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Abstract: This paper presents a modified Independent Com-
ponent Analysis (ICA)-based Fault Detection Method (FDM). The
proposed FDM constructs a set of matrices, revealing the trend of the
variable samples and execute ICA algorithm for each set of matrices
in contrast to the FDM based on dynamic ICA (DICA) which con-
structs the high dimensional augmented matrix. This paper shows
that the proposed FDM decreases the matrix dimensions and as
a result compensates for some disadvantages of using the high di-
mensional matrix discussed in previous articles. Furthermore, other
advantages of the proposed FDM are the decreases in the running
time, computational cost of the algorithm and the orthogonalization
estimation errors. Moreover, the proposed method improves the de-
tectability for a class of faults compared to DICA-based FDM. This
class of fault occurs when two or more consecutive samples of fault
source signal have opposite signs and cancel out each other. Simu-
lation results are provided to show the effectiveness of the proposed
methodology.

Keywords: DICA, fault detection, running time, orthogonali-
zation

1. Introduction

In plant-wide systems, there are many variables sampled by sensors all over the
plant, leading to large volumes of data. Processing such data requires powerful
computational facilities, which may not be available at many industrial sites.
Thus, it is necessary to find methods that can extract as much as information as
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possible from these data in a short time with low computational burden. Fur-
thermore, in the past decades, the cost of raw material and energy has increased
and, due to the popular demand for higher efficiency, the waste exchange lines
are installed to preclude raw material loss, and buffer tanks are bypassed to
save energy. As a result, these changes engender highly interactive loops in the
system. In such systems, the influence of a fault, having occurred in one loop,
propagates through all the loops and hence the operator cannot diagnose the
root cause of the fault. In these systems, Partial Least Squares (PLS), Principal
Component Analysis (PCA) and Independent Component Analysis (ICA) are
widely used for monitoring and fault detection and diagnosis (Thornhill and
Horch, 2007).

The PLS is a statistical method that finds a linear regression model by
projecting variables into a new space (Vinzi, Chin, Henseler and Wang, 2010).
A multi-way kernel total projection partial least squares (MKT-PLS) algorithm
was proposed to improve FDM accuracy of batch process in Zhao, Xue and
Wang (2014). The hybrid kernel T-PLS algorithm was proposed to combine the
global and local functions to solve non-linear problems in FDM by Zhao and
Xue (2014). A modified kernel PLS (KPLS) was proposed to improve FDM in
nonlinear systems by Wang and Shi (2014).

The PCA algorithm maps the space of the observation variables onto a space
of new variables, such that the correlations between the principal components
(PCs) are minimized, and then the dimension reduction is performed, omitting
the PCs corresponding to smaller variances (Isermann, 2006; Lee, Yoo and Lee,
2004a, or Hyvarinen, Karhunen and Oja, 2001). A two step PCA algorithm is
suggested for outlier detection in Tharrault, Mourot, Ragot and Maquin (2008).
Kernel PCA (KPCA) is proposed as a nonlinear method in Nguyen and Golinval
(2010). The statistics kernel PCA (SKPCA) is proposed, meant to reveal more
useful information in FDM by using higher order statistics, in Hehe, Yi and
Hongbol (2011). In the PCA method, it is assumed that PCs or latent variables
are Gaussian. However, it has been shown that latent variables of most of the
real systems do not follow a Gaussian distribution (Martin and Morris, 1996).

The ICA-based process monitoring is proposed in Lee, Yoo and Lee (2004a),
or in Chun-Chin, Mu-Chen and Long-Sheng (2010). In the ICA method, statis-
tical dependence between simultaneous samples of variables is minimized (Lee,
1998). It is also shown that this method can reveal more useful information from
the observations in comparison with the PCA when the latent variables are not
Gaussian (Lee, Yoo and Lee, 2004a). However, the system is assumed to be
static in the ICA-based FDMs. The approach is extended in Lee, Yoo and Lee
(2004b) and a Dynamic ICA (DICA) is proposed to overcome this disadvantage
by stacking l lag measurements and reconstructing the augmented observation
matrix. The choice of the number of lag measurements (l) is a challenge, too.
In Lee, Yoo and Lee (2004a) l = 2 is proposed, while an automatic algorithm to
determine the number of lags is proposed in Ku, Storer and Georgakis (1995). A
particle swarm optimization-ICA is proposed to determine the order of the ICs
by Zhang and Zhang (2010). PCA and ICA are combined in order to deal with
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Gaussian and non-Gaussian latent variable in Ge and Song (2007). A modified
ICA is proposed to extract the dominant ICs in normal operating condition in
Lee, Qin and Lee (2006). A method of residual analysis with ICA based on
average multivariate cumulative sum (AMRA-ICA) is proposed to avoid the in-
fluence of periodic disturbance in non-Gaussian chemical processes in Tian, Du
and Qian (2013).

In general, the observation matrix, obtained by FDM, has high dimension-
ality in the case of monitoring of the plant-wide system. This phenomenon is
critical when constructing the augmented matrix. Therefore, to overcome the
drawbacks of high dimensional observation matrix, algorithms that construct
observation matrix with low dimensions are proposed. The matrix of low di-
mension improves the robust performance (Lee, Yoo and Lee, 2004a), reduces
the complexity of analysis (Lee, Yoo and Lee, 2004a, or Puntonet and Prieto,
2004), improves the sensitivity to whitening (Le, Karpenko, Ngiam and Ng,
2011), and it can be a strategy for dealing with the small sample size problem
(Deng, Liu, Hu and Guo, 2012).

The main contribution of this paper is that in comparison to the DICA-based
FDM, the here proposed FDM allows for constructing the low dimensional set
of matrices. Therefore, it improves detection capabilities by overcoming the
drawbacks of dealing with high dimensional systems, which have been discussed
above. The other advantages of the proposed FDM, such as reduction in the
running time, in the number of arithmetic operations, and in the error of or-
thogonalization estimation, as well as the overall improvement of capability of
fault detection are explained in subsection 3.2.

The rest of the paper is organized as follows. The second section presents the
ICA algorithm and the DICA-based FDM. Then, the third section introduces
the proposed FDM algorithm and its advantages. The fourth section validates
the advantages of the proposed FDM by simulation. Conclusion and appendix
form the last sections of this paper.

2. The ICA algorithm and the DICA-based fault detection

The idea of the ICA algorithm is to find m ICs as sources (s(k) ∈ Rm×1) from
the m observed variables (x(k) ∈ Rm×1) that are sampled from the sensors.
They construct the kth vectors of the matrices S ∈ Rm×N and X ∈ Rm×N ,
respectively. Actually, this algorithm attempts to find the mixing matrix A ∈
Rm×m and the IC matrix S ∈ Rm×N , which are unknown matrices, from the
known observation matrix X ∈ Rm×N , where

X = AS (1)

and N is the number of samples of each variable. Equation (1) can be rewritten
as S = WX where W = A−1 is called the de-mixing matrix. In order to execute
the ICA algorithm, matrix must be whitened using Q, where Q = Λ− 1

2 UT . Λ
is a diagonal matrix with the eigenvalues of matrix Rx, where Rx = E(xxT )
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and U is a matrix with the corresponding eigenvectors of Rx as its columns.
Matrix Q transforms the matrix X as

Z = QX = QAS = BS. (2)

It is easy to show that B is the unitary matrix. Thus, the problem of finding
a full rank matrix A with m2 parameters is reduced to finding an orthonormal

matrix B with m(m−1)
2 parameters. Equation (2) can be rewritten as S = BTZ

with two constraints: first, B is an orthonormal matrix and second, si(k) as
the ith element of the kth column, is statistically independent from the other
elements of this column. Fast ICA (FICA), which employs the fixed point
optimization algorithm, consists of two parts; in the first part, an objective
function and an optimization algorithm are determined. In the second part,
orthogonalization needs to be done in order to find m ICs. In the optimization
algorithm, the projection method is used to optimize the objective function with
constraint (Hyvarinen, Karhunen and Oja, 2001).

The fast ICA algorithm proceeds as follows (Lee, Yoo and Lee, 2004a,b):
Step 1 : Set counter i = 1 and choose m.
Step 2 : Choose the initial vector bi, it is a unit norm random vector (bi is the
ith column of B).

Step 3 : Compute bi ← E
{

zĠ(bi
T z)

}

− E
{

G̈(bi
T z)

}

bi, where Ġ and G̈ are

the first and the second derivative of G. The function G(s) is defined as tanh(s)

or − exp (−s2

2 ) or s4, etc. (see Hyvarinen, 1999, or Hyvarinen, Karhunen and
Oja, 2001).
Step 4 : Orthogonalize bi using the Gram-Schmidt method as:

bi ← bi −

i−1
∑

j=1

(bT
j bi)bj . (3)

Step 5 : Normalize bi as

bi ←
bi

‖bi‖
. (4)

Step 6 : If bi does not converge, go back to Step 3, else it is the ith vector of B.
Then, if i < m, set i = i+ 1 and go back to Step 2.
To summarize, the matrix B is estimated by the above mentioned method, and
the IC matrix and the de-mixing matrix are calculated by Equations (5) and (6),
respectively:

S = BTZ (5)

W = BTQ. (6)

The DICA-based fault detection algorithm has an offline part for training and
an online part for testing (Lee, Yoo and Lee, 2004a, b). In other words, in the
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offline part, the algorithm estimates a linear model of the system (matrix A)
and estimates the source signals as the ICs matrix (matrix S). Then, the ICs
matrix is divided into two parts in order to decrease the matrix dimensions.
And in the last step, the algorithm calculates the 2-norm of each column of the
ICs matrix to determine the control limit. In the online part, in each sample,
the algorithm calculates the sources by the offline linear model and calculates
the 2-norm of these source samples. A fault is detected in this sample if the
2-norms of ICs vectors are bigger than the control limit. The offline part of the
algorithm is explained as follows:
Step 1 : Construct the observation matrix X ∈ Rm×N from the data. Then,
choose the number of lag measurements (l = 2 is suggested), form the augmented
matrix XL ∈ R(l+1)m×N and normalize it (Lee, Yoo and Lee, 2004b).
Step 2: Whiten the XL matrix using the whitening matrix (see equation (2)).
Step 3 : Execute the ICA algorithm to calculate the de-mixing matrix W and
then separate it by using the row norms of matrix W as:

W =

(

Wd

We

)

, (7)

where Wd corresponds to the bigger values of 2-norm of W rows, and We

corresponds to smaller values of 2-norms of W rows.
Step 4 : Calculate the ICs matrices, the dominant part, Sd, and the excluded
part, Se, of matrix S as:

sd(k) = Wdx(k) k = 1, . . . , N (8)

se(k) = Wex(k) k = 1, . . . , N. (9)

Step 5 : Calculate three statistics to monitor the process:
• The systematic dominant part: I2d(k) = sd

T (k)sd(k)
• The systematic excluded part: I2e(k) = se

T (k)se(k)
• The non-systematic part: SPE(k) = eT (k)e(k)

where e(k) and x̂L(k) are defined by Equations (10) and (11):

e(k) = xL(k)− x̂L(k) (10)

x̂L(k) = Q−1BdWdxL(k). (11)

Bd is the dominant part of B (corresponding to Sd), with B = [BdBe].
Step 6 : Calculate the confidence limits of the three statistics by the kernel
density estimation (KDE) (99% or 95%) to determine the control limit. KDE is
a technique that appropriately determines these statistics as the control limits,
while it simultaneously satisfies the confidence bounds. A univariate kernel

estimator with kernel k is defined as f̂(x) = 1
Nh

N
∑

i=1

k(x−xi

h
), where x is the

considered data point, xi is the observation, h is a constant value of the window
width, and k is the kernel function that is usually chosen as the Gaussian density
function (Lee, Yoo and Lee, 2004a).
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The online part of the algorithm is explained as follows:
Step 1: Construct the new observation vector xL(k) as in Step 1 of the offline
part.
Step 2: Calculate the dominant and excluded parts of the ICs vector according
to the Equations (8) and (9), provided above.

Step 3 : Calculate three statistical indices as in Step 5 of the offline part. A
fault has occurred if these new statistics are out of the control limit.

3. The proposed FDM and its advantages

3.1. The basic constructions

In the DICA-based FDM, which is called the former FDM in the rest of this
paper, the dynamics of the system is modeled by constructing the augmented
matrix XL ∈ R(l+1)m×(N+1) from the observation matrix X0 ∈ Rm×(N+l+1)

(see Equations (12) and (13) in Table 1). The disadvantage of this approach is
that the dimensions of the augmented matrix increases dramatically.

Table 1: Construction of X0,XL and X(0),X(1), ...,X(l)

X0 to be used
in ICA

X0 =
[

x(k)x(k + 1)...x(k +N + l)
]

(12)

where x(k) denotes the kth vector of Xo

XL to be used
in DICA

XL =











x(k) x(k + 1) . . . x(k +N)
x(k + 1) x(k + 2) . . . x(k +N + l)

...
...

...
...

x(k + l) x(k + l + 1) . . . x(k + l+N)











(13)

Matrices X(0),

X(1), ...,X(l)

to be used in
the proposed
ICA

X(0) =
[

x(k)x(k + 1) . . .x(k +N)
]

(14)

X(1) =

[

x(k + 1)− x(k), ...,x(k +N + 1)
−x(k +N)

]

(15)

...

X(l) = [x(l−1)(k + 1)− x(l−1)(k), ...,x(l−1)

(k +N + 1)− x(l−1)(k +N)]
(16)

where x(l)(k + j) is the (j + 1)th column of matrix X(l).
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The proposed FDM constructs a set of l+1 matrices (X(0),X(1),X(2), ...,X(l))
with m rows instead of a matrix (XL) with m(l + 1) rows. The first matrix of
this set is identical to N columns of the matrix Xo, namely the observation
matrix X(0) ∈ Rm×N (see Equation (14) in Table 1). The second matrix of

this set is a first forward difference observation matrix X(1) ∈ Rm×N , which is
constructed as Equation (15) of Table 1, and so on. In general, the (l + 1)th

matrix of this set is the lth forward difference observation matrix X(l) ∈ Rm×N ,
with its elements being calculated by Equation (16) of Table 1. In X(i), i is
an index: this notation is used for other matrices and vectors in the rest of the
paper. Actually, the proposed FDM checks the trend of each variable. In the
continuous signal, this means that the proposed algorithm checks the values of
the signal, the first derivative of the signal, the second derivative of the signal
and so on.

After constructing X(0),X(1),X(2), ...,X(l), similarly as in Lee, Yoo and Lee
(2004a), the ICA-based FDM (and not the DICA-based FDM) is executed for

each X(0),X(1),X(2), ...,X(l) separately, and if any of them detects the fault, a
fault has occurred.

It is worth mentioning that, in comparison with the former FDM, the pro-
posed FDM constructs a low dimensional set of matrices. Therefore, it improves
the detection capabilities by overcoming the drawbacks, related to dealing with
high dimensional matrices.

3.2. The proposed algorithm

The proposed algorithm is summarized in two parts; the offline part and the
online part, for training and testing, respectively. The offline part of the pro-
posed method proceeds as follows:
Step 1 : Choose the number of lag measurements (preferably l = 2) and con-

struct the l+1 matrices X(0), ...,X(l) from N+l+1 samples of variables following
the Equations (14), (15) and (16) of Table 1, and then normalize them.

Step 2 : Whiten the X(0), ...,X(l), using the whitening matrices Q(0), ...,Q(l) to
obtain Z(0), ...,Z(l), respectively, as:

Z(i) = Q(i)X(i) (17)

where Q(i) = Λ(i)−1
2 U(i)T , Λ(i) are diagonal matrices with the eigenvalues of

matrices Rx
(i). Here, Rx

(i) = E(x(i)x(i)T ) and U(i) are matrices with corre-

sponding eigenvectors of Rx
(i) as the columns.

Step 3 : Run the ICA algorithm for whitened matrices, to calculate the de-mixing
matrices W(0), ...,W(l) (corresponding to Z(0), ...,Z(l)), respectively. Then, cal-
culate the IC vectors s(0)(k), ..., s(l)(k) as

s(i)(k) = W(i)x(i)(k), i = 0, ..., l & k = 1, 2, ..., N. (18)

Step 4 : Separate each IC matrix by using the row norms of the de-mixing matri-
ces, into two kinds of parts: the dominant parts and the excluded parts of ma-
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trices S(0), ...,S(l), corresponding to matrices S(0)
d, ...,S

(l)
d, and S(0)

e, ...,S
(l)

e,
respectively.
Step 5 : Calculate three groups of statistics for each of matrices S(0), ...,S(l),
respectively, to monitor the process, as:

• The systematic dominant part Id
(i)2(k) = sd

(i)T (k)sd
(i)(k), i = 0, ..., l

• The systematic excluded part Ie
(i)2(k) = se

(i)T (k)se
(i)(k), i = 0, ..., l

• The non-systematic part SPE(i)(k) = e(i)
T

(k)e(i)(k), i = 0, ..., l,

where e(i)(k) and x̂
(i)(k) are calculated from Equations (19) and (20),

e(i)(k) = x(i) − x̂
(i)(k), i = 0, ..., l (19)

x̂
(i)(k) = Q(i)−1

Bd
(i)Wd

(i)xd
(i)(k), i = 0, ..., l. (20)

Bd
(0), ...,Bd

(l) and Wd
(0), ...,Wd

(l) are the dominant parts of B(0), ...,B(l) and
W(0), ...,W(l) (corresponding to matrices Sd

(0), ...,Sd
(l)) as:







W(i) =
(

Wd
(i)

We
(i)

)

B(i) =
(

Bd
(i)Be

(i)
)

, i = 0, ..., l.
(21)

Step 6 : Calculate the confidence limits of the three groups of statistics for each
of matrices S(0), ...,S(l), respectively, by KDE (99% or 95%) to determine the
control limits.

The online part of the proposed method is realised as follows:
Step 1 : Construct the new set of vectors x(0)(k), ...,x(l)(k) as in Step 1 of the
offline part.
Step 2 : Calculate the dominant and the excluded parts of the ICs set as:

{

sd
(i)(k) = Wd

(i)x(i)(k)

se
(i)(k) = We

(i)x(i)(k) i = 0, ..., l
. (22)

Step 3 : Calculate three groups of the statistical indices as in Step 5 of the offline
part. A fault has occurred if each of these new statistics is out of their control
limits.

3.3. The advantages of the proposed FDM

In this subsection the advantages of the proposed FDM are explained, and in
Section 4, they are validated by numerical results. The number of rows in each
of the matrices X(i) ∈ Rm×(N+1) i = 0, .., l (in the proposed FDM) is reduced
in comparison to the matrix XL ∈ Rm(l+1)×(N+1) (in the former FDM) (m <
m(l+1)). Thus, the proposed method improves the capabilities by overcoming the
drawbacks of dealing with high dimensional matrices, which have been discussed
already previously, including the advantages of robust performance, reduction
of complexity, improvement of the sensitivity to whitening, and it can also
constitute a strategy for dealing with the small sample size problem (see Section
1). The here mentioned advantages of the analytic proposed FDM are explained
in the subsequent sections.
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3.3.1. Improved running time

In practice, FDMs should not require powerful computational facilities as they
are not available at many industrial sites. Thus, the FDMs that reduce the
arithmetic operations and the running time are more practical.

In the ICA-based FDM, the offline part must be executed periodically, to
re-model the system (Jelali, 2006). It can be seen that the running time of
the offline part is significantly longer than that of the online part. Also in the
offline part, the running time of the ICA step is significantly longer than the
sum of the other steps of the FDM. In summary, the ICA running time is a
rough estimation of the former FDM running time.

In the proposed FDM, the running time decreases in relation to the former
FDMs. The reasons causing this are summarized in the following subsections.

3.3.1.1 Reduced number of arithmetic operations in k iterations

Reducing the number of arithmetic operations in k iterations is the main reason
of reducing the running time. One iteration consists of steps 2 to 6 of the ICA
algorithm, see Section 2. In this subsection, convergence of the ith column of
matrix B and each of the columns of matrices B(n), n = 0, ..., l, in kth iteration
are assumed. In the former FDM, the number of arithmetic operations of steps
3, 4 and 5 of the ICA algorithm are shown bySf3, Sf4 and Sf5, respectively. In
the proposed FDM, the number of arithmetic operations of steps 3, 4 and 5 of
the ICA algorithm are expressed by Sp3, Sp4 and Sp5, respectively. Lemmata 1

and 2 show an approximation of the ratios of
Sf3

Sp3
and

Sf4

Sp4
and Lemma 3 shows

the ratio
Sf5

Sp5
.

Lemma 1 The ratio of
Sf3

Sp3
of step 3 (bi ← E

{

zĠ(bi
T
z)
}

− E
{

G̈(bi
T
z)
}

bi)

is approximated by (l + 1)2, if each column of matrix B and each column of

matrices B
(n) n = 0, 1, ..., l converge in the kth iteration.

Lemma 2 The ratio of
Sf4

Sp4
of step 4 (bi ← bi −

i−1
∑

j=1

(bi
T
bj)bj) is approximated

by (l + 1)3 if each column of matrix B and each column of matrices B
(n), n =

0, 1, ..., l converge in the kth iteration.

Lemma 3 The ratio of
Sf5

Sp5
of step 5 (bi ←

bi

‖bi‖
) calculated as (l + 1)2 if each

column of matrix B and each column of matrices B
(n), n = 0, 1, ..., l converge

in the kth iteration.

It is worth mentioning that steps 2 and 6 do not involve high computational
cost and the numbers of arithmetic operations of these steps are negligible. In
practice, l > 1 is assumed and l = 2 is suggested by Lee, Yoo and Lee (2004b).
Thus, in the former FDM, the number of arithmetic operations of steps 3, 4
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and 5 are, respectively, about 9 times, 27 times and 9 times higher than those
performed in the proposed FDM.

3.3.1.2 Reduced number of iterations

In subsection 3.3.1.1, convergence of the ith column of matrix B and the ith

columns of matrices B(n), n = 0, 1, ..., l, in the kth iteration was assumed.
This subsection explains how in most cases, it is estimated that this number of
iterations (in the proposed method) is lower than that in the former methods.
For the purposes of this paper, we give three ways of reasoning about it:

1. The ICA algorithm uses the projection method to minimize the cost func-
tion. This method solves the minimization problem with an unconstrained
method (Newton method) (see step 3 of the ICA algorithm in Section 2),
but after each iteration step, the solution bi, available at that time, is pro-
jected orthogonally onto the constraint set, to satisfy the constraints (see
steps 4 and 5 of the ICA algorithm in Section 2). If bi converges, it is taken
as the ith column of matrix B, otherwise the iteration step is repeated and
we go back to step 3 of the ICA algorithm until bi converges (Hyvarinen,
Karhunen and Oja, 2001). Therefore, the reduction of the number of pos-
sible directions of the bi vector leads to a decrease in the number of itera-
tions. As a result, if the dimension of the bi vector decreases, the number
of possible directions decreases, too, and the algorithm converges in the
lower number of iterations. In the former FDM, the vector bi ∈ Rm(l+1)×1

was estimated by the ICA algorithm. On the other hand, in the proposed
FDM, the set of vectors bi

(n) ∈ Rm×1 n = 0, 1, ..., l, is estimated by the
ICA algorithm. Therefore, in the proposed FDM, the dimensions of vec-
tors are lower in relation to the former FDM (m < m(l+1)). For instance,
if we construct a two rows observation matrix and choose l = 1, the pro-
posed FDM searches for vectors bi

(0) ∈ R2×1 and bi
(1) ∈ R2×1 in two

dimensional space, while the former FDM searches for vectors bi ∈ R4×1

in four dimensional space. The number of possible directions of the vector
bi decreases from 4 to 2 in the proposed FDM, although the ICA algo-
rithm has been repeated twice. Thus, it is estimated that the number of
iterations in the proposed method is lower than in the former methods.

2. In general, the ICA algorithm searches for a(a−1)
2 unknown elements in

the orthonormal matrix B ∈ Ra×a (Hyvarinen, Karhunen and Oja, 2001).

Consequently, the former FDM searches for m(l+1)(m(l+1)−1)
2 unknown ele-

ments in matrix B, while the proposed FDM determines (l+1)m(m−1)
2 un-

known elements in all the matrices B(0), ...,B(l). However, the number
of elements of the bi ∈ Rm(l+1)×1 vectors in the former FDM is equal to
the number of elements of bi

(n) ∈ Rm×1, n = 0, 1, ..., l, vectors in the
proposed FDM. It is clear that the number of elements that the ICA algo-

rithm should estimate decreases in the proposed FDM (m(l+1)(m(l+1)−1)
2 >

(l+1)m(m−1)
2 ), without any change in the steps of the algorithm. For in-
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stance, if we construct a two rows observation matrix and choose l = 1,
the ICA of the proposed FDM searches for one unknown element in each
of the orthogonal matrices B(0) ∈ R2×2 and B(1) ∈ R2×2, while the ICA of
the former FDM searches for six unknown elements in the orthogonal ma-
trix B ∈ R4×4 . As a result, it is estimated that the number of iterations
in the proposed method is lower than in the former methods.

3. In the former FDM, the matrix B ∈ Rm(l+1)×m(l+1) is estimated to
minimize the statistical dependence between the elements of the vector
s(k) ∈ Rm(l+1)×1. On the other hand, in the proposed FDM, l + 1

matrices B(n) ∈ Rm×m, n = 0, 1, ..., l, are estimated to minimize the
statistical dependence between the elements of the corresponding vectors
s(n)(k) ∈ Rm×1, n = 0, 1, ..., l. Therefore, in the proposed FDM, minimiz-
ing the statistical dependence among small sets is required in comparison
with to the former FDM (m < m(l + 1)). For instance, if l = 1 is chosen
in a two row observation matrix, the ICA of the proposed FDM minimizes
the statistical dependence between two elements of vector s(0)(k) ∈ R2×1

(namely s1
(0)(k) and s2

(0)(k)). In addition, it minimizes the statistical
dependence between two elements of vector s(1)(k) ∈ R2×1 (s1

(1)(k) and
s2

(1)(k)), while there may exist a mutual statistical dependence between
the elements of two vectors, such as, for instance, a dependence between
s1

(0)(k) and s1
(1)(k) or s2

(1)(k). On the other hand, the ICA of the for-
mer FDM minimizes the statistical dependence among four elements of
the vector s(k) ∈ R4×1(s1(k), s2(k), s3(k) and s4(k)). Thus, the num-
ber of iterations in the proposed method can be lower than in the former
methods.

As indicated above, in most cases, it is estimated that the number of itera-
tions in the proposed method is lower than in the former methods.

3.3.2. Reduced estimation error

In the ICA algorithm, the columns of the matrix are orthogonalized using the
Gram-Schmidt orthogonalization method. In this method, the estimation er-
rors of the first vectors are cumulated in the subsequent ones. Consequently,
the cumulative error due to Gram-Schmidt orthogonalization method increases
dramatically as the matrix dimensions increase (Hyvarinen, Karhunen and Oja,
2001). Thus, the estimation error is smaller in the proposed FDM in compar-

ison with the former FDM, since the order of the matrices B(0), ...,B(l) in the
proposed FDM is smaller than that of B in the former FDM (m < m(l + 1)).

3.3.3. Fault detection capabilities

In the former and the proposed FDM, fault detections occur when the 2-norm
operators of ICs in the online part are out of the normal operating intervals
(control limits). In certain circumstances, the former fault detection methods
cannot detect the fault when l = 1 and the fault signal produces two terms of



298 M. Teimoortashloo and A.K. Sedigh

ICs with opposite signs in different rows of an ICs vector. To illustrate this
point, let us remind that when the former fault detection method constructs
the augmented observation vectors, this leads to the higher order ICs vectors.
In these higher order ICs vectors, half of the elements are the kth sample of
sum of source signals in each loop and the rest of the elements are (k + 1)th

sample of the sum of source signals in the same loops. Therefore, when a fault
occurs and the DICA algorithm is executed, two elements, which are in different
rows of the faulty IC vector are directly affected by the fault. One is equal to
the simultaneous sum of two terms (a term corresponding to the source signals,
and another term, corresponding to the fault source signal in one loop) in the
kth sample, while the other one equals to the same summation only for the
(k + 1)th sample. As a result, the sum of squares of these two elements of the
faulty IC vector, when two consecutive samples of the fault source signal have
opposite signs, can cancel out each other. This leads to failure in fault detection
because the sum of the squares of the faulty IC vector elements has not exceeded
the limits of the normal operating interval (the control limit). For instance, a
system has been run with two interfering loops. The observation matrix has
been constructed by taking the samples from this system and the ICA algorithm
has been executed to estimate the source signals. Assume that the ICs vectors
s(0)(k) and s(0)(k + 1) (corresponding to observation matrix X(0)) have been
calculated as (-1,1) and (1,1), respectively, by the ICA in the offline part of the
proposed FDM, while in the offline part of the former FDM, the ICs vectors s(k)
and s(k+1) (corresponding to the augmented matrix XL) have been calculated
as (-1, 1, 1, 1) and (1, 1, 1, -1), respectively, by the ICA algorithm. Thus, in the
proposed FDM, the points (-1, 1) and (1, 1) are the normal operating data, and
the normal operating interval in these points is calculated as ((−1)2 + 12 = 2).
At the same time, in the former FDM, the points (-1, 1, 1, 1) and (1, 1, 1, -1) are
the normal operating data, and the normal operating interval, corresponding to
them, is calculated as ((−1)2 + 12 + 12 + 12 = 4).

In the online part, the system is run again and a fault occurs. The ICs
corresponding to the fault are 0.2 in sample k and−0.3 in sample k+1. Thus, the
ICs vector s(k) changes from (−1, 1, 1, 1) to (−1, 1+0.2, 1, 1−0.3) in the former
FDM. As a result, the fault detection statistic is equal to 3.93 ((−1)1+1.2+12+
0.72 = 3.93). This result does not violate the fault detection criteria (3.93 < 4)
and hence the fault remains undetected. The reason is that two consecutive
samples of fault cancel each other in the former FDM. In the proposed FDM,
on the other hand, the dimensions of the ICs vector decrease and two consecutive
samples of fault are not located in one vector. In other words, the ICs vectors
s(k) and s(k+1) change from (−1, 1) and (1, 1) to (−1, 1+0.2) and (1, 1− 0.3).
Therefore, the fault detection statistic in the kth sample of the online part is
equal to 2.44 (12 + 1.22 = 2.44). Therefore, the fault is detected, because the
fault detection statistic is bigger than the control limit (2.44 > 2). It can be
easily generalized to the case of l > 1. In this case, if three or more consecutive
samples of the fault source signal have opposite signs, the sum of squares of the
faulty IC vector might cancel out each other and the former FDM fails to detect
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the fault.
On the other hand, although, as mentioned above, the proposed FDM has

definite advantages, it increases the number of false alarms, too.

4. Simulation results

To validate the algorithm, the former and the proposed FDMs are applied to
two systems:

4.1. The coupled tank system

A simple nonlinear model of the coupled tank has been provided in Ko, Chen,
Chen, Zhuang and Chen Tan (2001) as:

dH1

dt
=

Qi1

A1
−

α1

A1

√

H1 −
α3

A1
sgn(H1 −H2)

√

H1 −H2 (23)

dH2

dt
=

Qi2

A2
−

α2

A2

√

H2 −
α3

A2
sgn(H2 −H1)

√

H1 −H2 (24)

where H1, H2 are the heights of fluid in tanks 1 and 2, respectively; Qi1 and
Qi2 are the pump flow rates into tanks 1 and 2, respectively; α1, α2 and α3 are
constants; A1, A2 are the cross sectional areas of tanks 1 and 2, respectively.
Equations (23) and (24) form a system with two interfering loops, thus the
fault is propagated through the loops. In order to decrease the error signals,
a lag controller is designed for both the upper (tank 1) and lower (tank 2)
loop; GC1 = s+0.9

s+0.0002 and GC2 = s+0.98
s+0.001 (see Fig. 1). Two sinusoidal signals

are added to output signals in modeling of the waves on the surface. The
amplitudes of the sinusoidal signals are 0.03 m and 0.08 m and their frequencies
are 0.2 Hz and 0.5 Hz in the loops of tank 1 and tank 2, respectively. A white
noise with the power of about 0.002 is added to each loop. Other parameters
of Equations (23) and (24) are set as α1 = 10.78, α2 = 11.03, α3 = 11.03,
A1 = 3m2, A2 = 32m2, H1 = 17m, and H2 = 15m, see Fig. 1.

The simulation runs for 250 seconds and 5000 samples are accumulated.
The first 1500 samples are neglected, because they correspond to the transient
response and the last 500 samples are excluded when establishing the augmented
observation matrix. Thus, the 3000 samples are accumulated as the dataset;
around 750 samples are treated as training data and 2250 samples as testing
data.

A ramp type of level sensor fault is added to the control loop of tank 2,
between samples 1400 to 1600 (see Fig. 2 (f)). For both the former and the
proposed FDMs l = 1 is chosen. To calculate the confidence bound, KDE
(99%) with Gaussian kernel is used. The simulation is repeated 100 times and
the obtained fault detection and false alarm rates are shown in Table 2. It is
clear that the proposed FDM improves the detection rate in comparison with
the former method (although it increases the false alarm rate by about 1%, too).
For instance, Fig. 2 shows one of these improved detection cases. Fig. 2(a) shows
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Figure 1: The coupled tanks system and its block diagram

Table 2: Fault detection rate and false alarm rate in the coupled tank system
case

Sensor fault
False alarm rate by Detection rate by
Proposed
FDM

Former
FDM

Proposed
FDM

Former
FDM

Step type 3% 2% 91% 87%

the fault detection statistics, Id
2(k) k = 1, ..., N , in the online and the offline

parts, obtained from the former FDM. It is clear that the square of the 2-norm
value of the faulty IC vectors between samples 1400 to 1600, do not exceed the
normal operating interval limits, shown by the dashed line, in the former fault
detection method. This occurs, because the two consecutive samples of the fault
source signal have opposite signs and two ICs, corresponding to them, cancel
out each other and the fault remains hidden, see subsection 3.3.3. Figs. 2(b)

and 2(c) show the fault detection statistics, Id
(0)2(k), Id

(1)2(k), k = 1, ..., N ,
respectively, in the online part and in the offline part. In Fig. 2 (c) the square

of 2-norm value of the faulty IC vectors, corresponding to Id
(1)2 , exceeds the

normal operating interval limits, and so, the fault is being detected. At the same

time, the square of 2-norm value of the faulty IC vectors, corresponding to Id
(0)2 ,

does not exceed the normal operating interval limits, and cannot detect the fault,
see Fig. 2(b). According to the proposed algorithm, fault will be detected if any
of these statistics detects the fault. Consequently, the proposed FDM detects
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the fault, while the former FDM cannot. The former FDM cannot detect the
fault, because two consecutive samples of fault source signal have opposite signs
and the sum of squares of faulty IC vector, cancel out each other. This is the
numerical validation of the considerations from the subsection 3.3.3.

Figure 2: Comparison between the proposed and the former FDMs: (a) indicates
how fault detection statistics cannot detect the fault in the former FDM; (c)

shows how fault detection statistics Id
(1)2 detects the fault, while (b) shows

that Id
(0)2 cannot detect the fault; (d) and (e) indicate the error signals that

are sampled from the system; (f) shows the fault signal

The reductions in running time and number of iterations are the main ad-
vantages of the proposed FDM. Table 3 shows the running time and the number
of iterations in the proposed and the former FDM. It indicates that the running
time of ICA (2.0593 s) is a rough estimation of the total running time in the
former FDM (2.107 s). Furthermore, Table 3 shows that the proposed FDM
reduces the running time of the ICA step, while increasing the running time of
the other steps. However, since the ICA step contributes significantly to the
total running time, the total running time of the proposed FDM is significantly
shorter than the total running time of the former FDM (2.107 >> 0.1156). This
constitutes the numerical validation of the reasoning from subsection 3.3.1. Fur-
thermore, Table 3 shows that the mean values of the numbers of iterations in
the proposed FDM are smaller than in the former FDM (5042 >> 45.4). It
is worth mentioning that the number of iterations in the proposed FDM is the
sum of iterations, which are used to estimate bi

(0) and bi
(1). This, in turn, is

the numerical validation of the reasoning from subsection 3.3.1.2.
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To summarize, the proposed FDM decreases the running time and the num-
ber of iterations in comparison to the former FDM. According to the simulations,
the running time and the number of iterations are significantly reduced, by 94%
and 99%, respectively, in the proposed FDM in comparison with the former one.

Table 3: Mean values of the running time and the number of iterations in the
proposed and former FDM

Running time Number of iterations
Proposed
FDM

Former
FDM

Proposed
FDM

Former
FDM

Construction of the
observation matrix and
whitening
(Steps 1 and 2, offline)

0.0325 s 0.0249 s — —

Execution of ICA
(Step 3, offline)

0.0471 s 2.0593 s 42.4 5042

Seperation of the matrices,
calculation of statistics
and control limits
(Steps 4, 5 and 6, offline)

0.036 s 0.021 s — —

4.2. The Tennessee Eastman process

The Tennessee Eastman (TE) process is widely used to compare the perfor-
mance of different FDMs. The simulation model and the flow sheet of TE
process is introduced in http://depts.washington.edu and in Lee, Yoo and Lee
(2004b), respectively. The major unit operations are a reactor, a condenser, a
compressor, a separator and a stripper. The details and equations of the TE
process are available in Jockenhovel, Biegler and Wachter (2003). The 21 pro-
cess faults are introduced in Table 4. Similarly as in Lee, Yoo and Lee (2004b),
33 monitored process variables are used; they include 22 process measurements
and 11 manipulated variables. The simulation is run for 3 minutes and 480 and
960 measurements are used as training and testing datasets, respectively; l = 2
is chosen and confidence bound is determined by KDE (99%) with Gaussian
kernel.

The detection rates of the proposed FDM and the former FDM are shown
in Table 4 (using fault detection statistics I2 and AO, see Chun-Chin, Mu-Chen
and Long-Sheng, 2010). The fault detection ability of the proposed method is
clear. These results constitute the numerical validation of the considerations
from the subsection 3.2.3.

Table 5 shows an obvious advantage of the proposed method in terms of
running time and number of iterations (20.741 s < 100.48 s and 1370 < 3360).
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According to the simulations, the running time and the number of iterations are
considerably reduced, by 79% and 59%, respectively, in the proposed FDM in
comparison with the former one. Thereby, we obtain the numerical validation
of the reasoning from subsection 3.3.1.

5. Conclusions

A modified ICA-based FDM is introduced in this paper. The idea of the pro-
posed FDM is to construct the observation matrix (not the augmented observa-
tion matrix), the first forward difference observation matrix, the second forward
difference observation matrix, and so on, which reveals trends between the vari-
able samples and the model of the dynamics of the system. In comparison to for-
mer FDM, the proposed FDM constructs low dimensional matrices. Therefore,
it improves the detection capabilities by overcoming the drawbacks of dealing
with high dimensional systems, which have been discussed in previous studies,
related to such issues as robust performance, reduced analysis complexity, or
the sensitivity to whitening, and it can constitute a strategy for dealing with
the small sample size problem. Furthermore, compared to the former FDM,
it is shown that the proposed FDM reduces the running time, since it reduces
the number of iterations and arithmetic operations per iteration. Furthermore,
the proposed FDM decreases the orthogonalization error, because it reduces
the order of matrix B. Moreover, the proposed FDM is detecting a class of
faults that the former fault detection method cannot detect. This class of faults
occurs when two or more consecutive samples of the fault source signal have
opposite signs and cancel out each other. Simulation results are used to verify
the effectiveness of the proposed FDM.

6. Appendix A

There is a nested loop in the ICA algorithm, meant to estimate the matrix
B. The inner loop estimates the ith column of matrix B, denoted bi. When
bi converges, the outer loop shifts this action to the next column. Suppose
k iterations should be performed for the ith column of matrix B to converge
and assume that each column of the matrices B(n), n = 0, 1, ..., l, converges in
kth iteration, too. The approximation of the ratios of

Sf3

Sp3
,

Sf4

Sp4
and

Sf5

Sp5
are

calculated as in Lemmata 1, 2 and 3, respectively.

Lemma 1. The ratio of
Sf3

Sp3
in step 3 (bi ← E

{

zĠ(bi
T
z)
}

−E
{

G̈(bi
T
z)
}

bi)

is approximated by (l + 1)2 if each column of matrix B and each column of

matrices B
(n), n = 0, 1, ..., l, converge in the kth iteration.

Proof. The number of arithmetic operations of step 3 for the ith column of
matrix B in the former FDM, and for each column of matrices B(n), n =
0, 1, ..., l, in the proposed FDM, are shown in Table 6.
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Table 4: The faults of TE process and detection rates (%)

Fault ID Description Type
Detection rate

Proposed
FDM %

Former
FDM%

I2 AO I2 AO

IDV1
A/C feed ratio, B
competition constant
(stream 4)

Step 100 100 100 100

IDV2
B composition, A/C
ratio constant (stream 4)

Step 99 100 99 99

IDV3
D feed temperature
(stream 2)

Step 2 3 2 2

IDV4
Reactor cooling water inlet
temperature

Step 100 100 99 100

IDV5
Condenser cooling water
inlet temperature

Step 100 100 100 100

IDV6 A feed loss (stream 1) Step 100 100 100 100

IDV7
C header pressure loss-reduced
availability (stream 4)

Step 100 100 100 100

IDV8
A, B, C feed composition
(stream 4)

Random 98 99 98 98

IDV9
D feed temperature
(stream 2)

Random 3 4 2 3

IDV10
C feed temperature
(stream 4)

Random 87 89 85 89

IDV11
Reactor cooling water
inlet temperature

Random 65 82 63 83

IDV12
Condenser cooling water
inlet temperature

Random 100 100 100 100

IDV13 Reaction kinetics Slow drift 95 95 95 96

IDV14
Reactor cooling water
valve

sticking 100 100 100 100

IDV15
Condenser cooling
water valve

sticking 5 5 5 5

IDV16 Unknown Unknown 86 92 84 92
IDV17 Unknown Unknown 89 96 89 96
IDV18 Unknown Unknown 91 91 90 91
IDV19 Unknown Unknown 85 96 85 94
IDV20 Unknown Unknown 89 92 88 92

IDV21
Valve position
constant (stream 4)

Constant 47 63 47 62
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Table 5: Mean values of the running time and the number of iterations in the
proposed and former FDM

Running time Number of iteration
Proposed

FDM
Former
FDM

Proposed
FDM

Former
FDM

Construction of the observation
matrix and whitening
(Steps 1 and 2 - offline)

0.961 s 1.0604 s —– —–

Execution of ICA
(step 3 - offline)

17.92 s 98.2 s 1370 3360

Separation of the matrices,
Calculation statistics and control
limits (steps 4, 5 and 6 - offline)

1.86 s 1.22 s —– —–

Table 6: The number of arithmetic operations of step 3 for the ith column of
matrix B in the former FDM and each column of matrices B(n) in the proposed
FDM

Proposed FDM Former FDM

Column
Number of
arithmetic
operations

Column
Number of
arithmetic
operations

bi
(0)

[

(N + 1)(m2 + 1) + 2m
]

k

bi

[(N + 1)
[

m2(l + 1)2 + 1
]

+2m(l+ 1)]k

bi
(1)

[

(N + 1)(m2 + 1) + 2m
]

k
.
.
.

.

.

.

bi
(l)

[

(N + 1)(m2 + 1) + 2m
]

k
Total

number of
arithmetic
operations

Sp3i = (l + 1)
[

(N + 1)(m2 + 1) + 2m
]

k

Total
number of
arithmetic
operations

Sf3i = [(N + 1)
[

m2(l + 1)2 + 1
]

+2m(l+ 1)]k

The ratio of the total number of arithmetic operations of step 3 for the
ith column of matrix B in the former FDM (Sf3i) to that for each column of

matrices B(n), n = 0, 1, ..., l, in the proposed FDM (Sp3i) is calculated as:

Sf3i

Sp3i
=

[

(N + 1)
[

m2(l + 1)2 + 1
]

+ 2m(l + 1)
]

k

(l + 1) [(N + 1)(m2 + 1) + 2m] k
. (25)

In practice, N and m are large numbers, thus after straightforward algebraic



306 M. Teimoortashloo and A.K. Sedigh

simplification and upon ignoring the low values, this ratio is approximated as:

Sf3i

Sp3i
≈ l + 1. (26)

Equation (26) shows that the total number of arithmetic operations of step 3
for each column of matrix B in the former FDM is l + 1 times higher than
in the proposed FDM. Furthermore, in the former FDM, m(l + 1) columns
are determined by the outer loop, while in the proposed FDM, by contrast, m
columns are determined by the outer loop. Therefore:

Sf3i

Sp3i
≈ (l + 1)2. (27)

�

Lemma 2. The ratio of
Sf4

Sp4
in step 4 (bi ← bi−

i−1
∑

j=1

(bi
T
bj)bj) is approximated

by (l + 1)3 if each column of matrix B and each column of matrices B
(n), n =

0, 1, ..., l, converge in the kth iteration.

Proof. The number of arithmetic operations of step 4 for the ith column
of matrix B in the former FDM, and for each column of matrices B(n), n =
0, 1, ..., l, in the proposed FDM, are shown in Table 7. In the proposed FDM,

Table 7: The number of arithmetic operations of step 4 for the ith column of
matrix B in the former FDM and each column of matrices B(n) in the proposed
FDM

Proposed FDM Former FDM

Column
Number of arithmetic

operations
Column

Number of arithmetic
operations

bi
(0)

[

m2(i − 1) +m
]

k

bi
[m2(l + 1)2(i− 1)
+m(l + 1)]k

bi
(1)

[

m2(i − 1) +m
]

k
.
.
.

.

.

.

bi
(l)

[

m2(i − 1) +m
]

k
Total

number of
arithmetic
operations

Sp4i = (l + 1)
[

m2(i − 1) +m
]

k

Total
number of
arithmetic
operations

Sf4i = [m2(l + 1)2

(i− 1) +m(l + 1)]k

Sp4i shows the total number of arithmetic operations of bi
(n), n = 0, 1, ..., l (if

each one of bi
(n) converges in the kth iteration). The outer loops increase the

value of index i from 1 to m for determining the matrices B(n), n = 0, 1, ..., l.
Thus, the total number of arithmetic operations of step 4 in the proposed FDM
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is calculated as (Sp4):

Sp4 =

m
∑

i=1

(l + 1)
[

m2(i− 1) +m
]

k = mk(l+ 1)(1 +
m2(m− 1)

2
). (28)

In the former FDM, Sf4i shows the total number of arithmetic operations of bi

(if bi converges in kth iteration). The outer loop increases i from 1 to m(l+1) in
determination of the matrix B. Thus, the total number of arithmetic operations
of step 4 in the former FDM is calculated as (Sf4):

Sf4 =

m(l+1)
∑

i=1

[

m2(l + 1)2(i− 1) +m(l + 1)
]

k

= mk(l + 1)(1 +
m2(l + 1)2(m(l + 1)− 1)

2
).

(29)

In practice, m is a large number, thus, after straightforward algebraic simplifi-
cation and ignoring the low values, the ratio of

Sf4
Sp4

can be approximated as:

Sf4

Sp4
≈ (l + 1)3. (30)

�

Lemma 3. The ratio of
Sf5

Sp5
in step 5 ( bi ←

bi

‖bi‖
) is calculated as (l + 1)2

if each column of matrix B and each column of matrices B
(n), n = 0, 1, ..., l,

converge in the kth iteration.

Proof. The number of arithmetic operations of step 5 for the ith column
of matrix B in the former FDM, and for each column of matrices B(n), n =
0, 1, ..., l, in the proposed FDM, are shown in Table 8.

In the proposed FDM, Sp5i is the total number of arithmetic operations of

bi
(n), n = 0, 1, ..., l (if each one of bi

(n) converges in the kth iteration). The
outer loops increase the value of index i from 1 to m so as to determine the
matrices B(n), n = 0, 1, ..., l. Thus, the total number of arithmetic operations
of step 5 in the proposed FDM is calculated as (Sp5):

Sp5 = mSp5i = (l + 1)m3k. (31)

In the former FDM, Sp5i shows the total number of arithmetic operations related
to bi (if bi converges in the kth iteration). The outer loop increases the value
of index i from 1 to (l + 1) so as to determine the matrix B. Thus, the total
number of arithmetic operations of step 5 in the former FDM is calculated as
(Sf5):

Sf5 = mSf5i = m3(l + 1)3k. (32)

The ratio of
Sf5

Sp5
is therefore calculated as:

Sf5

Sp5
= (l + 1)2. (33)
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Table 8: The number of arithmetic operations of step 5 for the ith column of
matrix B in the former FDM and each column of matrices B(n) in the proposed
FDM

Proposed FDM Former FDM

Column
Number of arithmetic

operations
Column

Number of arithmetic
operations

bi
(0) m2k

bi m2(l + 1)2kbi
(1) m2k
.
.
.

.

.

.

bi
(l) m2k

Total
number of
arithmetic
operations

Sp5i = (l + 1)m2k

Total
number of
arithmetic
operations

Sf5i = m2(l + 1)2k

�
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