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Abstract :  The paper considers a problem of optimal control of 
a linear system with the parameters dependent on the states of a 
Markov chain. The cost criterion is quadratic in the controls and 
states of the system. The criterion parameters also depend on the 
states of the Markov chain. Two models of observation of the Markov 
chain are adopted - dela y  for one step and no dela y . It is shown that 
under appropriate mean square detectability and stabilizability con-
ditions the infinite horizon optimal control problem for the general 
case of Markovian jump linear quadratic systems has a unique mean 
square stabilizing solution. Necessary and sufficient conditions are 
given to determine if a system is mean square stabilizable. 
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1 . I n t r o d u c t i o n

The paper concerns linear discrete time systems with quadratic criteria both 
having parameters dependent on a Markov chain. Such systems were studied 
by Ji  and Chizeck (1990). The case of i.i.d. parameters was considered by 
many authors. For references see Ji  and Chizeck (1990) and de Koning (1982). 
The aim of the paper is to find appropriate stabilizability and detectability 
conditions which assure a unique solution for which the control system is sta-
ble. Related results concerning the stability of such systems were obtained by 
Costa and Fragoso (1993) and Fragoso, Costa and de Souza (1993). The control 
of such systems were considered recently by Blom (1991) and Yang and Bar-
Shalom (1991). A general system discribed by a linear difference equation in a 
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Hilbert space with three types of disturbances, control-dependent noise, state 
dependent noise and purely additive noise was considered by Zabczyk (1975). 
However, these results were based on other assumptions about the parameters 
or knowledge taken into account in the construction of the control. Here, two 
different models of information available at each moment are considered. In the 
first one, similarly as in J i  and Chizeck (1990), the knowledge of all past controls, 
the past and present states of the system and Markovian parameters is assumed. 
The other one is based on the assertion that only the values of the Markovian 
parameters are known, i.e. there is a delay of one step in the observation of 
these random parameters. A generalization of the stochastic and mean square 
(ms-)stability for the considered control problems is given (see Zabczyk, 1981, 
and Klamka, 1991 for basic definition and results). Relations between these two 
kinds of stability are investigated. To formulate the condition of stability for 
the optimal control in the infinite horizon case ms-detectability is introduced, 
which generalizes the ms-detectability for the systems with i.i.d. parameters 
considered by de Koning (1983). Necessary and sufficient conditions for the 
existence of the solution of the infinite-horizon control problem are established. 
Conditions for the ms-stability are given. The differences between these two 
available models of information are pointed out. The results for the model with 
delayed observation of the Markov parameter are a generalization of the control 
problem with i.i.d. parameters considered by de Koning (1983). Suggestions 
of computational methods of verification of the obtained conditions are given. 
The stochastic controllability of considered systems (see paper by Klamka and 
Le Si Dong, 1990, for related results) will be subject of other paper. 

The organization of the paper is as follows. In the next section, preliminary 
notations and definitions are given. The finite horizon optimal control problem 
is solved in Section 3. Next in Section 4, problems of stability of the system are 
considered. Section 5 is devoted to the solution of the infinite horizon optimal 
control problem. 

2. Notations and formulation of the problem

At the beginning of this section some notations are introduced and basic math-
ematical facts are mentioned. Next, the problem of optimal control for systems 
with randomly varying description in the finite and infinite horizon case is for-
mulated. 

Scalars are denoted by lower case Greek letters, column vectors by lower 
case italic letters, matrices by capital Greek or italic letters. Capital scripts will 
be used to denote spaces and bold italic letters for operators. Exceptions from 
these rules will be noted. The transpose of vectors or matrices is denoted by 
superscript T. 

Let 3cn denote the Euclidean n-space. For x, y E 3cn , the inner product 
< x , y  >= x T y and the norm lxl = (xT x)112. M m n denotes the space of all
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realm x n matrices with norm IIAII = sup IAxl, where A E M rnn and x E  n .
JxJ=l 

Denote M nn by M n and let s n C M n be a space of the real symmetric matrices. 
The zero and identity element in M n are O and I, respectively. Matrix A E s n 

is called non-negative definite if for every x E  n we have xT Ax 2 0. If in 
addition xT Ax = 0 implies x = 0, matrix A is called positive definite. 

The set of all non-negative definite 1m1trices of s n is denoted by JC,n _ Put 
IE = { l ,  2, • • ·,  s }. We will denote by M"lJit the set of functions defined on IE 
with values in M rnn _ Denote by II the element of M E  such that JI(i) = I
and let 8 E M E  be such that 8(i) = 0 .  For f E M11r we define norm 
llfll* = max{llf(r)II}- Space Si with norm II· II* is a Banach space.

rEIE 
The paper deals with a discrete time linear system with Markovian jumps, 

modeled by 

Xk+l = A(rk )Xk + B(rk)uk , (1) 

where k = O,l,· · · ,N, Xk E  n , Uk E  = , A E M E ,  B E  M nrn _ N can be 
finite or infinite. It is assumed that x0 is given and {rk } f=o is a homogenous 
Markov chain defined on a fixed probability space (D, F, P) with values in JE. 
Let (Pi)iEIE and (Pij )i ,j EJE denote the initial and transition probabilities for this 
Markov chain, respectively. Let i i =  (u0 ,u1 , . . .  ,uN_i). In the finite horizon 
case, system (1) is considered with the cost criterion 

N-1 

JN(ii, xo) = E {  L [xf Q(ri )Xi + u f  R(ri )ui] + XhH(rN )xNlxo} (2) 
i=O 

and in the infinite horizon case with the cost criterion 
0 0  

J(ii, xo) = E [ L  x r  Q h ) xi + u f  R(ri )ui lxo] (3) 
i=O 

where Q, H E  JC,E, R E  JC,IE. 
Denote r k = (ro, r1, . . .  , rk ) and zk = (xo, uo, . . .  , Xk- 1, Uk- 1, xk )- The dif-

ferent classes of admissible controls can be considered for system (1) with cri-
terion (2) or (3). We focus our attention on two different classes of strategies: 
(DO) ui = gi (zi , r i ) - the control at moment i is based on information about

the states, controls and states of the Markov chain up to moment i; 
(Dl) ui = gi (zi , r i- l ) - uses the same information about the states and controls 

of the system as in (DO) but there is a one step delay in the observation 
of the state of the Markov chain. 

DEFINITION 1 Assume that the control laws {gi} belong to class (DO) ((Dl)) 
and the system is given by (1) with criterion (2). The problem of finding the 
control sequence ii* which minimizes JN ( ii, x0) for all x0 and determining the 
minimal value JN (ii*, x0) is called the finite horizon optimal control problem 
without delay in the observation of the Markov chain (with a delay in the ob-
servation of the Markov chain for one step). 
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DEFINITION 2 The infinite horizon optimal control problem without delay in the 
observation of the Markov chain (with a delay for one step in the observation of 
the Markov chain) for system (1) and criterion (3) is to determine the control 
it'- in class (DO) ((D1)) which minimizes J(u ,  x 0) and to find the minimal value 
J (  it'-, xo). 

Related optimal control problems were considered in de Koning (1982, 1983), 
J i  and Chizeck (1990). J i  and Chizeck (1990) considered the case of control poli-
cies (DO). The problem with delayed observation of the Markov chain parameter 
is a new one. A unified approach to the problems is proposed. A comparison of 
the solution of the problems for classes of strategies (DO) and (Dl) allows us to 
underline the differences between the two models. For i.i.d. random variables 
{ rn } : =o, the knowledge of r0, . . .  , rk- I has no influence for the posterior distri-
bution of rk . Taking this into account, the results of the paper for the class of 
control policies (Dl) are a generalization of the considerations in De Koning's 
papers (1982, 1983) for rk with discrete distribution. 

3. Finite horizon optimal control
In this section the finite horizon optimal control problem for system (1) with 
cost criterion (2) is solved for both cases of admissible sets of controls (DO) 
and (Dl). The results were obtained with the following dynamic programming 
principle (DPP) for systems with the Markovian parameters (see e.g. Kumar 
and Varaiya, 1986, for DPP in an i.i.d. parameter case). 

Let 

(4) 

for k = 0, 1, . . .  , N - 1, where Xk E wn and rk is the Markov chain defined in
Section 2. An admissible control law is: any sequence § = (g0, g1 , . . .  , 9N) such 
that Uk = 9k (zk , r k). Denote by 9 the set of admissible controls. The cost
criterion for system ( 4) and given § E Q is defined as 

N - 1  

JN(§, xo) = E{ L ck (x k , Uk , rk) + cN(xN, rN )lxo}
i=O 

F o r §  E 9 define the cost-to-go at moment n by 

N - 1  

J n ,N (§ , x gn , rn ) = E{ L ck (xf , u%, rk) + CN(X}.T, rN )lxgn , rn } ,
i=n 

where xf and uf are the state and the control process corresponding to control 
law §, respectively. An admissible control law § E 9 is called Markovian if 9k 
depends only on (xk , rk)- YM denotes a class of Markovian policies. We can 
formulate the following DPP, Kumar and Varaiya (1986): 
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LEMMA 1 (DPP) Define recursively the function 

WN(x, r) CN(x, r) 

for n = N - 1, . . .  , 0. 

67 

(i) For arbitrary§ E (} we have wn (xK,rn) J n,N(§, x9 n , rn) a.e. and 
JN(§, xo) 2 Ewo(xo, ro). 

(ii) I f §  E YM is optimal, then the infimum in (5) at moment n is attained 
at Un = 9n (x , r). We have then Wn (xK, rn) = J n,N(g, x9 n , rn) a.e. and 
J *  = inf JN(§, xo) = infEJo N(§, xo, ro) = Ewo(xo, ro)-

§EQ §EQ
' 

(iii) I f  for each n the infimum at state xK in (5) is attained by Un = 9n (xK, rn)
i. e. 

Wn (X , rn) = Cn (x , 9n (xf, , rn), rn) + E[wn+l (x +l, rn+i) Ix , rn] a.e
then g is optimal in (}. 

Let us consider the case of controls (DO) for the system described by (1). For 
A E M i t , B E MIE we adopt the following convention: A(r)B(r) = [AB](r). 
The point of the following lemma is in the preliminary calculation of criterion 
(2) for the given controls.

LEMMA 2 Suppose 

ui = -L(ri)Xi

where: L E M ' ; t ,  then for every xo 

JN(u,xo) = x'{;E1J1!, H(ro)xo 

Operator 1J L : S'£,; ---+ S'£,; is defined by 

and 

£LX(r) = wI(r)E[X(r1)lro = r]wL(r)

where QL(r) = Q(r) + [LT RL](r) and wL(r) = A(r) - [BL](r).

Proof .  B y  (6) we can write (2) as 

N - 1  

and 

JN(u, xo) = E{ L x;QL(ri)Xi + xiH(rN)xNlxo}
i = O  

N - 1

J n,N(u, xn , rn) = E { L  x[QL(ri)Xi + xiH(rN)XNlxn , rn } .
i=n 

(6) 
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Using state equation (1) and the Markov property of parameter r n , 
N - l 

J n ,N (il, xn , rn ) = E{ L x f  QLh)xi  + xJvH(r N )xN IXn , r n} -
i=n 

We have J N ,N (il,xN , r N ) = x7iv'D 0 H (r N )XN - Suppose for backward induction

J (- n+l n+l ) T ,,.... N - n- lH ( ) n+l ,N U, X , r = Xn+l .vL r n+l Xn+l · 

We have 

N - l 
Jn,N (il, xn , r n) = E [ L  x f  QLh)xi  + xJvH(r N )xN lxn , r n]

i=n 
N - l 

= E{E[ L x f  QL(r i)Xi + x'fvH(rN )xN lxn+1, r n+l]lxn , r n} =
i=n 

= x QL( r n )Xn 

+E{E[ L xfQL(r i)Xi +xJvH(r N )XN lxn+1, r
n+l]lxn , r n } =

i=n+l 

x  QL(r n )Xn + E[x wI (r n )v r - n- l H(r n+l )wL(r n )xn lxn , r n] = 
(6) 

= x [QL( r n ) + £ L v r - n- l H(r n )]xn = x  v r - n  H(r n )Xn 

For n = 0 we get J N (il, xo) = EJo,N (il, xo, r o) = x5E'Df H(r o)xo.
Denote X (r ) = E[X(r1)lro = r] for X E Si. 

■ 

PROPOSITION 1 Solution i1" of the finite ho r izon optimal control problem with-
out a delay in the observation of the Markov chain is given recursively as follows 

* ,,.,,.... N - n- lH ( ) Un = _,__.,__,* r n  Xn 

for n = 0, 1, . . .  , N  - 1  and 

J N (il*, xo) = x5E'D;/H(r o)xo,

where 'D*X(r ) = 'D .cxX(r ) and 

.CX(r ) = [(BT X B + R)+B T X A](r ).

The open for m of operato r 'D* is as follows 

Q(r ) + [AT XA](r )
-[AT X B ( BT X B  + R)+ B T XA](r ),

where: X E Si, 
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Proof .  It suffices to use DPP together with the results of Lemma 2. ■ 
Now, consider the case of controls based on the observation of states and for-

one-step-delayed observations of the Markov chain. To simplify the description 
of results, let us suppose that at the moment - 1  the Markov chain is also 
defined. We assume P(r-1  = 1) = 1 and P(ro = ilr-1 = j) = Pi, i,j E JE. The
cost criterion can be retyped in the equivalent form 

and 

N - 1  
_, T -l N (u, xo) = E {    [xi Q(r;-1)xi 

i=O 

N - 1  

l n ,N (i l, xn , r n - l ) = E { L  [xf Q(ri- 1 )Xi
i=n 

+ u f  R h - 1 ) u i ]  + x'£-H(rN - 1 )x N lxn , r n - l }.

(7) 

Let W E M'ik x J E  and X E Mm;, Denote wT Xw(r)  = E[wT (r0, r1)X(r1)
W(ro, r1)lro = r].

L E M M A  3 Let us consider system (1) with cost criterion (7). Suppose 

Ui = - L h - 1 )Xi , 
where: L E M rJJ;t , then for every xo 

-+ T N -l N ( u, xo) = x0 g L H(r -i)xo,
where: g L : S'!e -+ S'!e is defined by 

QL X (r ) = 1-lLX(r) + Ch(r)
where 

1-lL X (r ) = \{IT XWL (r ), 

{JL (r ) = Q(r) + [LT RL](r) and WL (r , s) = A(r) - B(r)L(s).

(8) 

(9) 

Proof .  As in the proof of Lemma 2, the backward induction and the 
properties of the conditional expectation give 

l...1 ,N (u , x 1 , ro) = x [ g f - 1 H (ro)x 1 . 

We thus get 

l...o, N (i l, xo, r -1) 

= x5E[Q(ro) + (A(ro) - B ( r o ) L f  gf- 1 H(ro)(A(ro) - B(ro)L)]xo

which yields (9). ■ 
In the next proposition, the solution of the finite horizon optimal control 

problem for system (1) with cost criterion (2) and class of admissible controls 
(D1) is given. 
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PROPOSITION 2 Let the system be described by (1) with the cost criterion given 
by (2). The solution of the finite horizon optimal control problem with a delay 
in the observation of Markov parameter rn for one step is given by 

UN 0 
u -1:,gN - n- l H(rn- 1)Xn 

for n = 0, 1, . . .  , N - 1 and 

I._N (il*) = x Q:/ H(r -1)xo,

where Q*X(r) = g l:,xX(r), 

£X(r )  = [(BT X B  + R)+ B T XA](r).

The open form of operator g *  is as follows 

Q(r) + ATXA(r)
- [ AT X B ( BT X B  + R)+ B T XB](r)

Proof .  This follows by the same arguments as in Proposition l .  vVe use 
DPP given by Lemma 1 with the obvious modification, the Markov property of
parameter r n and the properties of the conditional expectation. ■ 

4. Stability of the system
In this section the stochastic and mean square stability for a closed-loop discrete 
time jump linear system are developed. First some definitions concerning the 
ordering and properties of positive operators in a finite dimensional Banach 
space are recalled. 

Let S be a Banach space. A set K C S is called a cone if the following 
conditions are satisfied (see Krasnosel'skij, 1964, Horn and Johnson, 1988): (i) 
the set K is closed; (ii) if x, y E K, then ax + (Jy E K for all a, (3 E ?R, a, (3 > O; 
(iii) of each pair of vectors x, - x  at least one does not belong to K, provided
that x -/=-0. B y  means of a cone K one can define a partial ordering relation ::s 
in Banach space S. This is introduced in the following manner. Let x, y E S. 
We have x ::5 y if y - x E K. Linear operator A :  S -+ S is called positive if it
transforms cone K into itself. It is easy to check that the set Kn is a cone in s n 

and the set KIE is a cone in SJE. For A E Kn , we write A>-- 0 if A is positive
definite. Similarly for A E KJE, we define A >-- 0 if A (  i) is positive definite for
every i E JE. 

Let A : MJE -+ MJE. The spectrum of A is denoted by J ( A )  and the 
spectral radius by p(A). Operator A is called stable if p(A) < l .  The space 
MJE is linearly isomorphic with 3ts n . We have: A is stable if and only if 
lim A n X = 0 for every X E MJE.

n---+oo 
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Operator A : S ---+ S is called monotone in set T C S if it follows from 
x ::s y, x, y E T that A x  =s Ay. Let K, be a cone in S. A linear operator is 
monotone if and only if it is positive. In further considerations, operators on S'IJ,; 
will be used. In this space, all norms are equivalent. Let us mention that if the 
sequence {An} of positive operators is bounded and increasing with respect to
relation ::s, then there exists a positive operator A such that for every X E K'k
we have lim An,X = A X  and A , , X  ::s A X .  The following lemma (see de 

n-+oo 
Koning, 1982) for I E  = {l}) concerning linear, positive or monotonic operators 
A : S'IJ,; ---+ SIJ,; is stated: 

L E M M A  4 Let X E SIJ,;. We have 
(i) I f  operator A is monotonic and positive, then A i for every i E JN is

monotonic and positive.
(ii) I f  A is linear and positive, then IIAII = IIAIIII*• 

(iii) I f  lim A n X = 0 for X E KI E
n and X >---0 ,  then A is stable. 

n-+oo 

Proof. From the definitions follows (i). The monotonicity of norm II · II* 
and operator A gives (ii). To prove (iii) let X E K'k- There is a > 0 such that 
II =s a X  and by the monotonicity of A we have 

when i---+ oo. Then p(A) < 1 and A is stable. ■ 
The main purpose of this consideration is the existence and the properties 

of the solution of the following Lyapunov-type equation 

X = A X + B  (10) 

(see Krasnosel'skij, 1964, pp. 86-91, and de Koning, 1982). 

L E M M A  5 Let A be linear, positive and B E  K'k, then 
(i) I f  A is stable, then there exists a solution X E K'k.

(ii) There exists solution X t: 0 and B >---0 ,  then A is stable and X >---0 .

Proof. Let us observe that if A is stable, linear and positive, then X =
0 0  " E  Ak B is well defined. X fulfils (10) and X t: 0 .  Let now (10) have a

k=O 
solution. Using induction and assuming X t: 0 we have 

n-1 n-1

X = L A k B + A n x t= L A k B t= B >---e
k=O k=O 

for every n 2'. 1. Hence we have lim An B = 0 .  Using Lemma 4 (iii), A is 
n-+oo   - ■ 

Let us consider the stability of the closed loop control system 

(11) 
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f o r k =  0, 1, 2, . . .  , N - 1 .  System (11) can be obtained from (1) when we assume 
controls (6) or (8). In the case of a system without a delay in the observation 
of the Markov chain (i.e. controls (6)), \[l(s,r) = \[IL(r) = A(r) - B(r)L(r). 
In the case of system (1) with controls based on the observation of the Markov 
chain delayed for one step, \[l(s, r) = \[I L(s, r) = A(r) - B(r)L(s ). 

DEFINITION 3 {Ji and Chizeck, 1990) Closed loop system {11) is conditionally 
stochastically stable i f  for every initial state x0 and r _ 1 there exists a finite 
number M ( x0, r _ 1) > 0 such that 

(12) 

System {11) is stochastically stable if for every initial state x0 there exists a 
finite number M ( x0) > 0 such that 

(13) 

DEFINITION 4 System {11) is said to be conditionally ms-stable if  for every x0
and r-1 

and ms-stable if  for every xo 

lim E{x{xklxo,r-1} = 0 
k->oo 

(14) 

(15) 

REMARK 1 Definitions 3 and 4 are for a system with \[l(s, r) dependent on two 
successive states of the Markov chain. J f  \[l(s, r) = \[l(r), condition x0, r _ 1 given 
in {12) and {14) could be changed to x0, r0. 

We state without proof the following lemma: 

LEMMA 6 I f  system {11) is conditionally stochastically {ms-) stable, then it is 
stochastically ( ms-) stable. 

Define for X E ME 
QX(r)  E[\[IT (ro, r1)X (r1)\[l(ro, r1)iro = r] 

\[IT X\[l(r) 

i.e. g : ME -+ ME. We have from (14) by (11) and (16) 

(16) 
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REMARK 2 To calculate QX,  one can use the stack and the stack inverse trans-
formation (see Bellman, 1910, Horn and Johnson, 1988). 

We get 

st(QX(r)) st(\f!T X\fl(r)) = 
L Prj[\f!T(r,j) 0 \f/T(r,j)]st(X(j)) = 
jEIE 

L p,,./it(r,j)st(X(j)) (17) 
jEIE 

where 0 denotes the Kronecker product of matrices, s t  is the stack operation (for 
details see Lancaster and Tismenetsky, 1985) and {if(r,j) = \f!T(r,j) 0 \f/T(r,j).
Expression (17) can be described shortly in matrix notation 

st(QX) = <I>(p)st(X), 

where 

[ 

P l l  {ff(l, 1) 

<I>(p) = P21  -( , 
1) 

Ps l \fl(s, 1) 

P12{ff(1, 2) 
P22{ff(2, 2) 

Ps2(s,2) 

P1s'!'(l, s) 

lP2s \f/(2, s) 

Pss {if (s , s) 

On the basis of the above definitions and Lemma 5 we get 

LEMMA 7 (i) Operator g : MJE -'--+ MJE is linear and positive with respect to 
KE. 

(ii) Closed loop system ( 11) is conditionally ms-stable if  and only i f  operator
g is stable.

(iii) Closed loop system {11) is conditionally ms-stable if and only i f  p(<I>(p)) < 
1. 

Proof .  To prove (i), let us observe that g is defined by the expected value 
which is linear. If X E KJE then for all i E JE, by definition, X ( i )  is non-negative 
definite and for all j ,  i E JE we have that \fl(j, i) = \f/T (j, i ) X  ( i)\fl(j, i) is non-
negative definite. The expected value is a convex combination of \fl(j, i), hence 
Q X ( j )  is non-negative definite and Q X  E KJE· Statement (ii) follows from the 
definition of stability for the operator and close loop systems. Statement (iii) 
of the lemma follows from Remark 1. ■ 

For ms-stability we consider the behaviour of Vn = E[x x n lx0]. Let us 
observe that 

Vn = xifE[\fJT (r - 1 ,  ro)Qn ff(ro)\fl(r - 1 ,  ro)]xo,

When controls fulfil (DO), \ff ( r _ 1, r0) = \ff L( r0) and for controls fulfilling (D 1), 
\fl(r _ 1, r0) = A(ro) - B(r0)L, where L does not depend on the states of the
Markov chain. 
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Space M n is linearly isomorphic with M n 2 and let g : M7Jk -+ M7Jk corre-
spond t o g :  M J E - +  MJE. For WE M7Jk 

Qw(r) = E[\J!(r)w(r1)lro = r] 
and we have 

(18) 
From the above considerations one can formulate the necessary and sufficient 

conditions for the ms-stability. 

PROPOSITION 3 System (11) is ms-stable if and only if  

lim Vn = 0. 
n--+= 

From Proposition 3 we see that p( <I> (p)) < 1 is sufficient for the ms-stability. 
One can use the following results to establish the relation between the 

stochastic stability and ms-stability. 

LEMMA 8 (see Feng and Loparo, 1990). For any F E  Rq x l, <I> E R 1 x 1 , a E R 1 ,

we have that lim F<I>n a = 0 implies I: F<I> ka < oo. 
n--+CXJ k=O 

PROPOSITION 4 The (conditional) stochastic stability and ms-stability are equi-
valent. 

Proof. The proof follows from (18) and Lemma 8. ■ 
The necessary and sufficient conditions for the stochastic stability can be 

formulated as follows: 

PROPOSITION 5 Closed loop system (11) is conditionally stochastically stable if  
and only if there exists a solution M E KIE, M >-- 8 of the equation 

M ( j )  - L P i i w r (j , i)M (i)w(J , i) = JI(j), J E JE.
iEJE 

Proof. By (11) we have 
N N 

L x f  X k = L x';wf,n 'Yk ,n X n
k=n k=n 

k 

(19) 

where 'Yk ,n = I]*'1J(ri-l, ri) = W(rk- 2, rk- 1)W(rk- 3, rk- 2) . . .  W(rn - l , rn ) for 
i=n 

k > n and 'Yn ,n = II. Denote 

<I>(N - n , r )
N 

E [ L  wf,n wk ,n lrn = r] 
k=n 
N-n 

E[ L wf,owk ,olro = r]. 
k=O 
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The properties of the conditional expectation and the fact that {rk}k=O is a 
homogeneous Markov chain allow us to obtain the following relation 

N 
'P(N - n, r) = J + E[ L wr,n if!k,nlrn-1 = r] =

k=n+l 
N 

= J + E[if!T(rn-1, rn)E[ L wfn+i, iI!k,n+1lrn]iI!(rn-l, rn)lrn-1 = r] 
k=n+l 

=I+ E[iI!T(rn-1, rn)'P(N - n - 1 ,  rn)iI!(rn-1, rn)lrn-1 = r]. (20) 

'P(N - n, ·) E K:'le and it is nondecreasing because wr,n if!k,n is positive definite 
for every path of the Markov chain. From stochastic stability, 'P(N - n, •) is 
bounded. There exists a unique limit 

M ( j )  = lim 'P(k, j) for j E JE k-+co 
and it fulfils the equation 

M ( j )  =I+ E[if!T(j, r1)M(ri)if!(j, r1)lro = j]
for j E JE. This proves the necessity of the condition given in the proposition. 

Now the sufficiency will be proved. Let the system of equations (19) have 
solution M E  K}le. Consider the stochastic Lyapunov function 

Fk(Xk, Tk-1) = Xk M(rk-1)xk, (21) 

k = 0, 1, . . . .  We have from (11) and (21) 

E[Fk+1(Xk+1, rk)lxk, 'f"k - 1] - A(xk,  rk-1) = 
= E[xrwT(rk - 1, rk)M(rk)iI!(rk-1, rk)xklxk, rk - 1] - x r  M(rk-1)Xk = 
= x r  {E[if!T (rk-1, rk)M(rk)if!(rk-1, rk) lxk, rk - 1] - M(rk-1)}Xk = 
= - x r  Xk. (22) 

Let x -/=-0. Denote 

XT X 
0 < a = min TM(.) x,i X i X 

From (22) and (23) we get 

0 < E[Fk+1(xk+1, rk)lxk, rk - 1]   ( 1 - a)Fk(xk, rk-1) 

and we have 

(23) 

(24) 

E[A+1(XH1, rk)lx1, ro] = E[E[Fk+1(Xk+1, rk)lxk, rk - 1]lx1, ro] 
(24) 

( l - a ) E [ A ( xk , rk _i )lx1, ro]   . . .    ( l - a ) k - 1E [F2 (x2, r1)lx1, ro]-

This implies the existence of lim E [ I :  Fk+1(xk+l,rk)lx1,r0]. The conditional 

stochastic stability follows. 
n-+co k=l ■
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REMARK 3 For the system without a delay in the observation of  Markov para-
meter r n, one can prove ( J i  and Chizeck, 1990) that system ( 11) is conditionally 
stochastically stable i f  and only i f  there exists a solution M E K:'lE of  the equation 

M ( j )  - wI( j )  LP1iM(i)iJ.!L(j) = I for every j E JE. 
iEJE 

From (20) we have 

4>(k, r) 

=I+ LPjiiJ . ! T (j , i)4>(k - 1, i)\J! (j , i) - WT (j , j )4>(k - 1, j )W(j , j ) = 
iElE 
if=j 

= f3k - 1(j ) + wT (j , j )4>(k - 1,j)W(j,j) = 
= f3k - 1 (j) + W(j, j)f3k - 2 (j)W(j, j )  + (WT (j, j )  )2 4>(k - 2, j )  (W(j, j )  )2 = 

k 

= L ( W T (j , j ))1 - l f3k - l (j )(W(j ,j ))l - 1 + (WT (j , j ) / 4>(0, j )(W(j , j )/ (25) 
l= l

where: W(j,j) = ..Jp;;\J!(j,j) and 

f3k(j) =I+ LPjiiJ . ! T (j , i)4>(k,j)\J!(j, i). 
iElE 
if=j 

If system (11) is stable, then there exists lim 4>(k, r) = M(r) for every r E JE 
k->oo 

and it is positive semidefinite. Put 4>(0, j )  = I and 4>(0, j )  = 0 in (25). We 
have then 

k 

M(r) lim L ( W T (j , j ))1 - 1f3k - 1(j )(W(j , j ))1 - 1 + (WT (j , j )/ (W(j , j )/k->oo 
1 - 1 
k 

lim L (WT (j, j )  )1 - 1 f3k - 1 (j)(W(j, j )  )1 - 1
k->oo 

l= l

Hence lim (W(j, j )  )k = 0 and W(j, j )  is stable for every j E JE. On the
k->oo 

other hand if system (11) is stable, then by (25) we have that M(r) can be 
approximated by recursively given sequence 4>(k,r) with 4>(0,r) = 0 .  

Corollary. Stability W(j,j) for every j E JE is necessary for the stability of 
(11). For stable system (11), M E  K'le is a limit of recursively definite function 
4>(k, ·) E K'le. 

REMARK 4 For the system without a delay, the above corollary was formulated 
and proved by J i  and Chizeck (1990). 
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On the basis of the above considerations of the stability of closed loop system 
(11) one can define the ms-stability of the open loop system (1). The definition
will be different for a system with a dela y  in the observation of the Markov
parameter and when the Markov parameter at moment n is observed.

DEFINITION 5 System (1) is ms-stabilizable by controls fulfilling (DO) i f  there 
exists L(r) such that closed loop system (11) with w(s,r) = WL(r) is stable. 

The condition of ms-stabilizability will be formulated later. 

5. Infinite horizon optimal control
Now we focus our attention on the infinite horizon optimal control problem for 
discrete-time linear system ( 1) and quadratic criteria ( 3), both with parameters 
dependent on the Markov chain. The considerations of the section are devoted 
to the system with dela y  for one step. Results for the system without dela y  fol-
low similarly. Before that, some properties of operators g * and g L are proved. 
Similar properties will be formulated for 1J * and 1J L. 

PROPOSITION 6 For every X E K7JFJ we have O ---< Q! :  H ::S g f  H and Q* is 
monotonic. 

Proof. From Proposition 2 we have for every x1 and r0 

where U£ is given by (8) and from Lemma 3 we get 

xfg!:-1H(ro)x1 :s; x f g f - 1 H ( r o ) x 1 .

Let H1 ::S H2 and N = 2, we have E[J2(i1*,H1)lx1,ro] :s; E[h(i1*,H2)lx1,ro]-
Hence Q * H1 ::S Q * H2 and g*  is monotonic. ■

Up to this moment, we have been interested in the state equation only and 
not in the output, because our performance index was expressed in terms of 
states and inputs. Let us now define a fictitious output for our system. Let C 
be the square root of Q i.e. Q = e r C. Define the output equation by 

(26) 

For system (11) with output equation (26), the following notion of detectability 
-is introduced. 

DEFINITION 6 (A,C) is ms-detectable i f  E{y[Yilxo} 
implies E [ x r  Xi lxo] ---+ 0 as i ---+ 00.

0 for every i E JN 
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LEMMA 9 System {11) with output equation {26) is ms-detectable if and only if 
x'[gnc T C (r- 1)x0 = 0 for every i E JN implies lim x'[gn II(r _ 1 )x0 = 0. 

n--too 

Proof. The lemma follows from the definition of ms-detectability and the 
definition of operator g .  ■ 

Similarly as in de Koning (1982), one can show the following 

LEMMA 10 Let R(s) be positive definite for every s E JE, g { : e  > 0 or Q(s) 
is positive definite, then g f  e is positive definite for every s E JE, control L E 
M'Jf!!' and N .  

N - 1  
Proof. From Lemma 3 we have x ' [ g f  Gxo = E {  I: x'[Q(ri-i)xi +

i=O 
u'f.Rh-1)ui}, for ui = - L x i ,  i = 0,1, . . .  , N - l .  If x'[QfGxo = 0 and 
R( s) is positive definite then ui = 0 a.s. for i = 0, . . .  , N - l and x5 g f  G x0 = 

N - 1  
x'[ g { :  Gxo = 0. If Q(r) is positive definite for r E JE then g f  8 = I: 1 t l  ( Q +

i=O 
[LT RL])   Q. Hence g f  8 is also positive definite. ■ 

One can state the following lemma 

LEMMA 11 When R( s) is positive definite, ( A, C)  ms-detectable or Q( s) positive 
definite, then (w L, (Q + [LT .RL]) 1 12) is ms-detectable. 

The proof of the lemma follows from Lemma 10 and the definition of the 
ms-detectability. 

The properties of operator g* and g L stated in Lemmas 9, 10, 11 and Propo-
sition 6 show that the finite horizon optimal control problem is an approximation 
for the infinite horizon control problem (see de Koning, 1982). 

THEOREM 1 I f  system (1) is ms-stabilizable by a control dependent on the de-
layed observation of the Markov chain, then S(r) = lim g1;:1 e exists and S is 

N--too 
the minimal solution in K7Je of the equation S = g * s .

Proof. Since {Q1;:18} is increasing and bounded, S(r) = lim g1;:1 e exists. 
N--too 

We have g1;:1+1 e = Q*(g1;:1 e ) .  It follows that S = g * s .  If S 1 is another solution 
of this equation, then a:e j a:s1 = S 1 and S j S 1. ■ 
THEOREM 2 Let S = lim g1;:1 e exist and ui = -.CS(r;_i)xi for every i E JN. 

N--too 
We have 

J(u) = x'f; Sxo.

Considerations similar to those in the proof of Theorem 5.2 in de Koning (1982) 
prove the statement. We can also obtain the stability condition for the optimal 
control. 
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THEOREM 3 Let S = lim g ; !  8 exist. I f  R(r) is positive definite for every 
N-+oo 

r, {A, C) is ms-detectable or Q(r) is positive definite then system {11} with 
\J!(r, s) = W c,8(r, s) is stable and S(r) is the unique non-negative definite solu-
tion of the equation S = g * s .  

The equivalent conditions and theorem can be stated for the system without a 
delay of the observation of the Markov chain. To this end, operator g *  should 
be replaced by 'D* and .R, Q by R, Q, respectively. 

On the basis of the solution of the infinite horizon optimal control problem 
one can state the criterion of stabilizability. 

THEOREM 4 System {1} is ms-stabilizable by controls based on the delayed ob-
servation of the Markov chain if  and only i f  sequence { Kn (r )} , obtained from 
the following recursive equation 

K n I +  AT K n- 1A(r ) -  - -
AT K n- 1B (I + B T K n- i B )+ B T K n- 1A(r) (27) 

with initial condition Ko(r) = 0 for every r E JE, converges to a set of symmet-
ric, non-negative definite matrices as n tends to infinity. 

Proof. If R(r) = I and Q(r) = I then the assumption of Theorem 3 are 
fulfilled. By Proposition 2, we have (27). Hence the statement follows from 
Theorem 3. ■ 

6. Conclusions
A problem of the optimal control of a class of a discrete time Markovian jump 
linear systems with perfect observation of the states of the Markov chain has 
been investigated. The quadratic cost is assumed. Two different models of the 
observation of the states of the Markov chain have been considered. The first one 
is without a delay in time, the second one with delay for one step. The differences 
between these observation schemes have been pointed out. The controls for the 
finite horizon of the control have been constructed. For the infinite horizon case 
the solution as well as stability conditions have been formulated. It is mentioned 
that the delay for one step model is related to the independent parameter case 
considered by de Koning (1982). 
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