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1. Introduction
The aim of this paper is to obtain necessary conditions for nonlinear nonsmooth 
two-dimensional discrete control systems described by equations being a gener-
alization of Roesser's model with variable coefficients (Kaczorek, 1985b). 

A general theory of two-dimensional discrete systems ( called also 2-D sys-
tems) has been presented in Kaczorek (1985a); see also references therein. How-
ever, the results concerning optimal control of such systems have appeared only 
in few papers. For instance, Kaczorek (1985a) gives a survey of results ob-
tained for the minimum energy control problem for linear systems described 
by Roesser's model. Moreover, necessary optimality conditions (in the form of 
a maximum principle) for some classes of smooth nonlinear 2-D systems were 
obtained by Vasil'ev and Kirillova (1967) and Mansimov (1985). 

In the present paper we apply a general method of obtaining necessary opti-
mality conditions for discrete control problems with nondifferentiable data. This 
method, developed independently by Dolezal (1982) and Studniarski (1982), 
consists in reducing the optimal control problem to some mathematical pro-
gramming problem and then formulating necessary conditions in terms of the 
generalized gradients of Clarke (1975, 1983) and the partial generalized gradi-
ents introduced by Hiriart-Urruty (1979). The conditions obtained in this way 
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can also be applied to the "classical" case where all the functions appearing in 
the problem are continuously differentiable. In this case, the generalized gradi-
ents reduce to usual gradients and all the inclusions occurring in the optimality 
conditions can be rewritten as equalities. 

2. Definitions and preliminaries
We shall now recall some fundamental facts from the theory of generalized 
gradients of locally Lipschitzian functions, which can be found in the book of 
Clarke (1983). We shall consider finite-dimensional spaces only. 

Let f : R m - t  R be a locally Lipschitzian function (i.e. one that satisfies the
Lipschitz condition in a neighbourhood of any point x E R m ). The generalized 
gradient of f at the point x is defined as follows: 

where "co" denotes the convex hull, v '  f - the usual gradient, while D f - the
set of points R m at which f fails to be differentiable (by Rademacher's theorem, 
DI is of Lebesgue measure zero). 

Given a convex function g : R m - t  R U  { +oo }, finite at the point x, we 
define the (one-sided) derivative of g at x in the direction y as follows: 

g'(x; y) : =  lim>.- 1 (g (x + >.y) - g(x)).
>-10 

B y  the subdiff erential of g at x we mean the set 

8g(x) : =  {u  E R m l'v'y E R m , g (y ) 2 g(x) + ( y - x I u))

(1) 

(2) 

where (- I ·) denotes the usual inner product in R m . It is well known (Rockafel-
lar, 1970) that g '(x;y)  exists for a l l y  E R m , and 

8g(x) : =  {u  E R m l'v'y E R m , g ' (x ; y) 2 (y I u)}. (3) 

PROPOSITION 2 .1 ( Clarke 1983). Let f ,  g be locally Lipschitzian functions on 
R m , and let x E R m . Then 
a) 8 f ( x )  is a nonempty convex compact subset of  R m ;
b) 8 ( !  + g)(x) C o f ( x )  + og(x);
c) f o r  any>. E R ,  8(>.f)(x) = >.of(x);
d) i f  f is continuously differentiable in a neighbourhood of  x, then 8 f ( x )

{v ' f (x) } ;
e) i f  f is convex, then a f ( x )  = 8f (x) .

Let us now consider the Cartesian product X = X 1 x • • • x Xn where
X i = R m ' , i = 1, . . .  , n. Given a locally Lipschitzian function f : X - t  R ,  we
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define the partial generalized gradient BxJ (x) o f f  with respect to the variable 
Xi at the point x = (x1, . . .  , Xn) as follows: 

OxJ (x) :=  co{ lim V xJ (x (v)) I x(v) -+ x, x (v)   D1 }. ( 4) 
Z / - t O O  

where V xJ (x (v)) stands for the usual partial gradient o f f  with respect to Xi at 
x (v) . This definition was introduced by Hiriart-Urruty (1979) and differs from 
that adopted by Clarke (1983, p. 48); see remarks on p. 111 in Studniarski 
(1982). 

The following proposition can easily be deduced from ( 4) and Proposition 
2.1. 

PROPOSITION 2.2 (Studniarski, 1982). Let f ,  g be locally Lipschitzian func-
tions on X ,  and let x E X .  Then, for each i E {1, . . .  ,n} ,  
(a) BxJ (x) = pri (of (x)) where pri :  X - +  X i is defined by pri(u) : =  Ui for all 

u =  (u1, . . .  ,un) E X ;
(b) Ox, ( f  + g)(x) C OxJ (x) + Ox, g(x);
(c) Ox, (>J)(x) = AOxJ (x) (>-.ER); 
(d) if f does not depend on the variable Xi , then BxJ (x) = {O}. 

Using the partial generalized gradients, we can derive necessary optimality
conditions for mathematical programming problems on the space X. We shall 
now formulate a result for the following particular problem: 

minimize f0 (x) subject to

f1(x) = 0, . . .  ,fk(x) = 0, (5) 
X E A.1 X · · · X A.n , 

where f j : X -+ R ,  j = 0, l ,  . . .  , k, are locally Lipschitzian, while the sets 
A. i C X i , i = 1, . . .  , n, are closed and convex.

Given a convex set A. C R m , let us denote by N(x I A.) the normal cone to
A. at the point x EA. (Rockafellar, 1970), i.e.

N(x I A.):= {u E R m l''v'a EA., (a - x I u) :s; 0}.
It is easy to verify that if A . =  A.1 x · · · x A.n C X ,  then 

pri(N(x I A.))= N(xi I A. i), i = 1, . . .  ,n. (6) 
The following theorem is a special case of Theorem 2.5 from Studniarski 

(1982). It can also be obtained from Theorem 6.1.1 of Clarke (1983) by using 
Proposition 2.2 (a) and formula (6). 

THEOREM 2.1 Suppose that x = (x1, . . .  , Xn) E X  is a local minimum point in 
problem (5). Then there exist real numbers >-.0   0, >-.1 , . . .  , >-.k, not all zero, such 
that 

0 E Ox , (t Aj f j ) (x) + N(xi I A. i ), i = 1, . . .  , n. 
J=O 
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3 .  N e c e s s a r y  o p t i m a l i t y  c o n d i t i o n s  i n  t h e  g e n e r a l  c a s e  

We shall consider a control system described by the equations 
h h(h v )X i+l ,j = Cf!i,j x i,j ' x i,j ' Ui,j '

i = 0, 1, . . .  , r - 1, j = 0, 1, . . .  , s, 
v v(h v )x i,j +l = Cf!i,j x i,j , x i,j , Ui,j ,

i = 0, 1, . . .  , r, j = 0, 1, . . .  , s - 1, 

where 
i is an integer-valued vertical coordinate,
j is an integer-valued horizontal coordinate,
x?,1 E R n i  is the horizontal state vector,
x '/,,j E R n 2 is the vertical state vector,
u i,j E R m is the control vector,
r and s are fixed positive integers. 
The boundary conditions for (7)-(8) are given by 

7/Jj( x  ,j ) = 0, j = 0, 1, . . .  , s, 

7/JY( x '/,,0) = 0, i = 0, 1, . . .  ,r. 

We also assume the final condition 

7/J( x  ,s, x  ,s) = 0
and the following constraints on the control vectors: 

Ui,j E Ui,j, (i,j) E K ,  

where 

K : =  ( {0, 1, . . .  , r) x {0, 1, . . .  , s}) \ { (r, s)} 
and Ui,j are given closed convex subsets of R r n .  Let us denote 

z := R(r-+l)(s+l)n1 X R(r-+l)(s+1)n2 X R[(r-+l)(s+1)-l]rn_ 

(7) 

(8) 

(9) 
(10) 

(11) 

(12) 

Elements of the space Z will be written down as triplets z = ( xh , xv , u) where 
h (h h h h) X = X o,o, . . .  ' X o,s, . . .  ' x ,,. ,o, . . .  ' x ,,.,s ' 
V ( V V V V ) X = X o O' . . .  ' X o s' . . .  ' x,,. 0' . . .  ' x ,,. s ' 

' ' J ' 

U = (u o,O, · · · ,  Uo,s, · · · ,  Ur-l,O, · · · ,  Ur-l,s, Ur,O, · · · ,  Ur,s-l)-

Let us now consider the cost functional J : Z -----+ R given by 

J(z): = L li,1 (x   1 , x '/,,1 , u i,j ) + J (x  ,s, x  ,J -
(i,j)EK 

We assume that all the functions 

(13) 
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,nh , , Rn1 +n2+rn -+ Rn1 
ri,J · , 
rn'! .• Rn1+n2+m-+ Rn2
ri,J • , 
7/Jj: Rn1-+ Rk1, 
7/JY: R n 2 -+ R k 2,
7/J: R n1+n2 -+ Rk, 
Ji,j: Rn1+n2+m-+ R,  
f :  Rn1+n2 -+ R ,  

55 

appearing in (7)-(11) and (13), are locally Lipschitzian. In particular, if cpt  and 
cpi, j are linear, equations (7)-(8) coincide with Roesser's model with variable 
coefficients, considered by Kaczorek (1985b ). 

We can now formulate the optimal control problem as follows 

minimize J ( z) over all z E Z 

satisfying (7)-(12). (14) 

The necessary optimality conditions for this problem are stated in the following 

THEOREM 3 .1 Suppose that z = (xh , x v , u) is a local minimum point for prob-
lem (14). Then there exist elements 

;\ 2: 0, P?, j E R n 1
, i = 1, . . .  , r, j = 0, 1, . . .  , s, 

Pi, j E R n 2
, i = 0, 1, . . .  , r, j = 0, 1, . . .  , s, 

h Rk' . - 0 1 wj E , J - , , . . .  , s, 

(15) 

not all zero, such that the functions Hi, j : R n , +n2+m -+ R defined for (i, j )  E K
as follows: 

Hi, j :=  (P?+1,j I cp?, j ) + (Pi,j+l I cpf,j) - Afi, j , 

i = 0, 1, . . .  , r - l ,  j = 0, 1, . . .  , s - l ,

Hr, j : =  (P , j +l I cp , j ) - >.fr, j , j = 0, 1, . . .  , S - l ,

Hi, s : =  (P?+1,s I cp?, s ) - Ali, s , i = 0, 1,, . .  , r - l ,  

(16) 

(17) 

(18) 

(where, for instance, (pf+i,j I cpt) stands for the function Rn1+n2+m 3 y -+ 
(Pf+i,j I cpt  (y))) satisfy the conditions 

(19) 

j = 0, 1, . . .  , s, 
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i = 0, 1, ... , r, 

h ,::, H (-h - v  - ) (. ") K . _/.. 0Pi,j E ux'c. i,j x i,j , x i,j , u i,j , i , J  E , i r , 
, ,3  

v , : : ,  H ( - h - v - )  Pi,j E uxl',; i,j x i,j , x i,j , Ui,j , (i,j) EK, 

Proof .  Let us introduce the notations 
-h ( ) . h h ( h v ) 'Pi,j z .= Xi+l,j - 'Pi,j x i,j ) x i,j ) Ui,j ) 

i = 0, 1, ... , r - l, j = 0, 1, ... , s, 
- v ( ) ·  V v ( h  V ) 'Pi,j z -= x i,j+1 - 'Pi,j x i,j , x i,j , Ui,j , 

i = 0, 1, ... , r, j = 0, 1, ... , s - l, 

;fy(z) :='1/}j(xY, 0 ), i=0 , l ,  ... ,r, 

j -/= 0, 

A:= R(r+l)(s+l)n1 X R(r+l)(s+l)n2 X (Uo,o X . . .  X Uo,s X .. · X

· · · X Ur-1,0 X · · · X Ur-1,s X Ur,O X · · · X Ur,s-1). 

Then problem (14) can be rewritten in the form 

minimize J(z) subject to 

q5tj (z) = 0, i = 0, 1, ... , r - l, j = 0, 1, ... , s, 

<jYf,j (z) = 0, i = 0, 1, ... , r, j = 0, 1, ... , s - l, 

- h  'lfj (z) =0, J =0,l, ... ,s,

;JY(z) = 0, i = 0, 1, ... , r, 

J(z) = 0, 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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z EA, 

whence it can be seen at once that this is a special case of problem (5). It 
follows from Theorem 2.1 that there exist elements (15), not all zero, such that 
the function 

where 
r - 1  s r s - 1  

£1 := ) . J  + L L(p:+1,v  I  :.J + L L ( P : , v + l  I  ,J, 
µ=Ov=O µ=Ov=O 

s r 
L2 := I : ( w t  I ; f t ) +  I : ( w :  I ; f : )  + (w I ;f)

v=O µ=0 

satisfies the conditions 

0 E 8 h L(z), i = 0, 1, . . .  , r, j = 0, 1, . . .  , s,x . . ,,3 

0 E 8x '! .L(z), i = 0, 1, . . .  , r, j = 0, 1, . . .  , s,
,,3 

0 E 8ui,jL(z) + N(ui,j I ui,j), ( i , j )  E K .

It follows from Proposition 2.2 ((b) and (d)) that 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

aXo
h _L1(z) C ax o

h _(>..fo,j - (P ,j I 'P  , j )- (po,j+l I 'Po,j))(x ,j, X o,j ,uo,j ),
,3 ,3 

j = 0, 1, . . .  s - 1, 

ax o
h ,L2(z) C 8(wj  I 'l/Jj)(x ,j), j = 0, 1, . . .  , s.

,3 

Hence, using (16) and (18), we find that condition (31) for i = 0 implies (19). 
Similarly, we have 

(pv I v )) (-h -=V - ) - X· · X· · U· · 
i,j+l f.Pi,j i,J' i,J' i,J , 

i = 1, . . .  , r - 1, j = 0, 1, . . .  , s - 1, 
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j = 0,1, .. . ,s- 1, 

i = 1, . . .  , r - 1, 

Oxh L2(z) = {0}, (i,j) E K ,  i-/= 0. ,,, 

Hence, from (16)-(18) it follows that condition (31) for ( i, j) E K, i -/= 0, implies 
(21). Next, we have 

Oxh L(z) c p  s + Oxh (>-f + (w 11/J))(x  S) x  s),r,s , r,s , , 

and so, (31) for (i, j) = (r, s) implies (23). In a similar way, from (32) we deduce 
conditions (20), (22) and (24). Finally, (25) follows from (33). 

4. The maximum principle
If a maximum principle formulation of the optimality conditions for problem 
(14) is required, additional convexity assumptions have to be imposed on the
functions which describe the problem. The situation here is similar to that for 
one-dimensional systems (see Studniarski, 1982). 

THEOREM 4.1 Suppose that all the functions 'P?,j , 'Pi,j and fi,j appearing in 
(7), (8) and (13), respectively, satisfy the following conditions: for any Yv E 
R nv, v = 1,2, the functions 'Pf,j (Y1, Y2, ·) and 'Pi,j (Y1, Y2, ·) are affine, while 
fi,j (Y1, Y2, ·) are convex. Then, condition (25) in Theorem 3.1 can be replaced 
by the fallowing one: 

H (-h -v - ) H (-h -v ) ( · ·) K i,j xi,j , xi,j , ui,j = u Dx. i,j xi,j , xi,j , u , i, J E .
,,, 

(34) 

Proof. The proof is quite analogous to that of Theorem 4.5 of Studniarski 
(1982). We repeat it for the reader's convenience. 

It follows from our assumptions that the functions H i,j := - Hi,j (x?,j , x"l,,j , ·), 
(i,j) E K ,  are convex. Using either Lemma 4.4 of Studniarski (1982) or Propo-
sition 2.5.3 of Clarke (1983), we find that 

8ui,i(-Hi,j )(x f,j , x Y,j , ui,j ) = 8Hi,j (ui,j ), (i,j) E K .  (35) 

Hence, condition (25) is equivalent to 

(36) 

It is easy to check that N(ui,j I Ui,j ) = 8(8(· I Ui,j ))(ui,j ) where 8(· I Ui,j ) is 
the indicator function of Ui,j

8(u I ui 
·) := {o if_uEUi,j, 

,J +oo If uf/cUi,j . (37) 
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Consequently, by the well-known theorem on the subdifferential of the sum of 
convex functions (Rockafellar, 1970), formula (36) gives 

o E BHi,j + 8(· I ui,j ))(ui,j ), (i,J) E K .

In view of (2), this means that Hi,j attains at the point Ui, j its minimum on 
the set Ui, j , which is equivalent to (34). 

We shall now deal with the special case when problem (14) is convex, that 
is, all the functions rp7,j , lfJ'!, j , 1/J], 1/JY, 'ljJ are affine, while ]i,j and f are convex.
Applying the theory of convex programming presented in Rockafellar (1970), we 
can prove that, under some additional hypotheses, Theorems 3.1 and 4.1 hold 
with, , \= 1. Moreover, in some cases, the conditions given in these theorems are 
sufficient for optimality in problem (14). The details are given in the following 
two theorems. 

THEOREM 4.2 Suppose that problem (14) is convex and its optimal value (i. e. 
the infimum of J(z) over all z E Z satisfying (7)-(12)) is greater than -oo.  
Suppose that there exists a triplet z = (xh , xv , u) satisfying (7)-(12) and such
that for each ( i, j) E K ,  ui, j belongs to the relative interior of Ui,j. Then 
Theorems 3.1 and 4- 1 are valid with ,,\ = l .

Proof .  Let z = (xh , xv , u) be a solution of (14). Applying Theorems 28.1 and 
28.2 of Rockafellar (1970), we obtain that there exist elements (15), with, , \= 1, 
such that L + 8(· I A) attains its global minimum at the point z (here L a n d  A 
are defined by (28) and (26), respectively, while 8(- I A) is the indicator function, 
as in (37)). Hence 

o E B(L + 8(· I A))(z) = BL(z) + N(zlA).

From this, using Proposition 2.2 (a) and formula (6), we deduce (31)-(33) (note 
that, similarly as in (35), all partial generalized gradients of L at z coincide 
with partial subdifferentials). The remaining part of the proof is the same as in 
Theorems 3.1 and 4.1. 

Let us now consider the Cartesian product R n 1 x R n 2 x R m whose elements 
are written down as triplets (Y1 , Y2, y3). For a given convex function g: R n 1 x 
R n 2 x R m --, R ,  we denote by g'((y1 , 7[h , 'fh ); (Y1 , Y2, Y3)) the derivative of g at
(y1 , 'fh, 'fh) in the direction (y1 , Y2, y3) (see (1)). B y  g 1 

('fh, 'fh, '!hi Y1 ) we denote 
the derivative of g(·, 'fh, 'fh) at '[/1 in the direction y1 . Analogously, we define 
g 2 

('fi1 , 'fi2, '[/3; Y2) and g 3 
('fi1 , 'fi2, '[/3; y3). 

THEOREM 4.3 Suppose that problem (14) is convex, and that z = (xh , xv , u) 
satisfies the necessary conditions given in Theorem 3.1 ( or 4- 1) with ,,\ = l .
Suppose, in addition, that all the functions fi,j and f satisfy the following con-
ditions: for each (Y1 , Y2, Y3) E R n 1 X R n 2 x R m , we have 

(fi,j )
1 
( (x7, j , x'!, j , Ui, j ) j (Y1 , Y2, y3)) 2: 
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2 2 ) f i , j )  v  (x?,j, xY,j, Ui,ji y J , (38) 
v=l 

/ ((x ,s, x ,s); (y1, Y2)) 2 L f v (x ,s, x ,s; y J . (39) 
v=l 

Then z is an optimal solution of (14). 

Proof .  It suffices to show that L :=  L + 8(- I A) attains its global minimum at
z, which is equivalent to the following condition (see (2) and (3)):

L '  (z; z) 2 0 for all z E Z. (40) 

Let Lo be the sum of all the summands occurring in (29) and (30) except for 
the first one; hence L = J + L 0. Since L 0 is affine, and thus differentiable, we
have, for all z = (x h , xv , u) E Z,

(Lo)
1 
(z; z) = L (Lo)   ( z;  x?,j)

, , 1  
(i,j)ES 

+ ' " " " ' ( L o )  , , _ ( z ; x Y ) +  '"""' (Lo) i ; ( z ; ui,j )
  1,,1 .L.....t ' 

(i,j)ES (i,j)EK 

where S : = K U  { (r, s )}. Next, from (13), (38) and (39) we obtain 

i (  z ;z) 2 L [(fi,j) 1 (x t ,x Y,j , u i,j i X7,j )
(i,j)EK 

+!1 ( -h - v h ) + f 1 ( -h - v V ) 
YI Xr,s, Xr,s; Xr,s Y2 Xr,s, Xr,s; Xr,s · 

We also have 

(8(· I A))' (z; z) = L (8(· I ui,j))' (u i,j i ui,j)-
(i,j)EK 

Conditions ( 41)-( 43) mean that 

L (z;z) 2

( 41) 

(42) 

(43) 

'"""' L h (z ;xZ J·) + '"""' L ,, (z ;xY J·) + '"""' L   . .  (z;uij)- (44) .L.....t 1,,J l .L.....t 1,,J l ,L....,,; 'tiJ ) 

(i,j)ES (i,j)ES (i,j)EK 

Since problem (14) is convex, it is easy to show that conditions (19)-(25) imply 
(31)-(33). This means that all the three summands on the right-hand side of 

-(44) are nonnegative, and so, (40) holds. 



Necessary opt imal i ty conditions for non-smooth 2-D control systems 61 

REMARK 4.1 It can easily be shown that if  f is either Gateaux differentiable 
at (x ,s, x ,s) or has the property that, for each fixed y2 E R n2 , the function 
f  J ,  x ,s; Y2) is lower semicontinuous at x ,s, then f satisfies (39). However, 
there exist convex Junctions which do not satisfy (39 ); a simple example is given 
by f : R 2 

- R ,  f(y1, Y2) = max{y1, Y2}. A similar remark can be made in
regard to {38). See Studniarski {1991, Proposition 4- 2) for details. 
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