmodeled dynamics without any compromise in stability. 

Since no information regarding non-linear characteristics of the control sys-
tem dynamics exists, we have to use the neural networks to identify it. The 
identification model can be described as follows: 

(14) 

The control diagram is shown in Fig.1, where neural networks NNl and NN2 
have the same structure. g (X) is the non-linear map of the control system state 
matrix expressed by using neural networks. Then, the final feedback control law 
can be modified as 

U = - (GT B ) - 1 GT g (X) - (GT B ) - 1 e (x) sgn (S) (15) 

This approach clearly constitutes a "worst case scenario" and enhances the 
robustness properties of the design. 

3. Further discussion of the controller
From the above analysis of the controller we know that it has two outstanding 
good characteristics: it can not only guarantee system stability, but also can ef-
fectively eliminate system uncertainty, disturbance and model deficiency. These 
good points are due to the contribution of the non-linear feedback control law 
[Jin (13). Rewrite the control law as follows, 

{J (X) = - (GT B ) - 1 e (x) sgn (S)

Why this control law can effectively compensate for system disturbances? 
The fact is that this control law is a negative feedback control law with a big 
feedback gain which can guarantee system stability and eliminate disturbance. 
It entails, though, also some negative influence: generation of big "dithers" 
on the hyper plane. Theoretically speaking, the system should not generate 
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Figure 1. Control system diagram 
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"dithers" on the hyper plane. But the practical system is not ideal, it has 
inertia and relay factors, and dithers can be generated. In particular, the bigger
the feedback control gain e, the worse the dither. Therefore, decreasing of the
dithers is of great practical significance. 

In the practical control process, when the system is far from the hyperplane, 
the uncertainties of the system are also large, and we have to use a high gain 
negative control law to guarantee system stability. On the contrary, when the 
system comes close to the hyperplane, the uncertainties of the system are also 
small, and in order to decrease the dithers we use a small gain negative control 
law to guarantee system stability and compensate for the disturbance. Then, 
by modifying system stability conditions (8) in the following manner we can 
reduce the dithers: 

S = -e (x) satsgn (S) or S = -e tan (S) (16) 

where satsgn () is a saturation function and tan() is a tangent function (both 
shown in Fig. 2). 

We can select other functions instead of (16). For a example, we may choose 
the following stability function: 

S = n(S) 

In mde, to meet Lyapunov condition, we choose { 

define 

n(S) < 0 
0 

n (S) > 0 

S>O 
S=O 
S<O 

(17) 

, then 

(18) 
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Figure 2. Non-linear function curves 
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Figure 3. Non-linear control function 
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and in order to eliminate system uncertainty, select 

- IJC7J JI 
Jin (S)JI > 

JJCT BJJ 
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(19) 

and O S = 0 
{ii (S) < 0 S > O 

, where ii (S) is a monotone decreasing function (shown 
ii (S) > 0 S < 0 

in Fig. 3). 
From (18), we have 

Considering (19), we get that 

T IJC7J JI 
Jin (S) - C !II >

JJCT BJJ 

Then 

Therefore, the control law can be adjusted as 

4. Simulation results
4.1. Fast back-propagation algorithm 

(20) 

(21) 

(22) 

(23) 

The neural network we used here is the feed-forward neural network, while the 
back-propagation (BP) algorithm is a typical network learning method, but 
traditional BP algorithm's convergence is too slow when the learning error is 
small. So, we will present a fast back-propagation algorithm in our simulation 
algorithm. 

Rewrite the traditional weights updating formula as follows 

The sigmoid function is selected as follows 

f ( x )  = ( 1 - e x p ( - x ) )
(1 + exp (-x))

the related function is defined as 

N e t p j  = I: W j i O p j  + e j

(24) 

(25) 

(26) 
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and 

Opj = 
1 - exp { -   Wj iOp i - 0j } 

1 + exp { -   Wj iOp i - 0j }

OOpj = ( 1 - 02 ·) 
8Netpj 

PJ 

For the output unit, it has 

8pj = (tp j - Opj ) (1 - o;j )

For the hidden layer, it has 

8pj = ( 1 - o;j ) L ) p k Wkj 

1 _ e-Netp;

1 + e-Netp; (27) 

(28) 

(29) 

(30) 

In order to accelerate convergence, a momentum term is added and weight 
changes are smoothed: 

(31) 

here a is the momentum term, and it reflects how the last weight change affects 
current weights change, (3 is the derivative momentum term and 'T/ is the learning 
rate. In many cases, if the learning rate, 'T/, is too small, the number of iterations 
required for arriving at a solution of the weight vector may be exceedingly large. 
On the other hand, the weights many oscillate during iterations when 'T/ is too 
large. If 'T/ ( k) is not a constant, but adjusted at each k to overcome this problem, 
it is called a dynamic learning rate. Several schemes have been developed for 
adaptive adjustment of 'T/ ( k). We dynamically adjust the learning rate as follows l 'T/ij (k) = q'T}ij (k - 1), q > l 

when sign ( a i : : ( k ) )  = sign ( aw,; -l-.))
'T/ij ( k) = d'T/ij ( k - l )  , 0 < d < l

when sign ( a i : : ( k ) )  = -sign ( aw, ;  - l ) )

The back-propagation training algorithm with this dynamic learning rate is 
capable to speed up the training process and achieve high recognition accuracy. 

4.2. Nonlinear control system simulation 

4.2.1. Nonlinear control system model 

As we know, a subwater robot is a complex nonlinear control system, in which 
some traditional control policies such as optimal control, have been used. All 
these methods need an approximate nonlinear system model so as to ensure 
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r = - 0 . 5 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <

0.0 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 

Figure 4. The tracking path with no disturbance 

accurate control, but the practical system features heavily coupled and compli-
cated nonlinear dynamics, and its work environment generates many internal 
and external disturbances. All these factors make it impossible to develop a 
proper model for the subwater robots, and so traditional control policy cannot 
deal with these problems. But neural network control, which does not need to 
know a priori the system model, and has the on-line learning ability, motivates 
us to apply it in subwater robot control. 

A typical subwater robot is given in Healey, Lienard (1993), with the follow-
ing forward speed control dynamics 

u (t) = ah (t) u (t) lu (t)I + (ah (t) Ph (t)) n (t) In (t)I + f

where u (t) is forward speed, n (t) the propeller rotate speed, f the non-linear 
disturbance, ah (t), Ph (t) the hydrodynamic parameters. 

4.2.2. Simulation results 

The neural network applied is a typical feed-forward network with the structure 
N E N f  5 1. The network learning algorithm is fast error back-prnpagation 
algorith . 'The parameter values selected are 'T/ (0) = 0.45, a = 0.5, (3 = 0.0035, 
q = 1.1131, d = 1/1.0011. 

We use sufficient input/output data to train the network off-line, and after 
system error goes down to 0.001, we consider that the neural network has fully 
matched the controlled model. 

The controlled value is subwater robot's forward speed. The initial value is 
0.25m/s, the desired tracking path is a square wave of 0-0.5m/s. From Fig. 4, 
we can see that system output can accurately track the desired value. 
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r = - 0 . 5 f - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - i

0.0 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 

Figure 5. With ±0.1 random disturbance 

We added a random disturbance taking the values of - 0 . 1  and +0.1, and 
the response process is given in Fig. 5. It still secures a good tracking properties 
of the system. 

Then, we impose a periodic disturbance +0.1 · sin(u · t) on the system, and 
its influence is larger than in the previous case (Fig. 6). 

Now, we add these two disturbances simultaneously on the system, and 
watch its output response (Fig. 7). Of course, the system output is heavily 
affected, but the response is still satisfying, and the neural network should be 
updated (note that the disturbance amounts to 40% of the track signals). 

So, these simulation results prove again the conclusion that our controller 
is robust enough to deal with system uncertainties, nonlinearities, and distur-
bances. 

5. Conclusion
Although neural networks have been widely used in control engineering, none of 
the control methods to date displa y ed the capability of dealing with the distur-
bance without losing stability. This paper provides an effective control scheme 
to cope with these problems. We applied this control method to the subwater 
robot speed control, and demonstrated the effectiveness of the controller both 
in terms of theory and computer simulation results. 
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r = - 0 . 5 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,  

0.0 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 

Figure 6. With 0.1 · sin (u • t) disturbance 

r=0.5 

(_ 
I \ _  '{ ,\_ 

x = O v V 
r=-0.5 

0.0 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 

Figure 7. With 0.1 • sin (u • t) and ±0.1 random disturbance 
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