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1. Introduction

In this paper, we investigate vector optimization problems when, objective and 
the constraints are set-valued functions. Such problems have been discussed by 
several authors (see Corley, 1987, 1988, Luc, 1989, and Sach and Craven, 1991, 
Sach, Yen and Craven, 1994). In particular, the Lagrangian duality theorem 
was proved for convex set-valued functions by Corley (1987) (see also Luc, 1989) 
and for nearly convexlike set-valued functions by Song (1997) and Song (1996); 
the Wolfe and Mond-Weir type duality theorems for invex set-valued functions 
were proved by Sach and Craven (1991b) and Sach, Yen and Craven (1994); 
the Fritz John and the Kuhn-Tucker type optimality conditions for the weak 
minimality were also established by Corley (1988) and Sach and Craven (1991a). 

In this note, we present a constraint qualification and prove the equivalence 
between the vector-valued Lagrangian condition and the Kuhn-Tucker condi-
tion. B y  using them, we prove a Lagrangian duality theorem for the weak min-
imality of vector optimization for invex set-valued functions. We also prove a 
necessary optimality condition and a duality theorem for the prbper minimality. 
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2 .  P r e l i m i n a r i e s  

Let X, Y, Z be normed spaces with topological dual spaces X*, Y*, Z*. Let 
S C Y, Q C Z be pointed closed convex cones. The dual cone s + and its 
quasi-interior s + i are defined as 

s + = {y* E Y*l(y*,y) 2: o, for a l l y  E S } ,

s + i = {y* E Y*l(y*,y) > 0, for a l l y  E S \  {0}} ,  

where (,) is the canonical bilinear form with respect to the duality between Y* 
and Y. 

We say that a subset B of S is a base for S if B is convex, 0 r/. f3, and 

S = cone(B) = {>.b I >. 2: 0, b E B } .

It is easy to show that if S has a base, then s + i is nonempty (see Jahn, 1986). 
Let F : X ---+ Y be a set-valued function. Denote by gr F, dom F, the 

graph and domain of F, that is 

gr F = {(x, y) I y E F(x)}, 

dom F = {x I F(x) =/- 0}. 

We are concerned with the following vector optimization problem 

minF(x) (1) 
s.t. x E A ,  G(x) n (-Q)=/-  , 

where F :  X---+ Y, G :  X---+ Z are set-valued functions, A is a subset of X. 
Let E denote the set of all feasible points for problem (1), i.e., 

E = {x  E A  I G(x) n (-Q)  =/- 0}.

A point (x0, y0) is said to be a global (resp. local) weak minimum solution for 
problem (1) if x 0 E E ,  Yo E F(x0) and there is no x E E  (resp. no x E E  n U) 
such that 

(F(x) - Yo) n (- int  S) =/- 0, 

where U is a neighborhood of x 0 and S is assumed to have a nonempty interior. 
In this case, we call y0 a global (resp. local) weak minimum value for (1). These 
definitions are consistent with those of Corley (1987;1988) (see also Luc, 1989, 
Sach, 1991a;b, Sach, Yen and Craven, 1994). 

If (x0 , yo) E gr F = {(x,y) I. y-E. F(x)}  satisfies 

cone(F(E) + S - Yo) n ( - S )  = {0},
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we say that (xo, y0) is a Benson proper minimum solution of (1) (see Benson, 
1979). In the sequel, we briefly call (xo, Yo) a proper minimum solution of (1). 

Let ACX be a subset. For a given point x E A ,  the contingent cone TA (x) 
is defined by 

TA (x ) = {v E X  I liminf h - 1dA (x + hv) = O}, 
h---tO+ 

here dA (x) = inf llx - YII- The Clarke tangent cone CA (x ) is defined by 
yEA 

CA (x ) = {v E X  I limsup h - 1dA(x' + hv) = O}. 
x 1-+x ,h----+ O+ 

We denote the Clarke normal cone by NA (x) = (CA (x ))- , which is the negative
dual cone of the Clarke tangent cone CA (x ), i.e., 

NA (x ) = {x* E X *  I (x*,x): : ;  0, for all x E CA (x)} . 

For (x, y) E gr F ,  define the set-valued mapping CF(x ,  y) : X---, Y as follows 

gr CF(x ,  y) = C g r F ( x ,  y). 

When F i s  single-valued CF(x,  y) = CF(x,  F(x)).
A set-valued function F is called locally-Lipschitz at xo E X  if there exist a 

positive constant l a n d  some neighborhood U C dom F of x0 such that for all 
X1,X2 E U  

Let y0 E F ( x0) . F is called pseudo-Lipschitz at (x0, y0) E gr F (see Aubin, 
Frankowska, 1990) if there exist a positive constant l and some neighborhood 
UC dom F of x0 and V of y0 such that for all x1, x2 E U  

where B y denotes the unit ball of space Y. 
Let F(x)  = F(x)  + S. The graph of .F' is called the epigraph of F and is

denoted by epi F .  Let A be a convex subset of X .  We denote by FI A the 
restriction of F to A, defined by 

FI (x) = { F(x),  if x E -1-; 
A 0, otherwise. 

A set-valued function F : X ---, 2Y is said to be S-convex on A, if the 
epigraph of FI A , epi FIA, is convex. That is, for any x 1 , x2 EA,>. E [0, 1] 

A set-valued function F : X ---, 2Y is said to be S-nearly convexlike on A, if 
F(A) + S is convex.
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It is obvious that if F is S-convex on A, then F is S-nearly convexlike on 
A. However, the converse is not true, i.e., an S-nearly convexlike set-valued·
function is not necessarily S-convex (see example 2.1 in Song, 1997). 

A set-valued function F : X ----+ Y is said to be invex at (xo, y0) E gr F if
for all (x*, -y*) E N epi p(xo, Yo) (the Clarke normal cone of epi F at (x0, y0) )

and ( x, y) E gr F ,  there exists 77 E X such that 

(y*,y-yo) 2': (x*,77). 

F is said to be strictly invex at (x0, y0) E gr F if for all (x*, -y*) E 
Nepi p(x0 ,y0) ) \ {O} 'and (x,y) E gr F, there exists 77 E X  such that

(y*,y-yo) 2': (x*,77) 

and the equality holds only for x = x0 . More precisely, for a l l y  E F(x), the
point 77 = 77(x, y, x*, y*) must be such that 

(y*, Y-: Yo) 2': (x*, 77), if x xo, 

(y*,y-yo) > (x*,77), if x # xo. 

It has been proved in Proposition 3.2 and 3.5 of Sach, Yen and Craven, 1994, 
that F is invex at (x0, y0) if and only if 

F(X) - Yo C CF(xo, Yo)(X), 

and that if int CF(xo, Yo)(X) # 0, F i s  strictly invex at (xo, Yo) if and only if 

F(xo) - Yo C CF(xo, Yo)(X) 

and 

F(X \ {xo}) - Yo C int CF(xo, Yo)(X). 

For set-valued functions F: X----+ Y, G: X----+ Z, let 

H(x) = (F(x), G(x)), H(x) = (F(x), G(x)) + S x Q. 

F x G is called invex (resp. strictly invex) at (xo, Yo, zo) if H is invex (resp. 
strictly invex) at (xo, Yo, zo)-

If  a set-valued function F: X----+ Y is convex on X, then F i s  invex at any 
point (x0, y0) E gr F .  However, the converse is not true in general (see Example 
2 of Sach and Craven, 1991a). For the definitions and the related results on 
invex set-valued functions, we refer to Sach and Craven (199la;b), Sach, Yen 
and Craven (1994). 

Throughout this paper, we assume that A C  <lorn F n d o m  G and A + 0  = 0, 
Ax 0 = 0. 
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L e m m a  1 Aubin, Prankowska {1991). Let A be a subset of X ,  let F :  X - ,  Y 
be a set-vafoed function, and let x E A and y E F(x). I f  F is pseudo-Lipschitz 
at (x, y), then 

CFIA(x )(u) = { CF(x, y)(u), if u E <?A(x); ' y  0, otherwise. 

When F is locally Lipschitz at x, Lemma 1 is a special case of Proposition 
5.2.3 of Aubin, Frankowska (1990). The proof given in Aubin, Frankowska 
(1990), is still valid for Lemma 1. 

L e m m a  2 Sach and Craven (1991a). Let F : X - ,  Y, G : X _., Z be 
set-valued functions. I f  either F is pseudo-Lipschitz at (x, y) E gr F or G is 
pseudo-Lipschitz at (x, z) E gr G, then for every u E X  

CF(x,y)(u) x CG(x,z)(u) C C ( F  x G)(x,y,z)(u). 

I f  F is psev,do-Lipschitz at (x, y) E gr F and G is pseudo-Lipschitz at (x, z) E 
gr G, then the converse inclusion holds. 

For locally Lipschitz set-valued functions, Lemma 2 coincides with Lemma 
9 in Sach and Craven (1991a). The proof given in Sach and Craven (1991a) is 
still valid for Lemma 2. We observe that 

dom C ( F  x G)(x, y, z) = dom CF(:c, y) n dom CG(x, z).

For the problem (1), define as before F(x) = F(x) + S, G(x) = G(x) + Q. 

T h e o r e m  1 (See also Corley, 1988 and Sach, Yen and Craven, 1994.) Let 
int S =/- 0, int Q =/- 0. I f  (x0, y0) is a local weak minimum solution of (1), then, 
for any z0 E G(x0) n (-Q),  there exist y* E s + , z* E Q+, not both zero, such
that 

(y*,y) + (z*,z)   0, (2) 
for all (y, z) E C(FIA x GIA)(xo, Yo, zo)(X); 

(z*,zo)=0. (3) 

Proof .  The proof can be obtained by slightly modifying the proof of Theo-
rem 5.1 of Corley (1988) (see also Sach, Yen and Craven, 1994). Ill 

Theorem 1 is a slightly more general form o f  Theorem 5.1 of Corley (1988) 
where set-valued functions F and G were used instead of F and G. The example 
3 in Sach and Craven (1991a) shows that Theorem 1 can sometimes exclude a 
nonoptimal point, but Theorem 5.1 of Corley (1988) does not. 

B y  Lemma 1 and Lemma 2, we can easily deduce from Theorem 1 the 
following result 
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Proposition 1 Let int S =/- 0, int Q =/- 0. Assume that F is psev,do-Lipschitz at 
(x0, y0) E gr F and G is pseudo-Lipschitz at (xo, zo) for  some zo E G(xo)n(-Q).  
I f  (.To, y0) is a local weak minimum solv,tion of (1), then there exist y* E s + ,  z* E 
Q+, not both zero, satisfying 

(y*, y) + (z*, z) 2: 0, 
for  all (y,z) E C ( F  x G)(xo,Yo,zo)(CA(xo)) 

(z*,zo) = 0. 

(4) 

(5) 

We say that (y*, z*) E s +  xQ+ satisfies the Fritz John condition at (x0, y0,z0)
if (y*,z*) =/- 0 and the conditions (4) and (5) hold. If in addition y* =/- 0, then 
we say that (y*, z*) satisfies the Kuhn-Tucker condition at (xo, Yo, zo) and that 
problem (1) is normal at (xo,Yo,zo). 

3. Main results
We now present a constraint qualification, which ensures that the problem (1) 
is normal at (xo, Yo, zo). 

Proposition 2 Let x0 E A, Yo E F(x6) and zo E G(xo) n ( - Q ) .  Let 
dom CF(xo, y0)   dom CG(xo, zo) n CA(x0) . Assv,me that 
(a) either F is pseudo-Lipschitz at (xo, Yo) or· G is pseudo-Lipschitz at (xo, zo);
(b) 0 E int zo + CG(xo,zo)(CA(xo)).
I f  (y*, z*) ( =/- 0) satisfies the conditions

( y * , y ) + ( z * , z ) 2 : 0 ,  (6) 
for  all (y, z) E C ( F  x G)(xo, Yo, zo)(CA(xo)), 

(z*,z0) = 0, 

then y* =/- 0. 

Proof. Assume on the contrary that y* = 0. Then 

(z*, z) 2: 0, 

for all z in the projection of C ( F  x G)(xo, Yo, zo)(CA(xo)) on the space Z. 

(7) 

Lemma 2, together with dom C F ( x0, y0)   dom CG(xo, zo) nCA(xo), shows 
that 

(z*, z) 2: 0, 

for all z E CG(xo,zo)(CA(x)). 

Since (z*, z0) = 0, one has that

(z*,z) 2: 0, 

for all z E z0 + CG(xo, zo)(CA(x)).

This, together with condition (b), implies that z* = 0, a contradiction. Ill 
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Remark 1 When G(x0) n (-int  Q) =/= 0, since (see Sach and Craven, 1991) 

CG(x ,  z)(·) = CG(x,  z)(·) + Q, for (x, z) E 9rG,

there exists z0 E G(x0) n (- int Q) such that hypothesis (b) holds. When G(x) = 
g(x) is a continuous differentiable single-valued function, we have C G ( x0, z0) ( v.) 
= gi(x0)(v.) + Q and the condition (b) takes the following form 

0 E int (g(xo) + gi(xo)(CA (xo)) + Q),

which is the Robinson regularity condition (see Robinson, 1976). 

Corollary 1 Let A =  X ,  x0 E A ,  y0 E F(xo) and z0 E G(xo) n ( - Q ) .  Assume
that dom C F ( x0 , y0) => dom C G ( x0 , z0) n CA (x0) . Assume that either F is 
pseudo-Lipschitz at (xo, yo) or G is pseudo-Lipschitz at (xo, zo). I f  (y*, z*) ( =/= 0) 
satis.fies the conditions (6) and (7) of Proposition 2 (in this case CA (xo) = X)), 
then each of the following conditions is sufficient for y* =/= 0. 
(c) G is invex at (xo, zo) and OE int G(X);

- ' - - - - ' - - - - - -

(d) G is strictly invex at (x0 , z0) , int CG(x0 , z0)(X ) =/= 0 and the the feasible 
point set of (1) is not a singleton. 

Proof. Assume that ( c) is true. Since G is in vex at ( x0 , z0) and O E
int G(X) ,  we have 

0 E int zo + CG(xo, zo)(X).

So the conclusion follows from Proposition 2. 
If G is strictly in vex at ( x0, z0) , then 

G ( X  \ {xo}) - zo C int C G ( x0, zo)(X). 

Since the feasible set of problem (1) is not a singleton, 0 E G ( X  \ { x0}). It 
follows that 

0 E int z0 + CG(xo, zo)(X).

So the conclusion follows from Proposltion 2. ■ 
Corollary 1 (c) generalizes Theorem 3.1 of Sach and Craven (1991) and 

Corollary 1 ( d) is a special case of Proposition 3.6 of Sach, Yen and Craven 
(1994). 

Now we prove the equivalence between the vector-valued Lagrangian condi-
tion and the Kuhn-Tucker condition. Let L + (z , Y) denote the set of all linear 
continuous operator A from Z to Y such that A( Q) C S. 

Proposition 3 Let int S =/= 0 and let x0 E A,  y0 E F(xo) and zo E G(xo) n 
(-Q) .  Assv.me that F is pseudo-Lipschitz at (x0, y0) and G is pseudo-Lipschitz 
at (x0, z0) . I f  F x G)[ A is invex at (xo, Yo, zo), then the following statements are 
equivalent 
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(i) there exist y* E s + (y* f 0),z* E Q+ , such that
(y*, y) + (z*, z) ;::,: 0, 
for all (y,z) E C(F x G)(xo,Yo,zo)(CA(xo)) 

and 
(z*,zo) = O; 

WEN SONG 

(ii) there exists A E L+ (z , Y) sv,ch that (x0, Yo) is a global weak minimv,m
solution of the following probtem: 

min (F(x) + AG(x)) (8) 
xEA 

and Az0 = 0, 

Proof. (i) = }  (ii) Since (F x G)IA is invex at (xo,Yo,zo), 

(F x G)(A) - (yo,zo) C C((F x G)IA)(xo,Yo,zo)(X) 

C C(F x G)(xo, Yo, zo)(CA(xo)). 

It follows from (i) that 

(y*,y) + (z*,z);::,: (y*,yo) + (z*,zo) = (y*,yo),
for all y E F(x), z E G(x), x E A .  

Fix e E int S with (y*,e) = 1 since y* =/-0. Define A :  Z--+ Y by

Az = (z*, z)e, for every z E Z,

then 

y* o A =  z*, Az0 = 0, A(Q) c S, 

Hence A E L+ (z , Y). Replacing z* by y* o A in (9), we have 

(y*,y+Az);::,: (y*,yo +Azo) = (y*,yo),
for all y E F(x), z E G(x), x E A .  

(9) 

(10) 

It follows that (x0, y0) is a weak minimum solution of the problem (8) since 
y* =/-0 and Yo E F(x0) + AG(x0) . Therefore (ii) is true.

(ii) = }  (i) We shall show that if (ii) is true, then

[CF(xo,Yo) +ACG(xo,zo)](CA(xo)) n (-int  S) = 0. (11) 

Indeed, in the contrary case, there exist v E - i n t  S, u E CA(xo), V1 E 
CF(x0, y0)(v,), w E CG(x0, z0) (v,) such that v = v1 + Aw. Thus, for any
h n  - - ,  o+' there exist Un - - ,  u, u  --, u, i = 1, 2, Vn - - ,  V1 and w,.;, --, w such that 
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Since P is pseudo-Lipschitz at ( x0, y0) , there exists a positive constant l1 such 
that 

for n sufficiently large. So there exists Vn ----+ v1 such that 

Yo+ hnVn E F(xo + hnun)-

Since G is pseudo-Lipschitz at (xo, zo), there exists Wn ----+ w such that 

Zo + hnwn E G(xo + hnun ), 

Hence 

Since Az0 = 0 and 

Yn - Yo _ + A - . t S - - - = Vn Wn ----+ V E -1n ,
hn

we get 

Yn - Yo E - i n t  S 
hn

' 

for n large enough, and then Yn - y o  E - i n t  S. This is not possible since (xo, yo) 
is a weak minimum solution of (8) and it is also a weak minimum solution for 

min (F + AG)(x). 
xEA 

Thus (11) is true. Since [CF(x0, y0) + ACG(x0, z0)](·) is a convex process and
CA (x0) is a closed convex cone, by standard separation arguments, there exists 
y* E s + \ {0}  such that 

(y*, y + Az) ;::,: 0, (12) 
for all y E CF(xo,Yo)(u), z E CG(xo,zo)(u), u E CA(xo), 

Let z* = y* A. (12) is equivalent to

(y*, y) + (z*, z) ;=:,: 0, (13) 
for all y E CF(xo,Yo)(u), z E CG(xo,zo)(u), u E CA(xo)-

Since 

CF(x0, y0)(u) x CG(xo,zo)(u) = C(F x G)(xo,Yo,zo)(v,),

from (13), we obtain (i). ■
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Remark 2 In the case A =  X ,  we only need to assume that either f t  is pseudo-
Lipschitz at ( x0, y0) or G is pseudo-Lipschitz at ( x0, z0) , and a result analogov,s 
to the implication (i) = }  (ii) has been proved in Theorem 4.3 of Sach and Craven 
(1991b) under more restrictive assumptions. Jahn {1986) proved a similar result 
for  single-valued Prechet differentiable mappings F and G. On the other hand, 
It is easy to show that the condition (ii) is a sufficient condition for  ( x0, y0) to be 
a global weak minimum solution of  (1) and so is the condition (i) i f  ( F  x G) IA is 
invex at (.To, yo, zo) (similar sufficient conditions were given in Sach and Craven, 
1991a;b, Sach, Yen and Craven, 1994). 

As a direct consequence of Propositions 1, 2 and 3, we have 

Theorem 2 Let int S -=/= 0, int Q -=/= 0. Let x0 E A, y0 E F ( x0) and z0 E 
G(.To) n ( - Q ) ,  and let dom CF(xo, Yo) ::J dom CG(xo, z0) n CA(x0) . Assume
that 
(a) f t  is psev,do-Lipschitz at (x0, y0) and G is pseudo-Lipschitz at (x0, z0) ;

(b) 0 E int zo + CG(xo, zo)(CA(xo)).
I f  (x0, y0) is a local weak minimum solution of  (1), then there exists (y*, z*) E
s + x Q+ satisfies the Kuhn-Tucker condition at ( x0, y0, z0) , i. e., the condition
(i) o f  Proposition 3 holds.

Moreover, i f  ( F  x G)IA is invex at (xo,Yo,zo), then the vector-valued La-
grangian condition holds, i. e., condition (ii) of  Proposition 3 holds. 

We now consider a Lagrangian dv,al problem to (1). De.fine H: L + (z , Y)  ---+ 
2y by 

H(A) = {yl:3x E A 

s.t. (x,y) is a global weak minimum solution of (8)
Consider the following maximization problem

maxH(A) 
s. t. A E L + (z , Y).

(14) 

A point A is said to be a feasible point of  (14) i f  A E L + (z , Y)  and H(A) -=/= 0. 
The set o f  all such points will be denoted by E ' .  (Ao, y0) is called a global weak 
maximv,m solv,tion of  (14) i f  Ao E E ' ,  Yo E H(Ao), and there is no A E E '  such 
that 

(Yo - H(A)) n (-int S)-=/= 0. 

Theorem 3 Let int S -=/= 0, int Q -=/= 0. Let x0 E A, Yo E F ( x0) and z0 E 
G(.To) n ( - Q ) ,  and let dom C F ( x0, y0) ::J dom CG(xo, zo) n CA(xo). Assume
that 
(a) ( F  x G)IA is invex at (xo,Yo,zo);
(b) f t  is pseudo-Lipschitz at (x0 , yo) and G is pseudo-Lipschitz at (xo,zo);
(c) 0 E int zo + CG(xo, zo)(CA(xo)).
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I f  (xo, y0) is a local weak minimv,m solv,tion of (1), then there exists an 
Ao E L + (Z, Y) such that (Ao, y0) is a global weak maximum solv,tion of (14). 

Proof. By Theorem 2, there exists Ao E L + (z , Y) such that (x0, y0) is a 
global weak minimum solution of (8) corresponding to Ao. This means that Ao 
is a feasible point of (14) and Yo E H(Ao). 

For any feasible point A of (14) and anyy E H(A), there is x E A  such that 
(x, y) is a global weak minimum solution of (8), then 

[(F + AG)(A) - y] n (-int S) = 0. 

We shall prove that (Yo - y) r/. -int S. Indeed, if Yo - y E -int S ,  take 
z0 E G(x0) n ( - Q ) ,  then, Ao E L + (z , Y) implies that Aozo E - S .  So, 

Yo + Aozo - y E -int S - S C -int S.

This leads to a contradiction. Note that y E H(A) is arbitrary, we get 

(Yo - H(A)) n (-int S)  = 0. 

Therefore, (Ao, Yo) is a global weak maximum solution of (14). II 

Remark 3 In the case when A = X ,  we only need to assume that either F 
is pseudo-Lipschitz at (x0 , y0) or G is pseudo-Lipschitz at (x0 , z0) . Similar 
Lagrangian dual,ity results for  the weak minimality were proved v,nder the Slater 
condition for S-convex set-valued functions by Corley (1987), and for  S-nearly 
convexl,ike set-valued functions by Song (1997). 

Now we present a necessary optimality condition for (.1:0, y0) to be a Benson 
proper minimum solution of problem (1). 

Theorem 4 L e t x0 E A , y0 E F(xo) andzo E G(xo)n(-Q). Letdom CF(xo,Yo) 
:J dom CG(xo, z0) n CA(x0) . Assume that
(a) either S has a weakly compact base and F is S-nearly convexlike on A or S

has a compact base, 
(b) F is pseudo-Lipschitz at ( xo, Yo) and G is pseudo-Lipschitz at ( xo, zo),

(c)/ 0 E int z0 + CG(xo, zo)(CA(xo)) and int Q # 0. 
I f  (x0, y0) is a prnper minimv,m solution of (1), then 

(i) there exist y* E s+i ,  z* E Q+ such that
(y*, y) + (z*, z) ;:::: 0, 
for all (y,z) E C ( F  x G)(xo,Yo,zo)(CA(xo)) 

and 
(z*,zo) = 0. 

Moreover, i f  ( F  x G)IA is invex at (xo,Yo,zo), then 
(ii) there exists an A E L + (z , Y) such that (x0, yo) is a proper minimum solu-

tion of (8) and Azo = 0. 
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Proof .  B y  the definition of the Benson proper minimum solution, we have 

cone(F(E) + S - Yo) n (-S) = {0}.

If F i s  S-nearly convexlike on E, then F(E) + S i s  convex. Since F(E) + S -
Yo C cone(F(E) + S - Yo), by Proposition 4.2.1 in Aubin, Frankowska (1990), 
we can deduce that 

cone(F(E) + S - Yo) = cone(F(E) + S - yo) 

is a weakly closed convex cone. This, with assumption (a) implies that the 
hypotheses of Theorem 2.3 in Dauer and Saleh (1993), are satisfied and hence 
there exists a pointed closed convex cone C C Y such that - S  \ {0} C - i n t  C 
and 

cone(F(E) + S - yo) n ( - C )  = {0}.

We claim that 

cone[(F x G)(A) - (Yo, 0)] n [-(int C x int Q)] = 0. 

Since int C x int Q is an open cone, for this we only need to show that 

[(F x G)(A) - (Yo, 0)] n [-(int C x int Q)] = 0. 

(15) 

If it is not the case, then there exist x E A, y E F(x),  z E G(x), s E S and 
q E Q such that 

y + s - Yo E - i n t  C, z + q E - i n t  Q .. 

Hence 

z E - i n t  Q - Q C - Q  

and hence x E E ,  y E F ( E ) .  Thus 

cone(F(E) + S - Yo) n ( - C )  = { y  + s - Yo}. 

This is a contradiction. 
Since F i s  pseudo-Lipschitz at (x0, y0) and G is pseudo-Lipschitz at (x0, z0), 

from the proof of Proposition 5.3.1 of Aubin, Frankowska (1990), we can deduce 
that 

C ( F  x G)(xo,Yo, z o)(CA (xo)) C T
(F x G ) (A / Yo, z o). (16) 

We next show that 

(0,zo) + T
(F x G ) (A )

(Yo, z o) C cone[(F x G)(A) - (Yo,0)]. (17) 

Let (v,,v) E T
(F x G )

(A )
(Yo, z o)- Then there exist hn ---+ o+ , (v,n , vn ) - --+ (u,v)

and Xn E A such that for any n 2". 1 

(Yo, z o) + hn (un , Vn ) E ( F  X G)(xn )-
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Since z0 E G(x0) n (-Q) ,  we have that 

hn (Vn + zo) = Zo + hn Vn - ( 1 - hn )Zo E G(x n ) +QC G(xn ),

Hence 

(Yo, 0) + hn (un , Vn + zo) E ( F  X G)(A)

and so 

(v,,v + z0) E cone[(F x G)(A) - (yo,0)].

Therefore, it follows from (15)-(17) that 
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[(0, zo) + C ( F  x G)(xo, Yo, zo)(CA (xo))] n (-(int C x int Q)) = 0. (18) 

Since C ( F  x G)(.x0, y0, z0) is a closed convex process and CA (x0) is a closed 
convex cone, C ( F  x G)(xo, Yo, zo)(CA (xo)) is convex. B y  standard separation 
arguments, there exist y* E c + , z* E Q+ , not both zero, such that 

(y*, y) + (z*, z + zo) 2 0, (19) 
for all (y,z) E C ( F  x G)(xo,Yo,zo)(CA (xo)). 

Since z0 E G(x0) n (-Q)  and (0, 0) E C ( F  x G)(xo, Yo, zo)(CA (xo)), the 
inequality (19), with z* E Q+, implies that 

(z*,zo) = 0. 

Hence 

(y*, y) + (z*, z) 2 0, (20) 
for all (y, z) E C ( F  x G)(xo, Yo, zo)(CA (xo)). 

We only need to show that y* E s + i . From the proof of Proposition 2, we 
see that y* -=I= 0. Hence 

(y*, y) > 0, for all y E int C. 

Since S \ {0}  C int C, we obtain that y* E s + i . 
Moreover, since ( F  x G)IA is invex at (xo,Yo,zo), we can deduce that 

( F  x G)(A) .:__ (Yo, zo) C C ( F  x G)I A (x o, Yo, zo)(X) 

C C ( F  x G)(xo, Yo, zo)(CA (xo)). 

Hence, (i) implies that 

(y*,y) + (z*,z) 2 (y*,yo) + (z*,zo) = (y*,yo),
for all (y, z) E ( F  x G)(A). 

(21) 

(22) 
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Fix e E 8 \ {0} such that (y*, e) 
Define A : Z - ,  Y by 

1 (such an e exists, since y* E s + i ). 

Then 

Az = (z*, z)e, for all z E Z. 

y* A =  z*, A( Q) c 8, Azo = 0. 

Replacing z* by y* A in (22), we obtain 

( y * , y + A z )    (y*,yo), 
for all x E A ,  y E F(x) and z E G(x). 

(23) 

Since Yo E F(.To) + AG(xo) and y* E s + i , by Theorem 5.2.1 in Jahn (1986), we 
can conclude that (.To, Yo) is a proper minimum solution of the problem (8). Ill 

In the case when A =  X ,  (16) is true without assumption (b). Thus we only 
need to assume that either F is pseudo-Lipschitz at (xo, Yo) or G is pseudo-
Lipschitz at (xo,zo). Clearly (ii) is a sufficient condition for (xo,Yo) E gr F to 
be a proper minimum solution of (1), and consequently (i) is also a sufficient 
condition under the assumption that ( F  x G)IA is invex at (xo,Yo,zo)-

E x a m p l e  1 Let X = Z =  , Y =  2 and A =  [0,1]. Let 8 =  i and 
Q =  +. It is obvio'U,S that  i has a compact base and int  + -=/- 0. Define
set-valued mappings F and G as follows 

F(x)  = {  ,= (6,6) E R 2 I tr +t :::: x 2 } , 

and 
1 

G(x) = 2 - x, for x E  -

if X   O; 
if X < 0, 

Since the feasible point set E = A n  c- 1 (-  +) = [½, 1], the problem (1) 
takes the following form 

min F(x).  
xE[½,1] 

(24) 

Let xo = l ,  y0 = (-1, -1) and zo = -½-It is obvious that F is pseudo-
Lipschitz at (xo,Yo) and G is pseudo-Lipschitz at (xo,zo)-

Since CG(xo, zo)(x) = - x  +  + and CA(xo) = {x  E  Ix:::; 0}, we have

A 1 
z0 + CG(xo, zo)(CA(xo)) = [ - 2, +oo) .

. Hence

. 0 E int zo + CG(xo, zo)(CA(xo)).
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Note that 

F(E) = {y = (6,6) E R2 I lf +(  :S 1}.

It is easy to show that (x0 , y0) is a proper minimum solution of (24). 
We can easily verify that 

Cepi p(xo,Yo) = Cgr p(xo,Yo) = {(x,y) I Y = (6,6), 6 + 6  2': - v 2 x } .

B y  the definition of CF(xo, Yo)(·), we have
A 2 I n  CF(xo,Yo)(x) = {y = (6,(2) E   16 + 6  2': - v 2 x } .

Hence 

dom CF(xo, Yo) = dom CG(xo, zo) = 
and 

C ( F  x G)(xo,Yo,zo)(CA(xo)) = {(y,z)IY = (6,6),6 +(2 2': 0, z 2". O}. 

Let y* = (1, 1) E int  i, z* = 0 E  +- One see that

(y*, y) + (z*, z) 2': 0, 
for all (y,z) E C ( F  x G)(xo,Yo,zo)(CA(xo)) 

and, 

(z*,z0) 0. 

It is easy to verify that 

( F  x G)(A) - (yo, zo) C C ( F  x G)(xo, Yo, zo)(CA(xo)). 

Thus, ( F  x G) IA is invex at (xo, Yo, zo)-
Let e = ( ½, ½) E  i. It is clear that (y*, e) = l .  Define the operator A :

 -+ 2 by 

Az = (z*,z)e = (0,0), for z E  -

Then A E L + (z , Y). Thus, the problem (8) is of the form 

min F(x) .  
xE[O,l] 

It is evident that (x0 , y0) is also a proper minimum solution of (25). 

(25) 

Now we shall consider the Lagrangian duality for the proper minimality. 
Define the set-valued function f I :  L + (z , Y ) - +  2Y by 

fI(A) = {y I :l( E A  s.t. ((, y) is a proper minimum solution of (8)}
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Consider Lhe problem 

maxfI(A) (26) 
s. t. A E L + ( z ,  Y). 

A point A is said to be a feasible point of (26) if A E £ + (z , Y) and fI(A) -=/= 0. 
(Ao, y0) is called a global maximum solution of (26) if Ao is a feasible point of 
(26), y0 E fI(A0), and there is no feasible point A of (26) such that 

(Yo - fI(A)) n ( - S  \ {0})-=/= 0. 

B y  using similar arguments as in the proof of Theorem 3, we can prove the 
following duality result 

T h e o r e m  5 Let xo E A ,  Yo E F(xo) and zo E G(xo) n (-Q) .  Let dom C F ( x0,

Yo):::) dom CG(xo,zo) n CA(x0). Assume that 
(a) either S has a weakly compact base and F is S-nearly convexlike on A or S

has a compact base, 
(b) F i s  pseudo-Lipschitz at (xo,Yo) and G is pseudo-Lipschitz at (xo,zo),
(c) 0 E int zo + CG(xo,zo)(CA(xo)) and int Q-=/= 0, 
(d) ( F  x G)IA is invex at (xo,Yo,zo)-

If (x0, y0) is a proper minimum solution of (1), then there exists a Ao E
L + (z , Y) such that (Ao, y0) is a global maximum solution of (26). 

A similar duality result was proved by Song (1996) under a so-called image 
regular condition. 
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