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Abstract: This paper introduces a global optimization tech­
nique based on fuzzy c-means method to partition the output space 
with respect to a set of input/output quantitative data. The tech­
nique can identify the underlying data structure. And it can account 
for outliers. This coupled with the induced-input-partition preserv­
ing map result in a superb forecasting methodology. 

1. Introduction 

In this paper we introduce a forecasting technique utilizing the notion of global 
optimization meant for the definition of the input-output membership functions 
with respect to a set of input-output data. Sugeno (Sugeno and Yasukawa, 
1993) studied extensively methods of identification of the structure of fuzzy 
model. His objective was to extract qualitative structure from quantitative 
data. By using "fuzzy c-means (FCM)" to partition output space, local clusters 
were formed. The input space partitions were directly inferred from the output 
space partition. The multi-dimensional input membership grade values were 
projected onto individual variable subspaces. The projected values in every 
subspace were then fitted by a collection of trapezoidal functions. Linguistic 
labels were then attached to each of this input/output membership function. 
Sugeno's methodology can arrive at a qualitative model characterized by rules 
being linguistic statements. 

While Sugeno's method of inferring qualitative structure from quantitative 
data is appealing, the method cannot guarantee good fit between the model and 
the training data. Also, the constraint that sum of membership values be equal 
one is not addressed. Indeed, the output space partition by minimizing the 
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data-cluster centroid distances may not result in an optimal model-data good 
fit. 

This paper presents an extension of the work of our previous paper (Tse 
and Cheung, 1994) presented in IIZUKA'94. In this paper, we address these 
issues by imposing the requirement that the system's output matches that of the 
training data. The method is akin to FCM formulation. This paper is organized 
as follows: the next section will discuss the methodological formulation, section 
3 presents the results and the concluding remarks appear in section 4. 

2. Methodology 

A useful forecasting structure is a result of the correct choice of estimation tech­
nology. This choice will govern the model-data parametric identification. Con­
tingent upon the estimation technology but beyond its scope is structural iden­
tification which defines the candidates to be introduced into the model input­
output relationship. Similar to Sugeno's, we infer input space partition from 
that of the output space. A parametric estimation technique using global opti­
mization is introduced for the output space partition. The discussion of input 
space structural identification will follow. But we first discuss the optimization 
technology in the next section. 

2.1. A parametric estimation technique 

Consider a M-input-N-output fuzzy logic system (FLS). Given the values {,8;} 
and { Uit}, the output value of the system y; is calculated using center of gra­
vity (COG) method where ,Bi is the centroid of the ith cluster and uit is the 
membership grade of the tth data point in the ith cluster 

* = ~~=l u':; /3i . 1 < t < n Yt °'\'c m , - -
L,i=l Uit 

(1) 

Here, c and m are design parameters. In particular, c is used to determine the 
number of rules embedded in the system and m is used to determine the shapes 
of the cluster distributions. The distance from the tth data point to the ith 
cluster center is defined by 

dit = IIYt - YJ2 (2) 

Our goal is to compute ,Bis such that the overall distance between Yt and y; is 
minimized. Similarly to FCM formulation, the objective function is as follows: 

n 

minLIIYt-Y:11 2 ; l~i~c,l~t~n (3) 
t=l 



A best-fit based fuzzy forecasting algorithm: principle and forn1ulation 

subject to 

1 
U1t = 2 ; 

1 + '\"'c_ (~)m=-r L.,,_z dit 

d1t _2_ 
Uit = U1t(-) m.-l 

dit 

Here, ( 4) and (5) are constraints which lead to 

C 

L Uit = 1; 1 ~ t ~ n 
i=l 
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(4) 

(5) 

Minimization of the sum of errors norm in (3) corresponds to solving of the 
matrix equation: 

AY=B 

where A= [aij]cxc, Y = [,Bi]cxl and B = [bi]cxl· In particular, 

n m 
b· = ~ YtUit 

J ~ '\"'c m 
t=l 0k=l Ukt 

(6) 

Equation (6) can either be solved in one step, or recursively. The recursive 
algorithm is as follows: 

• Step One: Initialize the variables ({,Bi},{uit}). 
• Step Two: Compute cluster centroids from equation 6. 
• Step Three: Compute membership grades { uft} using constraint equations 

(4) and (5). 
• Step Four: Calculate E = ~i ~t luft - uit I-
• Step Five: If E < TOL (set to 0.0001), then stop. Else, assign uft to uit 

and repeat steps two to five. 
uft denotes the updated Uit· 

2.2. Structural identification 

We impose the output space partition parameters: ( c, m, { Uit}) on the input 
space inducing a partition by FCM. We replace the distance norm in (2) by an 
inner product induced norm metric of the form 

dit=(xt-xifMi(Xt-xi); l~i~c, l~t~n 

with Mi symmetric and positive-definite and { Xt h x 1 , {xi h x 1- The centroids 
{xih::C:i::C:c and the membership grades are generated from equations (1), (4) 
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and (5). We calculate the scaling matrix Mi from a fuzzy covariance matrix 
(Gustafson and Kessel, 1979) 

P . _ L;=l uft(xt - XJi)(xt - XJi)T. 1 < . < 
Ji - '-'n m , _ 1, _ C 

. L.,t=l Uit 

The scaling matrix can then be obtained from 

*-1 ( 1 ) .1. 
Mi = -IP I kpJi 

Pi Ji 

We set 

P1 = 1 

n ( -)Tip 11/k p-1( -) . = ~"' {(ult)(m-1)/2 Xt - X1 Jl Jl Xt - X1 }k 
Pi ~ . ( -)TIP 11/kp-l( -) n t=l Uit Xt - .Ti Ji Ji Xt - Xi 

(7) 

(8) 

for i = 2, · · ·, c to gene_rate an induced-input partition preserving map, which 
minimizes iteration-led shocks. The output space membership grades will be 
perfectly preserved if all the individual summed terms in (8) are of identical 
values. To identify the input structure, we undertake the same evaluation cri­
terion as Sugeno's. The regularity criterion is defined as follows: 

l nA ( A AB)2 nB ( B BA)2 
RC = - ["' Yt - Yt + "' Yt - Yt l 

2 ~ nA ~ nB 
t=l t=l 

(9) 

where 
nA and nB : the number of data of the groups A and B; 
yf and yf : the model output data of the groups A and B; 
yfB : the model output for the group A input estimated by the model identified 

using the group B data; 
yf A : the model output for the group B input estimated by the model identified 

using the group A data. 
The above construction helps to identify the input elements compatible with 
the output partition structure. 

2.3. Forecasting 

Having identified the parameters and the structure of the system, the formula­
tion of the forecasting strategy is a natural and easy outcome. Applying FCM 
on (c, m, {xihsisc) using the new input data XN for N > n, a unique set of 
membership grades { UiN hsisc is produced. The predicted output value can 
then be constructed as: 

* L~-1 u7Jvf3bi 
YN = '-'c m 

L.,i=l UiN 
(10) 

where /Jbi is the centroid of the ith cluster calculated from data points over 
1:::; t:::; n. 
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Cji di 
i/j 1 2 3 
1 0.7 1.6 2.3 -0.8 
2 0.5 1.3 1.7 0.9 
3 0.2 1.4 2.6 1.8 

Table 1. 

3. Results 

3.1. Data generation 

Our testing data were generated by a three input-variable and three-rule FLS. 
The defuzzified outputs are calculated by equation 1. The tth input data point 
of the jth variable Xjt = (xjith:s;i::;3 was generated by 

Xjit = (cji - ai) + 2airand(nit); 1:::; i,j:::; 3 (11) 

where I:i nit = n and the random numbers are generated uniformly in [-1, 1]. 
The ith input membership functions of the variable Xjt is 

f(Xjit) = Cji + ai(Xjit - Cji)i 1:::; i,j:::; 3 

The truth value of the antecedent of every ith rule is obtained by multiplications: 

3 

Uit = IJ f (xjit)i 1 :::; i:::; 3, 1 :::; t:::; n 
j=l 

And the output value Yt is calculated using COG formula in (1) where di is the 
centroid of the ith cluster in the output space generated by the testing data. 
Table 1 lists the parameter values used to produce our data. 

The generated data series is plotted in Figure 1. Distinct outliers occur at 
Y6 = 4. 7664 and Y41 = 6. 7727. Less distinct outliers occur at Y~6 = -2.4620, y24 = 
-2.5718 and Y11 = -1.9923. 

3.2. Fuzzy logic optimization 

First we want to explore the ability of the global optimization technique to 
identify the number of rules inherent in the data set. Then we will exam­
ine the goodness of fit of the technique compared to the FCM. We choose the 
fine-tuning parameter m to be 3. In Table 2 we tabulate c versus R2 (given 
m = 3).1 It shows that R2 increases to a maximum at c = 7. When c > 8,A 

1R2 - I:,M-17)2 h - - E. Yt -I: 2 werey-'\"'. 
/Yt-ii) L-t 1 
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C R4 m R4 
1 0.0000 1.2 0.9706 
2 0.5936 1.5 0.9701 
3 0.8670 1.8 0.9721 
4 0.9482 2.1 0.9903 
5 0.9782 2.3 0.9904 
6 0.9799 2.4 0.9905 
7 0.9883 2.5 0.9872 
8 0.9879 3.0 0.9879 

(a) (m=3) (b) (c=8) 

Table 2. 

is getting ill-posed when E becomes small. This indicates that some cluster 
centroids overlap. The eight cluster centers are (/3i)l~i9 = (-2.3504, -0.1848, 
0.2045, 0.5029, 0.9437, 2.1672, 4.7674, 6.7728). Clearly the three highlighted 
centers account for outliers. Removing these three centers yields the centers: 
(-0.1848, 0.2045, 0.5029, 0.9437, 2.1672). Hence, the three additional rules as­
signed to outliers account for a much improved model-data goodness of fit. By 
setting c = 8, the technique is tested on various m's. The relationship between 
R 2 and m is tabulated in Table 3. It shows that R 2 increases to a maximum 
at m = 2.4. When m increases, the distributions around centroids spread out. 
There exists a critical value m beyond which the clusters overlap so much that 
the prespecified c centroids cannot be all identified. In our case, the matrix A 
becomes ill-posed when m exceeds 3. A plot of the data and predicted values 
series is illustrated in Figure 2 with m = 2.4 and c = 8. Clearly, the fitting is 
excellent. 

A corresponding plot is shown in Figure 3. It plots the data and predicted 
series using the FCM. The R 2 is 0.9595. The comparison of the figures delineates 
the superiority of the global optimization technique. 

3.3. Structural identification 

The identified parameters ( c, m, { Uit}cxn) are carried forward from output space 
to input space. We first partition the data set ({xhxn, {u}cxn) randomly into 
two data series. And then we apply the regularity criterion. To examine the 
identification power of the regularity test and our fuzzy logic procedure, we 
add in two new variables {x4thxn and {x5thxn also generated by (11) with 
Cji = ai, 1 :=::; i,j :=::; 3. The results of forward and backward tree searches are 
contained in Table 4. 

The forward and backward tree searches confirm that ( x1, x2, x3) is compat­
ible to the model structure inferred from output space using our global opti-
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mization technique. 

3.4. Forecasting 
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To understand the predictive power of our technology, we re-insert our input 
data { x hxn into the forecasting structure discussed previously. We tabulate the 
results in Figure 4. R 2 = 1.0178. It exceeds one because the mean of {y;};:;'.:n+l 
(=0.4475)is different from the sample mean, i.e. the mean of {yt}f=1 (=0.5596), 
and Et y; (y; - Yt) ( = -1.2840) is not zero. 

An ordinary least squares (OLS) regression is applied to the data series. By 
construction, the mean of the O1S predicted values {yt}f=l coincides with the 
sample mean and Et Yt(Yt - Yt) = 0 . The equation of the predicted series is 

y = 0.6734 - 0.1465x1 - 0.0233x2 + 0.1032x3. 

R2 = 0.0222. The actual and the O1S predicted series appear in Figure 5. And 
the absolute residual errors, respectively, from our optimization method and 
the OLS method appear in Figure 6. Obviously, our forecasting series has a 
significantly superior predictive power. 
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Data and OLS Series 
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Forward Search Backward Search 
Input Variables RC Input variables RC 
X1 2.6131 X1 - X2 - X3 - X4 - X5 0.0591 
X2 1.5296 
X3 1.8502 X1 - X2 - X3 - X4 0.6600 
X4 2.2984 X1 - X2 - X3 - X5 0.2183 
X5 2.5432 X1 - X3 - X4 - X5 0.2960 

X2 - X3 - X4 - X5 0.2559 
X1 - X2 0.6794 X1 - X2 - X4 - X5 0.3336 
X2 - X3 0.6584 
X2 -X4 0.7711 Xl - X2 - X3 0.0561* 
X2 - X5 0.7248 X1 - X2 - X5 0.5154 

X1 - X3 - X5 0.1350 
X1 - X2 - X3 0.0561 * X2 - X3 - X5 0.4428 
X2 - X3 - X4 0.4018 
X2 - X3 - X5 0.4428 X1 -X2 0.6794 

X1 -X3 1.1443 
Xl - X2 - X3 - X4 0.6600 X2 - X3 0.6584 
X1 - X2 - X3 - X5 0.2183 

X2 1.5296 
Xl - X2 - X3 - X4 - X5 0.0591 X3 1.8502 

Table 3. 
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4. Conclusions 

Sugeno (1993) provided a useful framework for identification of qualitative and 
quantitative structures of a set of quantitative data. However, the output space 
was not partitioned to make the model-data goodness of fit optimal. In this pa­
per, we introduce a technique to ensure optimal fit of output data. Simulation 
results show that the technique can identify well the qualitative structure inher­
ent in the data. Moreover, the technique can take special care of explanation of 
the outlier behavior. 
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