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A b s t r a c t :  This paper describes a novel method for attack-
ing constrained optimisation problems with evolutionary algorithms, 
and demonstrates its effectiveness over a range of problems. CO-
MOGA (Constrained Optimisation by Multi-Objective Genetic Al-
gorithms) combines two evolutionary techniques for multi-objective 
optimisation with a simple regulatory mechanism to produce a con-
strained optimisation method. It shares the universal applicability 
of penalty-function approaches, but requires significantly fewer free 
control parameters. 

COMOGA takes a dual perspective, considering a constraine<l 
optimisation problem sometimes as a constraint satisfaction prob-
lem, and sometimes as an unconstrained optimisation problem. The-
se two formulations are treated simultaneously, using a single po-
pulation, by basing each selection decision on the basis of either 
constraint violation or function value. A simple adaptive feedback 
mechanism couples the two formulations by adjusting the relative 
likelihood of these choices. Unlike penalty function approaches, CO-
MOGA dynamically adapts the emphasis on constraint satisfaction 
and objective function value as the optimisation proceeds, usually 
yielding final populations which are both feasible and highly fit. 

COMOGA has been successfully applied to real industrial prob-
lems with comparable performance to highly tuned penalty function 
approaches. On a test suite of constrained problems previously stud-
ied by Michalewicz, application of COMOGA required minimal ef-
fort but proved superior to all previous evolutionary methods known 
to have been applied; indeed it was the only method which found 
feasible solutions in every run for every problem. 

Keywords :  COMOGA, constrained optimization, multiobjec-
tive optimization, penalty functions, Pareto optimality, evolutionary 
algorithms, genetic algorithms 
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1. Introduction

It is a frequent criticism of evolutionary algorithms that published results are 
usually obtained with contrived problems without constraints, leading to the 
suggestion that evolutionary methods are unsuitable for tackling complex con-
strained optimisation problems. Within the community, there is a wide-spread 
perception that penalty function methods are a rather blunt instrument for 
handling general constraints ( e.g. Michalewicz, 1992), exhibiting great sen-
sitivity to the values of their many free parameters, and feeding rather too 
little information back to the algorithm to allow it to handle the constraints 
satisfactorily. While other methods are available for problems with explicit 
constraints (including repair methods, Davis & Orvosh, 1993a; smart decoders, 
Davis, 1987a;l99la; and special operators incorporating problem knowledge, 
Michalewicz & Janikow, 1991), these do not have fully general applicability, 
and tend to require significant work for each new class of problems tackled. 
There is thus a need for a method that combines the generality of penalty func-
tion approaches with a greater feedback of information to the underlying search 
algorithm about the way in which progress is being made with the various con-
straints under consideration. 

In this paper we present such a method, COMOGA, based on ideas for 
multi-objective optimisation. Section 2 presents an introduction to constrained 
optimisation and constraint satisfaction problems, and surveys the evolution-
ary techniques which have been used to tackle such problems. Multi-objective 
optimisation is reviewed in Section 3, where the natural fit with population-
based algorithms is discussed, and a link is made between multi-criterion opti-
misation and constraint satisfaction. In Section 4 these two strands are drawn 
together to motivate the COMOGA method, which is then described in detail. 
The technique is demonstrated for a gas-network problem in Section 5, and re-
sults for a test suite of constrained optimisation problems previously studied by 
Michalewicz arc summarised in Section 6. 

2. Constrained optimisation

2.1. Formulation 

Many optimisation problems can be phrased as the minimisation 1 of a given 
function f, over a search domain S:  

Minimise 
f : S - d

sv,b.f ect to [the sol11,tion x E S satisfying certain eqnalities or ineqv,al-
ities). 

1 In this paper we assume, whenever appropriate, without loss of generality, that problems 
are cast as minimisation problems. 
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The equations or inequalities that the solution x must satisfy are known as 
constraints. Solutions which satisfy all constraints are said to be feasible and 
the set of all such solutions is called the feasible region, S F · (Thus the set of 
optima, S* ,  is a subset of S F ,) In a constraint satisfaction problem, the objective 
function f is discarded, with the goal being simply to find any solution in S F , 

Constraints can be characterised in various ways. An inequality constraint 
is said to be active at a point x if it is satisfied as an equality at x. It is 
typical in constrained optimisation that a number of constraints are active for 
optimal solutions, so that S *  is at the boundary of the feasible and infeasible 
regions (with the result that any weakening of the constraints would change 
S*). Indeed, in highly constrained problems it is often the case that all feasible 
solutions are near this boundary, and that the volume of the feasible region 
is negligible when compared with that of the unconstrained search domain. 
(Although such problems arc typically difficult, the converse is clearly not true, 
with many difficult constrained problems having large feasible regions.) 

The constraints on x are conveniently divided into two (imprecise) categories-
implicit and explicit. Explicit constraints arc those which can be reduced to 
simple conditions on x and arc verifiable "by inspection" while implicit con-
straints are those which specify a condition on some function of x, that requires 
significant computation to verify ( comparable to, or perhaps much greater than, 
computing f(x)). For example, x 1 < 3 and x 1 + x 2 = x 3 would normally be
regarded as explicit constraints while a condition such as 'the pressure on the 
wing should not exceed 3N /m2 ' ,  where the pressure is computed by a fluid-flow 
simulation, would be regarded as an implicit constraint. The distinction is use-
ful because genetic operators can usually be constructed that respect explicit 
constraints whereas this is impractical for implicit constraints. 

2.2. Evolutionary approaches 

There are several main approaches for tackling a constrained optimisation prob-
lem using an evolutionary algorithm, with varying degrees of generality (see for 
example the survey in Michalewicz, 1995b). Perhaps the simplest idea is to 
restrict the search to the feasible region. This can be done by rejecting infea-
sible solutions outright, by using greedy decoders or repair mechanisms, or by 
designing specialised operators that incorporate knowledge of the constraints. 
The search is thus reformulated as an unconstrained optimisation problem over 
the reduced space S F (the feasible region), which is illustrated in Fig. 1. The 
diagram shows the image of the search space under the vector-valued function 
I :  S----+ ( + )2 x   where I  ( c 1 , c2 , f ) with ci(x) measuring the degree to 
which x violates the ith constraint and f(x) giving its cost (to be minimised). 
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Figure 1. A constrained optimisation problem in which the objective is to min-
imise cost f while satisfying two implicit constraints is illustrated. Points in the 
search space S are shown under the three-dimensional mapping I   ( c1, c2, f ) .  
The c1 and c2 axes measure the degree of constraint violation, so that points in 
the feasible region, S F , are mapped to the line where both are zero. The desired 
set of optima S* is the set of feasible points with minimum cost. All solutions 
in S are mapped to points on and above the shaded surface. 
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2.2.1. Restricting search to the feasible region 

Rejection of infeasible solutions is generally applicable, but is typically limited 
in its practical utility, due to the low density of feasible solutions in practical 
problems ( e.g. densities of 1 in 10 10 are not uncommon). In order to avoid 
generating and rejecting large numbers of infeasible solutions, greedy decoders 
can be used, in which a problem-specific growth function is designed. Here, the 
genotype does not directly encode a solution in S but rather a set of parame-
ters which is used by the decoder to generate a feasible solution. Because the 
decoder must be guaranteed to never produce infeasible solutions (regardless of 
the provided parameters), it is often extremely difficult to design. Moreover, it 
is typically hard to generate a decoder that can be guaranteed to be capable of 
generating optimal or near optimal solutions. 

A related approach is to use repair mechanisms to produce feasible solutions 
from infeasible ones, mapping S ------, S F . (Here, genotypes directly represent 
solutions in S) .  This requires a problem-dependent operator which is able to 
modify any infeasible solution in such a way as to produce a (nearby) feasible 
solution. Again this is clearly difficult for many types of constraints. When 
such mechanisms are employed, a further choice is available, namely whether to 
write the repaired solution back to the genome, or to use it during evaluation, 
but then to leave the (infeasible) genome intact. The former approach, which 
is known as Lamarckism, has the advantage of generally allowing faster local 
improvement, but can make it harder for the search to traverse infeasible regions 
of the search space, particularly when S F is strongly disconnected with respect 
to the genetic operators. The latter approach, (which has some parallels with 
the Baldwin effect) has converse advantages and disadvantages. Davis & Orvosh 
(1993a) present anecdotal empirical evidence that writing the repaired solution 
back to the genome probabilistically, about 5% of the time, is a good option, 
and the ideas are further explored by Whitley & Gordon & Mathias (1994a). 

The final suggestion is to build and use genetic operators that "understand" 
the constraints, in the sense that the syntactic actions of the operators never 
produce infeasible solutions (ones that violate the constraints). This approach 
is advocated by Michalewicz (1992), and Radcliffe (1992d). Michalewicz & 
Janikow (1991) have shown how genetic operators can be built that "under-
stand" linear constraints in this sense, and Schoenauer & Michalewicz (1996a) 
construct operators which maintain solutions on nonlinear analytical constraint 
surfaces; however, it is clear that for many types of constraints (particularly 
implicit ones) this approach is impractical. 

2.2.2. Exploring the infeasible region 

In a problem with implicit constraints, it is often at least as difficult to de-
termine whether a solution is feasible as to evaluate its cost. In such a case 
it is typically impossible to utilise repair mechanisms or greedy decoders and 
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impractical to restrict search by simply rejecting infeasible solutions, and we 
must take an alternative approach. We arc forced to consider infeasible solu-
tions during search, which has the advantage of simplifying the algorithm and 
the operators, but admits the possibility that no feasible solution is ever discov-
ered. B y  exploring infeasible solutions, the goal is to drive the search towards 
the feasible region. Particularly in problems with many active constraints at 
optima, we hope to approach optima from 'both sides', that is to find nearly 
feasible solutions with better than optimal function values along with feasible 
solutions with nearly optimal function values (indeed, this is the explicit goal of 
the segregated genetic algorithm of LcRichc & Knopf-Lenoir & Haftka, 1995a). 
Thus, it has been stated that: 

[g]ood search should approach the optimal from both sides of the fea-
sible/infeasible border (Richardson, Palmer, Liepins, Hilliard, 1989). 

The problem then becomes how to compare feasible and infeasible solutions, 
since in the final analysis it is only feasible solutions which are acceptable. 
The most widely applicable approach is to employ a penalty function. Here, the 
search is treated as an unconstrained problem over S, but the objective function 
is modified for infeasible solutions by adding terms which degrade their perfor-
mance. In general, the size of penalty added reflects in some way the degree of 
constraint violation (for example the sum of the constraint violation for each 
constraint). It is also reasonably standard practice ( e.g. Richardson, Palmer, 
Liepins, Hilliard, 1989; Michalewicz, 1992) to increase the size of penalties dur-
ing the course of a run (reverse annealing), so that while a degree of violation 
is tolerated in early generations, this tolerance reduces over time. This ensures 
that, after sufficient time, the optimal solutions to the unconstrained problem 
using the modified objective function coincide with the optimal solutions to the 
original constrained problem. 

Although penalty functions are essentially universally applicable, they ex-
hibit a number of drawbacks. First, they are weak, in the (formal) sense that 
they do not provide any problem-specific information to the algorithm. This 
contrasts with repair mechanisms and problem-specific move operators that 
exploit understanding of the constraints to provide stronger guidance to the 
algorithm, but such techniques arc not applicable for general constraints. Sec-
ondly, the choice of weighting for the constraints is a somewhat subtle matter, 
particularly when there are many, and increases yet further the number of free 
parameters to the evolutionary algorithm. Because any choice of parameters 
determines a fixed form for the modified function in the infeasible region, it 
induces a fixed ranking on all infeasible solutions. This limits the way in which 
the search algorithm can explore the infeasible region, since fixed tradeoffs be-
tween the various constraints have been introduced. The resulting quality of 
solution obtained in fact, the likelihood of finding any feasible solution rnay 
be extremely sensitive to the values chosen. 
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In the next section, we present a method, previously discussed in the context 
of a specific optimisation problem (Surry, Radcliffe, Boyd, 1995a), which avoids 
this difficulty by appealing to the methods of multi-criterion optimisation. Some 
initial exploration has taken place in this area. For example the work of Schoe-
nauer & Xanthakis (1994a) treats each constraint in turn to avoid amalgamating 
them. Richardson, Palmer, Liepins, Hilliard (1989) suggest the possibility of us-
ing multi-objective techniques ( using fitness and either the sum or the number 
of constraint violations as two objectives) but claim to have been plagued by 
difficulties. In fact, Chu & Beasley (1995a) implement a scheme similar to this 
to deal with a single constraint (using what they term fitness and unfitness). 
However, they give no guidance in dealing with multiple, non-commensurate 
constraints, other than by combining them using what is essentially a penalty 
function (see Section 3). The method we propose in Section 4 presents a novel 
solution to this problem. 

3. Multi-objective optimisation
3.1. Formulation 
In many real-world optimisation problems there is not a single objective but a 
set of criteria against which a solution may be measured. Such problems are 
often known as mv,lti-objective or multi-criterion optimisation problems, and
are defined by a set of objective functions J i ,  h, ... , JN over the search space
S, each of which should ideally be minimised. 

Perhaps the most common approach to multi-criterion optimisation is to 
form a new objective function F that is a weighted sum of the individual ob-
jectives, 

N 

F= La.di, O'.i ER+ 

i = l  

and to seek to minimise this sum. 
If there exists a solution x* E S that simultaneously succeeds in minimising 

each of the Ii, this approach can be reasonably satisfactory, because in this 
case, successful optimisation of F will also optimise each fi- In the more gen-
eral case, however, the component objectives f i  will compete, in the sense that 
improvement against one will in some cases require a degradation against an-
other. In this case, the approach of forming a weighted sum is less attractive, 
because the choice of weights a i  will determine the trade-off between the vari-
ous component objectives that optima of the combined function F will exhibit. 
This is particularly unsatisfactory in cases where the various objectives are non-
commensnrate, in the sense that trade-offs between them are either arbitrary 
or meaningless. A good example of this might arise when seeking to maximise 
profit while minimising ecological damage, where most people would accept that 
any assignation of economic cost to ecological damage is at best arbitrary. 
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In the case of multi-objective problems with competing, non-commensurate 
criteria, a more satisfactory approach is to search not for a single solution but 
for that set of solutions that represent the "best possible trade-offs." Such 
solutions arc said to be Pareto-optimal (after Vilfrcdo Parcto who first advanced 
the concept), and arc characterised by introducing the notion of domination. A 
solution x is said to dominate another solution y if its performance against each 
of the objective functions is at least as good as that of y, and its performance 
is better against at least one objective, i.e. if and only if 

Vi E {1, 2, . . .  , n}  : fi(x) ::; fi(Y) 
and j  E {1, 2, . . .  , n }  : f 1(x) < f1 (y). 

Clearly in this case, x may reasonably be said to be a superior solution toy. The 
Pareto-optimal set ( or front) P is the set of solutions that arc not dominated 
by any other solution in the search space, i.e. 

P   { x E S I   y E S : y dominates x }  .

3.2. Evolutionary approaches 

Although it is difficult to attack multi-criterion problems with traditional opti-
misation methods, it is relatively natural in population-based search algorithms 
to consider trying to use the population to hold solutions that represent differ-
ent trade-offs. Reasonably simple modifications to the selection (and perhaps 
the replacement) method may be all that is required to effect this. A number 
of schemes have been proposed, most of which arc based around the notion 
of only allowing selective advantage between solutions when one dominates an-
other. Fonseca & Fleming (1995a) provide an overview of many such techniques. 
The effectiveness of these methods is further enhanced when combined with 
some form of niching, to encourage greater diversity in the population. Niching 
methods include structured population models (e.g. Norman, 1988b; Mandcrick 
& Spicsscns, 1989a; Gorgcs-Schlcutcr, 1989a), sharing (Goldberg, Richardson, 
1987a), and crowding (Cavicchio, 1970; DcJong, 1975). 

3.3. Constraint satisfaction as multi-criterion optimisation 

It is clear that the constraint satisfaction problem is (formally) equivalent to 
the simple class of multi-objective problems ( discussed above) in which all ob-
jectives can be minimised simultaneously. We measure the degree of constraint 
violation for each constraint ( or group of commensurate constraints) and treat 
each of these as an objective in a multi-criterion problem. (Consider again Fig. 
1, where we arc now only required to find a solution in Sp.  The dashed lines, if 
extended upwards as vertical manifolds, might indicate a series of progressively 
dominating surfaces, converging on I ( SF ) - t h e  Parcto-optimal set in this case.) 
Although, in such a case, minimising a penalty function expressing the degree 
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of constraint violation would be the most common approach, we suggest that a 
more appropriate strategy when using evolutionary techniques is to use the sim-
ple techniques for general multi-criterion optimisation discussed above in order 
to exploit the ability of the population to hold many different possible trade-offs 
between the constraints. This allows the algorithm to dynamically "discover" 
an appropriate trajectory by which to approach the feasible region, rather than 
arbitrarily assigning the relative importance of different combinations of con-
straint violations. 

In the next section we show how this idea can then be extended to the 
constrained optimisation problem, where not only must several constraints be 
satisfied, but a given objective function f must also be minimised. 

4. The COMOGA approach
4.1. Motivation 

It was pointed out in Section 2 that if we choose to use a penalty function with 
some given set of parameters to attack a constrained optimisation problem, we 
make an a priori decision about the relative importance of different degrees of 
constraint violation, regardless of their actual difficulty to satisfy. Further, by 
combining the degree of constraint violation with the objective function value 
we impose fixed choice concerning the tradeoff between constraint satisfaction 
and optimisation. 

In Section 3, we showed that the methods of evolutionary multi-objective 
optimisation can be applied directly to the constraint satisfaction problem, and 
proposed that we could apply similar ideas to constrained optimisation. Ob-
viously, the situation is complicated somewhat by the additional requirement 
of minimising some function over the feasible region. Here we think of f as 
an extra criterion which is of less importance than any of the "constraint cri-
teria", i.e. there is no acceptable trade-off between minimising (satisfying) the 
constraints, and minimising f. 

The approach encapsulated in COMOGA is to view a constrained optimi-
sation problem alternatively as a constraint satisfaction problem (ignoring the 
objective function) and as an unconstrained optimisation problem (ignoring the 
constraints). We then decide adaptively which view to take at any instant based 
on the relative success with respect to the two formulations. In order to find 
near-optimal solutions, we must be careful to get neither "too far" from feasi-
bility nor "too far" from optimal fitness, while also recognising that constraint 
satisfaction is more important than optimisation ( as ultimately we are only 
interested in feasible solutions). We show that an adaptive population-based 
algorithm is ideal for this purpose. 

There arc numerous approaches to unconstrained optimisation using a popu-
lation-based algorithm, and various techniques for constraint-satisfaction based 
on multi-criterion evolutionary algorithms have been discussed above. The dif-
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ference between these two types of algorithms can typically be ascribed solely 
to the selection ( and replacement) regime-in the first case selective decisions 
are based on fitness (cost) while in the second they are normally based on some 
form of Pareto ranking. 

This motivates an attractively simple scheme for attacking the combined 
constrained optimisation problem, in which we use a single algorithm but ran-
domly decide each time a selective decision must be made whether to consider 
the problem as a constraint satisfaction problem or as an unconstrained opti-
misation problem. We then adjust the relative likelihood of adopting each view 
using a simple feedback mechanism that tries to maintain a fixed fraction of 
the population in the feasible region. Because individual solutions can be se-
lected on the basis of either constraint satisfaction or cost, this results in an 
algorithm which aims to dynamically explore the boundary between feasibility 
and infeasibility without arbitrary penalty factors fixing the relative quality of 
the different achievable tradeoffs. 

This can be seen as a generalisation of the scheme recently proposed by 
Chu & Beasley (1995a) which can importantly handle more than one constraint 
without having to amalgamate them. 

4.2. Algorithm 

To treat the constraint satisfactio.n aspect of the problem, we can conceptually 
label all members of the search space S with some measure of their Pareto rank-
ing based on constraint violation, either by conceptually peeling off successive 
non-dominating layers (Goldberg, 1989a), or by assigning to each solution a 
"rank" equal to the number of solutions which dominate it (Fonseca & Fleming, 
1993a). (The latter scheme has the advantage that it is easy to subtract the 
effect of a deleted individual and add the effect of a new individual without 
re-ranking the entire population.) Note that this ranking is a dynamic one, 
based on the current population of achievable constraint tradeoffs rather than 
a fixed ranking of any possible combination of constraint violations. We denote 
this population-dependent ranking function R : ( + )N - - t  z + , where N is the 
number of constraints. 

From the unconstrained optimisation view, every solution has some cost 
value associated with it. Thus we are presented with a dual view of each solution 
in the population and can form the two-dimensional mapping I R : S - - t  z + xJR, 
with 'IR  (Ro (c1, . . .  , CN ), f). This reduces the problem to the two-objective 
problem illustrated in Fig. 2. We must couple the two viewpoints in order to 
solve the combined constrained optimisation problem: in solving the constraint 
satisfaction problem we minimize along the R axis and in solving the uncon-
strained optimisation problem we minimize along the f axis. However, we desire 
not simply solutions on the Pareto-optimal surface P ,  but rather solutions in 
the intersection of the Pareto-optimal set with the feasible region ( as constraint 
satisfaction is "more important" than cost minimisation). 
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Figure 2. The constrained optimisation problem with N constraints can be re-
cast as a two-objective problem by assigning a Pareto rank based on constraint 
violation. The Pareto-optimal set 'P is the set of non-dominated solutions under 
I R  (Ro(c 1, . . .  , cN), f). The feasible set is mapped to the line segment I R (S F ), 
and the desired set of optima is mapped to their intersection, I R (S *). The search 
space S is mapped to points on and above P .  

One possible approach is to use a sub-ranking scheme, where only solu-
tions with equal Pareto rank for constraints arc distinguished on the basis of 
cost. However, this is likely to result in an evolutionary process which first con-
centrates on the constraint satisfaction problem (hence sampling points in the 
feasible region essentially at random) and only once this is solved tries to reduce 
cost. This "approach from above" not only lacks the desirable property of be-
ing able to combine low-cost, nearly-feasible solutions with higher-cost feasible 
ones, but may be an extremely poor way to search S F if it is a highly sparse 
and disconnected subset of S .  

An appealing alternative approach is to enlist the ideas of Schaffer (1985). 
In his vector evaluated genetic algorithm (VEGA), he selects some fraction (typ-
ically 1/k) of the population based on each of the k objective functions. When 
a fixed fraction is used for each objective (e.g. 1/k), this tends to favour the 
development of "specialist" subpopulations that excel in one objective function, 
particularly when fitness-proportionate selection is used (Richardson, Palmer, 
Liepins, Hilliard, 1989). However, COMOGA will actively exploit this tendency 
by adaptively changing the likelihood of selecting with respect to each objective. 

The suggestion in our case is to use, for example, tournament selection ( Gold-
berg, 1989a), sometimes basing the tournament on cost f and sometimes on the 
Pareto ranking R with respect to constraint violation. (In cases where the se-
lected attributes are equal, the other attribute is compared.) A probability Pcost
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Figure 3. Using a VEGA-like scheme of selecting probabilistically with respect 
to one of the two objectives ( cost or constraint rank), we induce a perceived 
fitness of some population-dependent weighted combination of the two objec-
tives. As Pcos t tends to zero, the scheme favours constraint rank more, and cost 
less. B y  adaptively changing Pco s t based on the proportion of feasible solutions 
observed in the population, the algorithm dynamically discovers how to achieve 
constraint satisfaction and minimisation simultaneously. 

is used to determine the likelihood of selection with respect to cost, and will 
be adapted as the algorithm progresses. Any fixed value of Pco s t will induce 
an overall probability of reproduction equal to some linear combination of the 
reproductive probabilities with respect to the two attributes, with population-
dependent weights. Although such a fixed Pc ost may favour convergence to some 
non-feasible point on the Pareto-optimal curve, it is clear that as Pcos t --+ 0, the 
process increasingly favours constraint rank until in the limit of Pc os t = 0 we are 
essentially solving the constraint-satisfaction problem; seeking feasible solutions 
regardless of cost ( unless the constraint rankings arc equal this is equivalent 
to the sub-ranking approach described above). We thus hope that some inter-
mediate non-zero value will allow us to find feasible solutions of low cost. This 
is illustrated in Fig. 3. 

To avoid the problem of fixing a particular value for Pc o s t , we propose to 
change the value adaptively by setting a target proportion T of feasible solutions 
in the population ( T is similar to the flip threshold of Schoenauer, Xanthakis, 
1994a). We start by choosing some arbitrary value for Pco s t , say 0.5, and some 
desired proportion of feasible solutions, e.g. T = 0.1. After each generation, if
the number of feasible solutions in the population is not close to T, then we 
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adjust Pco s t up or down accordingly: if the actual proportion is too low, we 
decrease Pc os t , e.g. 

Pc os t +--(1 - c )Pco s t , (1) 

and conversely, if the proportion is too high, we increase it, e.g. 

Pc o s t +--1 - (1 - Pcost)(l - c). (2) 

This does, of course, introduce several new parameters to the algorithm (though 
notably fewer than a penalty function), which we were trying to avoid, but we 
find in practice that the scheme is remarkably robust to their values, in contrast 
to the sensitivity of penalty function parameters. This leads to the COMOGA 
method, which is summarised below. 

The COMOGA Method 

1. Calculate constraint violations ( c1, . . .  , CN) for all solutions.

2. Establish Pareto rank based on constraint violations ( e.g. by
counting the number of members of the population dominated
by each solution).

3. Evaluate the cost (fitness) of solutions.

4. Select an ( expected) proportion Pcos t of parents based on cost,
and the others based on constraint ranking.

5. Apply the genetic move operators (recombination, mutation
etc.)

6. Replace an ( expected) proportion Pco s t of solutions based on 
cost, and the others based on constraint ranking.

7. Adjust Pco s t if the proportion of feasible solutions in the pop-
ulation is not close to the target proportion, T, according to
equations (1) and (2). Lowering Pc os t favours feasible solutions
and raising it favours lower cost solutions.

Typical values for the parameters are T = 0.1 and c = 0.1, with Pco s t = 0.5
initially. 

4.3. Discussion 

The COMOGA scheme has several attractive features. First, and foremost, it 
removes the necessity for the many parameters of a penalty function which must 
be determined empirically. Secondly, it turns the acknowledged weaknesses of 
VEGA to favour extreme solutions to advantage, as in our case we are only 
ultimately interested in solutions which excel at constraint satisfaction (have 
low constraint rank). Thirdly, the adaptive approach to specifying Pc os t allows 
the algorithm to find its own trajectory to approach the desired optimal values. 
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In practice, it is important to incorporate explicit constraints ( e.g. linear 
or other specific nonlinear ones) where possible, and to amalgamate multiple 
commensurate constraints in order to reduce the dimensionality of the Pareto-
optimal front. It may also be advantageous to incorporate niching or other 
diversity promoting measures in the algorithm (in the work presented here we 
have simply enforced uniqueness which is not likely to be highly effective for 
real parameter optimisation). 

5. An illustrative application
We will illustrate the application of the COMOGA approach to a gas-network 
pipe-sizing problem, contrasting the results with a penalty-function approach. 
This work has been previously reported in grnater detail (Surry, Radcliffe, Boyd, 
1995a). 

The problem involves determining the diameters of pipes in a fixed-topology 
network (with fixed supplies and demands), in order to minimise expenditure, 
while satisfying two implicit constraints defining the minimal pressure at each 
node along with an engineering requirement that each pipe should have at least 
one upstream pipe of the same or greater diameter. 

In the particular problem considered, the network contained 25 pipes, each 
of which could be selected from six possible sizes, giving rise to a search space of 
size 62 5   3 x 1019 . The network is a real one, which was actually built, with pipe 
sizes determined using a greedy heuristic method. (Both evolutionary methods 
outperformed the existing gTeedy heuristic for the problem, giving identical 
results.) The density of valid networks (ones which satisfy the constraints) in 
the search space is extremely low-random sampling of more than 3 x 107 points 
produced only a single admissible configuration. 

Because of the implicit nature of the constraints in the pipe-sizing prob-
lem, the only applicable conventional approach is to use a penalty function, 
as it would be extremely difficult to construct genetic operators that respected 
them, and prohibitively expensive to use a repair mechanism (if indeed one could 
be constructed). In order to compare this approach with the COMOGA tech-
nique of modifying the selection regime, a standard steady-state elitist duplicate-
free evolutionary algorithm using an integer-valued representation and standard 
recombination and mutation operators was employed (Surry, Radcliffe, Boyd, 
1995a). Binary tournament selection with parameter 1.0 was used to select 
parents, and the resulting child was re-inserted using a replace-worst scheme. 
Tournament replacement was also investigated, but the more aggressive replace-
worst strategy proved superior. 

In the first case, an annealed penalty function which combined a time-
dependent weighted sum of the degree of constraint violation for the two con-
straints along with the basic cost function value was used as the objective. This 
involved six control parameters to incorporate the two constraints. A wide range 
of penalty function parameters were tested to discover the typical relative values 
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of constraint violations, etc. As has been widely reported previously, the quality 
of the resulting algorithm is highly sensitive to these values, with small changes 
often resulting in runs in which no feasible solution was found. 

The technique (with good parameters) produced consistently good results, 
although it did not always converge to the same optimal solution. In most 
cases it found networks which were better, often significantly so, than that 
determined by the heuristic approach. In almost all cases the algorithm found 
a valid network by the end of the run (i.e. one in which the penalty terms 
were zero). A snapshot of a single successful run using the penalty function is 
discussed in Fig. 4. 

The same algorithm was then adapted to the COMOGA approach, as de-
scribed in Section 4. Each member of the initial population was assigned a rank 
according to constraint violation by counting the number of members in the 
population by which it was dominated. The same selection and replacement 
regime was used, but with decisions based on cost value with probability Pc os t , 
and otherwise on constraint ranking. 

As with the penalty function approach, a variety of population sizes, muta-
tion and crossover rates, and so forth were investigated. Results were best with 
populations of about 100 individuals, and with the same stopping conditions, 
runs lasted for similar numbers of evaluations, and produced similar quality so-
lutions (the same "best" solution from the penalty-function approach was found 
consistently). In contrast to the penalty-function approach however, algorithm 
performance was much less sensitive to these control parameters. Most im-
portantly, the COMOGA scheme was not particularly sensitive to the method 
used for adapting the Pcos t parameter, nor to the target proportion of feasible 
solutions, T. A sample run of the COMOGA algorithm is discussed in Fig. 5. 

Although the overall performance of the COMOGA algorithm was very simi-
lar to that of the best penalty function approach found, both in terms of compu-
tational effort required and frequency of finding the best solutions, significantly 
less experimentation was required to find values for COMOGA's parameters 
that work well than was the case with the penalty function method. 

6. Experimental results
In order to validate the COMOGA method it has been applied to a series of 
known test problems in constrained optimisation for which other evolutionary 
methods have been applied. The first such problem is the so-called "bump 
problem" of Keane (1996a), a highly multi-modal maximisation problem defined 
for an arbitrary number of variables, n, and two non-linear constraints, with an 
unknown optimum value. For comparative purposes, we studied the problem 
with n = 50. Using an untuned implementation of the COMOGA method,
we achieved results superior to any generic evolutionary algorithm previously 
studied, with fitnesses in the range of 0.814 to 0.828 after 200 000 evaluations. 
Keane (1996) reports that the best result known to him is 0.832, produced by 
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Figure 4. The figure shows the pattern of convergence for a single run of an 
algorithm based on a penalty function. A snapshot of the population is shown 
every five generations, plotted with respect to the degree of violation of the two 
constraints and to unpenalised cost (to be minimised). An enlarged section of 
the region near zero constraint violation is also shown, along with curves which 
show lines of equal penalty when constraint violations are incorporated with the 
cost. Note that the population approaches the minimum by first satisfying the 
constraints and then minimising in the feasible region. 
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Figure 5. The figure shows the pattern of convergence for a single run of the 
COMOGA method. The population is shown every five generations with respect 
to the two constraints and the cost. In contrast to the penalty function run, the 
population explores a variety of tradeoffs between constraint satisfaction and 
cost, approaching the feasible solutions with minimal cost from both above and 
below. 
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a non-genetic technique, but more recently Michalewicz & Schoenauer (1996a) 
have achieved 0.833 with a population of size of 30 over 30 000 generations 
using a problem-specific crossover operator to search the constraint surface, 
and in this volume Wodrich & Bilchev (1997a) report results of 0.826 after only 
30 000 evaluations, also employing a problem-specific heuristic. 

Michalewicz (1995a) has proposed a test set consisting of five constrained 
optimisation problems, for which he has compared six existing evolutionary 
techniques. This test set was coded as a library for the Reproductive Plan Lan-
guage, RPL2 (Surry, Radcliffe,1994a; Radcliffe, Surry, 1994d), and an untuned 
implementation of CO MOGA was applied to the problems. Table 1 summarises 
the results of these experiments in the same form presented by Michalewicz 
(based on the same number of total evaluations per run). Here all runs resulted 
in feasible solutions so Michalewicz's summary by degree of violation has been 
dropped. 

For problem # 1 ,  it has failed only to accomplish the final 'polishing' having 
achieved 4 +  figure accuracy in all of the parameter values for every run. This 
is more suggestive of shortcomings in the genetic operators used ( e.g. perhaps 
the mutation rate or loss of diversity) rather than a failure in the COMOGA 
technique itself. Note also that no operators which 'understood' these linear 
constraints were used for the purposes of this initial comparison. 

For problem # 4 ,  by treating the equality constraints as hard inequality 
constraints (using the arbitrary 0.001 factor for allowable degree of violation) 
we create a sharp artificial boundary between the feasible and infeasible regions. 
Since this region is essentially a two-dimensional subspace of the five-parameter 
domain it is perhaps not surprising that it is difficult to "explore" it effectively. 
In fact, we typically observe that the trajectory of the initial population to find 
the first feasible solution has a large impact on the quality of the best feasible 
solution found. This suggests that perhaps this is not the best way in which 
to incorporate equality constraints within the COMOGA framework, but this 
requires further investigation. 

7. Summary
A new approach of general applicability to constrained optimisation-the CO-
MOGA method-has been presented. This technique treats a constrained op-
timisation problem sometimes as a constraint satisfaction problem and some-
times as an unconstrained optimisation problem, using a single population, by 
switching between selection regimes. A simple feedback mechanism is used to 
determine the (expected) proportion of selective decisions which arc made with 
respect to the two viewpoints, depending on the relative progress observed on 
each. 

The COMOGA method uses the memory implicit in the population to "dis-
cover for itself" the relative utility of different achievable combinations of con-
straints and objective function value. The population thus forms not just a 
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Best /Median/Worst 
Case Form Vars LI NI Eq  Optimum Previous COMOGA  Rank 

1 quadratic 13 9 - - -15.000 # 4  -15.000 -14.997 5=
-15.000 -14.996
-15.000 -14.994

2 linear 8 3 3 - 7049.331 # 4  7377.976 7081.43 1 
8206.151 7556.85 
9652.901 8322.51 

3 polynomial 7 - 4 - 680.630 # 4  680.642 680.663 1= 
680.718 680.690 
680.955 680.755 

4 nonlinear 5 - - 3 0.054 # 4  0.054 0.058 3 
0.064 0.205 
0.557 0.570 

5 quadratic 10 3 5 - 24.306 # 2  25.486 24.340 1 
26.905 24.509 
42.358 24.710 

Table 1. The table shows the results of applying the COMOGA method to 
the test set of Michalewicz (1995a), in which he compared six evolutionary con-
straint handling methods. The form, number of variables and number and types 
of constraints (linear inequalities, LI, non-linear inequalities, NI, and non-linear 
equalities, Eq) are shown for each test problem, along with the optimal value. 
Results from a set of ten runs are shown for both the previous best method 
(numbered) and the CO MOGA method, along with the overall ranking on min-
imum, median and maximum for this new scheme (where this is ambiguous a 
tie has been awarded). COMOGA performs well on most of the problems, and 
was the only method to produce a feasible solution in every run for every prob-
lem. It performs worst with the linear constraints of problem 1, though this is 
essentially only a failure to sufficiently polish the parameter values. In problem 
4 the equality constraints are treated by essentially converting them to inequal-
ity constraints specifying an allowable violation of the equality ( a tolerance of 
0.001 was used, as this defined feasibility in Michalewicz's study). This creates 
an artificial division between the feasible and infeasible region. 
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pool of good solutions among which recombination takes place, but a context in 
which to determine the fitness of any one member-the effective weighting of the 
various constraints is determined by the population, as is the relative weighting 
of constraint satisfaction and cost minimisation. This contrasts with a penalty 
function approach, where both are determined a priori, and appears to carry 
the significant benefit of reducing both the sensitivity of the genetic algorithm 
to the values of the free parameters, and the number of those parameters. 

A series of experiments has validated the COMOGA approach, based on the 
simple yet powerful idea that by merely alternating between two selection ( and 
replacement) regimes we can couple solution of the constraint satisfaction prob-
lem to the simultaneous solution of the unconstrained optimisation problem, 
and discover good solutions to the constrained optimisation problem. Because 
the scheme is based only on modifying the selection regime, it is possible to use 
whatever representation, genetic operators and update strategy is appropriate 
for a given problem within the COMOGA framework. 
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