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A b s t r a c t :  In this paper, we present a survey of the theory con-
cerning the canonical genetic algorithm (CGA). We first describe 
this algorithm and show that several questions should be answered 
about it in order to understand precisely its behavior: how does 
the CGA explore its search space, how does it converge, how diffi-
cult is the function it optimizes? We present the answers which are 
provided by the CGA theory. For the first question, this consists 
in the classical schema analysis, with the fundamental theorem, the 
implicit parallelism and the k-armed bandit analogy. For the sec-
ond question, we describe several convergence theorems. Finally, to 
answer the last question, we review the work on GA-easy and GA-
hard functions, which includes general theorems, deception theory, 
measures of function difficulty like epistasis measures, and we relate 
these definitions to other search methods. 
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1 .  I n t r o d u c t i o n  

1.1. T h e  optimization problem 

Genetic algorithms (GAs) (Holland, 1975, De Jong, 1975; 1988) are now much 
more popular than a few years ago, and especially so from the applications point 
of view. In many domains, GAs represent an important alternative to gradient 
or heuristic search, for instance, and positive results obtained in practice are 
mainly responsible for their success. However, theoretical analysis of GAs is the 
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fundamental point to be explored if one wants to analyze, explain and forecast 
the behavior of GAs. Thus, this paper does not emphasize at all the practical 
applications of GAs, but rather aims at giving some insight about the theoretical 
analysis of GAs. 

We will assume that the problem P to be solved has been formalized as 
an optimization problem. This optimization problem consists in finding in a 
search space S a  point s* that maximizes a function f. We will assume that the 
solution space S i s  a binary search space, i.e. S = {O, 1 } 1 , where l is a constant 
denoting the number of bits used to encode the solutions to problem P. 

Many methods can be used for solving this optimization problem. Some of 
them can be called "direct" methods and compute s* provided that useful infor-
mation is available about f. For instance, if it is known that f (s) = - s 2 + 2 s - 1 ,  
then it is possible to compute s* directly. When less information is available 
about f, such direct methods cannot be applied. In this case, the optimization 
methods must enumerate points in the search space S. Such enumeration can 
be deterministic or probabilistic. Deterministic enumerative methods always 
enumerate the same points in S when the initial point is the same. This is the 
case for instance of a standard gradient search. Probabilistic methods may not 
follow the same path in S for a given initial point. GAs belong to this second 
category of methods. 

1.2. The canonical GA 

A simple genetic algorithm, referred to as the canonical GA (CGA) in the 
following, considers that a binary string s E S i s  the genotype of an individual. 
One bit at a given location in s can be viewed as a gene. The CGA processes a 
population of such individuals and applies to them the search operators called 
genetic operators that modify the genes. The function f is viewed as the fitness 
function of an individual and represents its ability to survive in the environment. 
The CGA simulates the natural selection and gives an opportunity to the fittest 
individuals to reproduce in order to possibly improve the fitness of the generated 
offspring. The CGA uses the following principles: 

1. Generate randomly and Evaluate an initial population P(O) of n individ-
uals,
t +----- 0,

2. Generate P ( t  + 1) 
(a) Select n individuals from P(t) to form a population P s (t ) with the fol-

lowing probability distribution: 1:/s E P(t), P s elect (s ) = I: f(s ) f( s ' ) '
s1 EP(t ) 

(b) Recombine individuals of P s (t) into a population Pr(t) with the one
point crossover operator. Pairs of individuals are considered, and the
crossover is applied to one pair with a probability Pcr o s s ·

(c) Mutate individuals of Pr (t) to form P ( t +  1) by modifying bits in the
individuals with a probability Pm u t ,
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3. Evaluate the individuals in P ( t +  1), 
4. t f - - t + 1, 
5. Go to 2 or Stop.
This algorithm is a parallel one, even if you implement it on a sequential

computer. If you consider that the population is a vector of n variables, then the 
variables at generation t + 1 evolve in parallel and according to the variables at
generation t. Truly sequential versions of the CGA exist where only one variable 
changes at each generation. These are the so-called steady state GAs such as 
the Genitor (Whitley, 1989). Parallel models have also been designed for coarse 
or fine grained parallelization (Whitley and Starkweather, 1990, Spiessens and 
Manderick, 1991, Muhlenbein, 1991). GAs may also use various representations 
and operators. However, most of the theoretical studies concern the CGA, so 
this paper concentrates on this simple algorithm. 

The initial population P(0) is generated randomly by choosing n points in S 
with a uniform distribution (step 1 in the previous algorithm). Using P(0) and 
genetic operators, the CGA will generate the population P(l). More generally, 
the CGA generates population P ( t  + 1) from P(t): the search for new solutions
is guided by the previously explored solutions. 

The first intermediary population P8(t) is selected (step 2a) by perform-
ing n sampling with replacement from P(t) with the probability distribution 
mentioned previously: an individual s is selected with probability P s e l e c t (s) = 

f (s) 

L s1
E P (t) f(s'). 

The second intermediary population Pr(t) is computed by recombining pairs 
of individuals of P8 ( t) with the crossover operator ( step 2b). One way to select 
which individuals of P8(t) will recombine, is to scan the population P s (t) and 
select an individual for recombination with a probability Pcr os s · Selected indi-
viduals can be considered by pairs in the order of their selection, for instance. 
For a given pair of individuals, the one point crossover operator selects randomly 
and uniformly a cutting point between 2 and l, and exchanges between the two 
individuals the two sub-strings delimited by the cutting point. The offspring 
generated this way will replace their parents in the population, transforming 
P s (t) into Pr(t). 

The final population P(t+l) is computed by applying the mutation operator 
to the population Pr (t) (step 2c). This operator considers the whole population 
of binary strings as a single string, and modifies every bit of this string with a 
probability Pmu t • 

Several stopping criteria can be used (step 5). For instance, the CGA may 
stop when the quality of the best individual is above a given threshold, or when 
a given number of generations have been performed, or when the search does 
not improve any more. 

In this paper, we will consider an example of a simple function, called the 
Onemax function (Ackley, 1987; Syswerda, 1989). This function simply sums 
the bits in a given binary string. For instance with l = 6 bits, f (000000) equals 
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0, !(000011) equals 2 and !(111111) equals 6. This function has only one 
optimum which in this example is the s t r i n g s * =  111111. 

1.3. Fundamental questions about the CGA 

Several fundamental questions are raised about the CGA, but the CGA algo-
rithmic description does not provide an explicit and direct answer to them. For 
instance, one may ask: 

• How does the CGA explore S? The CGA uses its population of points to
guide the search. This strategy works in a more global way than other enu-
merative methods like simulated annealing, for instance. The earlier work
on the CGA has concerned the characterization of this strategy (Holland,
1975; Goldberg, 1989a) by using schema analysis as described in Section 2. 

• What about convergence? Another point that one should consider about
search methods is the stopping criterion, and more precisely, under which
conditions does the method stops, and what kind of solution s you get
when it stops. For instance, a gradient search usually stops when the
derivatives of f equal 0. When f is unimodal, the output solution is s*. 
GAs do not guarantee in practice that you will get the optimum. Section 3
presents several convergence theorems about GAs.

• How to characterize the difficulty of f? When comparing enumerative
search methods, one should consider the assumptions about f under which
one method is likely to work well. Such assumptions are known for in-
stance for a gradient search. One could be tempted to say that GAs
make less assumptions about f than other methods. It is true that GAs
can deal for instance with noisy, multimodal (De Jong, 1975; Goldberg
and Richardson, 1987; Mahfoud, 1995), or time dependent (Cobb and
Grcfenstette, 1993) functions. However, it is also true that GAs do make
assumptions about f, but these assumptions are not yet well understood,
and arc different from the traditional ones. This is precisely one aim of
the GA theory of deceptiveness. An introduction to this part of theory is
presented in Section 4. 

The remaining of this paper is organized as follows. Section 2 desr;ribes 
the basic schema analysis, which includes the schema theorem, the implicit 
parallelism, and the two-armed bandit analogy. Section 3 gives some examP.les 
of convergence theorems about GAs. Section 4 describes how the difficulty of a 
problem can be characterized from the GA point of view. This concerns mainly 
the deceptive problems, GA-easy and GA-hard functions. 
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Figure 1. The CGA processes points in S (s 1 to s5) but also regions of S (H1 
to H4). 

2. S c h e m a  analysis

2.1. Basic concepts

2.1.1. Schema: a region and a building block

A schema H is a string of symbols of length l, the same length as the binary 
strings in S ,  but over the alphabet of 3 symbols {O, 1, * }. "O" and "1" are used 
to represent fixed bits in the schema. "*" is a wildcard symbol that replaces 
either a "O" or a " l " .  For instance, with l = 6, the following schema: 

H1 = 111 * **  

represents the region in S that contains all strings that start with "111" and 
that have any other bits in the remaining positions. The following schema: 

H2 = 1 * * * *O 

represents the region in S where all strings start with 1 and end with 0. 
A schema thus can be viewed as a region in S, or a set of strings, or a 

hyperplane of S or also a search direction in S. However, a schema does not 
only formalize the notion of region, it also formalizes the notion of a building 
block. For instance, the two schemata O * * * **  and * * * * *1 represent two 
blocks of one bit each. Such blocks are useful to explain the CGA behavior. For 
instance, the CGA may combine these two blocks to produce a third schema 
o * * * * 1 .
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Evaluation Schemata 

* * * * * l

Population 

101001, 3 

100111, 4 

011011, 4 
1 0 * * * *  

-...... , __ ,,_   001011, 3 

001110, 3 
"·•--·-::  ... -•-· * * * * l *    ........... ----·-... 

Figure 2. Strings in the population may belong to several schemata. One 
schema may be represented by several strings in the population. We have repre-
sented the evaluation of binary strings that would be obtained with the Onemax 
function. 

2.1.2. Order and defining length of a schema 

The order of a schema H, denoted by o(H), is the number of fixed bits in H, 
like for instance: 

o(H1) = o ( l l l  * **) = 3, o(H2) = o(l * * * *0) = 2

The number of strings in H equals r 2o (H).
The defining length of a schema H, denoted by 8(H), is the difference be-

tween the position of the last and the first fixed bits in H, like for instance: 

2.1.3. Schemata and the population of binary strings 

As explained before, by processing strings the CGA also processes schemata. In 
fact, binary strings can be related to the schemata they belong to, as shown in 
Fig. 2. Several strings may belong to the same schema. Also, several schemata 
may have one or several strings in common. 

For a given population of strings, one can define the set of all schemata 
that contain at least one string of the population. When the population is very 
diverse, this set may contain many schemata. However, as will be shown in the 
section 2.4 on implicit parallelism, not all such defined schemata are usefully 
processed by the CGA, mainly because the sampling of strings is generally not 
uniform and not large enough. 
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In a general way, the fitness of a schema H i s  the mean fitness of binary strings 
that belong to H. More precisely, one may consider either the set of all strings 
that belong to H irrespective of the strings that are in the population, or only 
the strings in the population that belong to H. In the first case, the fitness of H 
does not depend on the population, but only on the fitness landscape of f, and 
is therefore called the static fitness. It is constant for a given fitness function f, 
and equals: 

1 
f(H) = IHI L f(s)

s E H 
In the second case, the fitness of a schema H depends on the fitness landscape 

but also on the current population of binary strings, and is therefore called the 
dynamic or observed fitness. It may change over time depending on how the 
CGA samples strings in S, and equals: 

1 
f(H, t) = IH n P(t)I L f(s)

s EHnP (t ) 

Static fitness will be used in the section on deception. It has the advantage 
of facilitating the analysis of the CGA, but it does not consider its dynamic 
behavior. Dynamic fitness will be used in the fundamental theorem in the next 
section but is much more difficult to analyze than static fitness. 

2.2. The fundamental theorem 

2.2.1. Notations 

The discussion of this theorem is detailed in Goldberg (1989a), and is performed 
in three steps, where each step takes into account the selection alone, the selec-
tion and the crossover operator, and finally the selection, crossover and mutation 
simultaneously. We present here this discussion. The following notations are 
used: 

• m(H, t) = IHnP(t)I denotes the number of strings in the population P(t) 
at generation t that belong to schema H. In the following, these strings
will be said to "represent" H. 

• f(t) = ¼ I:: s E P (t ) f(s), denotes the mean fitness of strings in the popula-
tion at generation t. 

For a given schema H, let us try to express E(m(H, t+ 1)), the average number 
of strings that represent H i n  the next generation, as a function of m(H, t). 

2.2.2. Selection only 

Firstly, let us consider the CGA without crossover or mutation. In this simpli-
fied algorithm, only the selection operator is used. It selects n strings in P(t) 
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with the probabilities I: f(s) 
f(s') 

described previously. Let us suppose that
s1 EP(t) 

m(H, t) = k and let s1, . . .  , si, ... , Sk denote all the strings in P(t) that belong 
to H. After selection which selects randomly n strings in P(t), each string Si 
will be represented on the average ni times in P(t + 1) with:

ni = n 
L s ' EP(t) f(s ')  

In P(t + 1), there will thus be E(m(H, t + 1)) = n1 + ... + ni + ... + nk strings
that belong to H. This gives: 

E(m(H, t + 1)) = n f(s1) + ... + f sk)
L s 'EP(t) f (s)  

The above equation can be rewritten using the two following equalities: 

and: 

n 1 
L s 'EP(t) f (3') f(t) 

f(s1) + ... + f(sk) = kf(H, t) = m(H, t)f(H, t) 

This results in the fundamental theorem limited to the selection only: 

( )) ( ) f(H,t)  E(m H,t+ 1 = m H,t - - - -
f (t) 

This equation states that schemata which have a dynamic fitness above the 
average fitness of the strings in the population will be given on the average 
more strings in the next population. Furthermore, if one assumes that 1t %')t) is 
a constant denoted by c, then the increase or decrease of m(H, t) is exponential 
(i.e. m(H, t) = et ). This property will be important when describing the k-
armed bandit problem. Of course, c is unlikely to be constant all the time. 

2.2.3. Selection and crossover 

Let us consider now the influence of crossover. Once selection has been per-
formed, an intermediary population P8(t) is created. Each strings in P8(t) has 
a probability of Pcross to be involved in a crossover. Let us consider a given 
schema H and one string s in P8(t) that belongs to H. Let us suppose that s 
has been selected for crossover, and let s' denote the second string involved in 
the crossover. We remind the reader that the offspring generated by crossover 
replace their parents in the population. 

The probability that s still belongs to H after crossover depends on the 
cutting point that has been chosen and on the two parents s and s'. When the 
cutting point is between two bits of H, then H i s  unlikely to survive i n s  and will 
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be disrupted, unless the two parents belong to H. For instance, let us consider 
the schema H = l * * * 0* and the two strings s = 101000 and s' = 010011. If 
the crossover between s and s' takes place between the two bits of H, i.e. after 
position 1, 2, 3 or 4, then H will not survive in s. If crossover takes place after 
position 5, then H will survive in s. Also, i f s '  has a "0" in position 5, then H 
will always survive in s. 

The probability Pcv.t (H ) that the cutting point takes place between two bits 
of a schema H depends on the defining length o(H ) of H a n d  is equal to: 

o(H )
Pcu t (H ) = 

l _ l

i.e., the number of cutting points that disrupt H divided_ by the total number
of cutting points on strings of length l. As mentioned in the previous example,
the probability that H does not survive in s is, however, smaller than Pcu t (H ) 
because the two parents may be equal, for instance, or may both belong to H. 
So the probability that H survives in s after crossover is thus: 

Ps u r 11i11e(H ) 2 1 - Pcros s Pcu t (H ) 

which can be rewritten as: 

o(H ) 
Ps u r vive(H ) 2 1 - Pc r oss l _ l

This probability must be related now to the previous equality between 
m(H, t) and E(m(H, t + 1)):

f ( H , t) 
E(m(H , t + 1)) = m(H , t ) - - -

f (t) 

Taking into account the influence of crossover, this equality becomes: 

E(m(H , t + 1)) = m(H , t) f  H , t) 
Ps u r v ive(H )

f (t) 

Using the previous minoration of Ps vr vive(H ), this results in the fundamental 
theorem limited to selection and crossover: 

f ( H ,  t) o(H ) 
E(m(H , t + 1)) 2 m(H , t ) - - - [ 1 - Pcr os s -l - ]

f(t) , - 1

Selection and crossover increase the number of representing strings of schemata 
with fitness above the average and whose defined bits are compact, i.e. close to 
each other in the binary string representation. 
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2.2.4. Selection, crossover and mutation 

Let us consider now the effect of mutation. This operator modifies a bit with 
a probability Pm ,tt · A string s will still belong to a schema H after mutation 
as soon as no mutation takes place in s on the defined bits of H. The number 
of defined bits of H has been defined previously as the order o(H) of H. The 
probability that no defined bits of H are altered by mutation is thus equal to: 

(1 - Pm ut)o (H) 

For instance, for H = l * * * 0* and Pm nt = 0.01, this probability is equal to 
(0.99) 2 ':::::'. 0.98. This schema will survive a mutation with a higher probability 
than the schema 10 * * * 0* for instance. 

If one considers that Pm ut < < l ,  then this probability can be approximated
by 1 - Pm ,,.to(H). Taking into account crossover and mutation, the probability 
that H survive application of these two operators is such that: 

Ps ur uiue(H ) 2 ( 1 - Pc r o s s :  ;  )( ) 
' - - v - - ' m utation influ.en ce 

crossover influence 

If one assumes that the cross product, i.e. Pcr o s s [z l ) Pm u.to(H ), is small, then
this expression can be simplified into: 

Ps ur vive(H ) 2 1 - Pcr o s s : i - Pm uto(H)

The fundamental theorem can now be rewritten in its final form: 

f (H, t) o(H) E(rn(H, t + 1)) 2 m(H, t ) - - - - [ 1 - Pcro s s -
z 

- - Pm uto(H)] f (t) , - 1 

This theorem states that a schema will be given an increasing number of repre-
senting strings in P(t) when: 

• its fitness is above the average, and 
• it is short, and 
• it is compact,

2.2.5. Discussion of the fundamental theorem 

This theorem gives some insight about how the CGA behaves but has, however, 
several limitations. For instance, it only describes the mean behavior of the 
CGA: standard deviations may have an important role to play, especially in the 
way the CGA concentrates in a given area of the search space. This point is 
discussed for instance in Radcliffe and Surry (1994) (see section 4.3.3 in this pa-
per). Also, the fundamental theorem does not tell anything about reaching the 
optimum, neither in term of convergence time nor in term of quality of the best 
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string obtained (see section 3). It does not tell which encoding would be the best 
one for solving the problem. This can be seen by considering that there exists 
Ml different binary encodings of a space of size M, that all verify the theorem, 
and it would be surprising that all give the same results in practice. Finally, the 
role of genetic operators is not really taken into account as it should: on one 
hand genetic operators of crossover and mutation are considered as bad pertur-
bations because their effects must be bounded in order to prove the theorem, 
but on the other hand, the recombination of building blocks through crossover 
and the necessary pertubations of mutatio  are claimed to be the basis of GAs 
success. 

Thus, this theorem is more useful from the point of view of adaptive systems 
than from the point of view of optimization. 

2.3. Implicit parallelism 

2.3.1. Intuitive view 

Now that we know which schemata are favored by the CGA, an important issue 
is to know how many schemata are processed by the CGA at the same time. 
This number of schemata can be approximated by n3 , where n is the number of 
strings in the population (Goldberg, 1989a). The number of schemata processed 
by the CGA is thus much higher than the number of strings themselves. 

2.3.2. Principle 

This demonstration concerning implicit parallelism is detailed in Goldberg 
(1989a). Let us denote by n s the number of schemata or search directions 
processed by the CGA. To evaluate the value of n s for a population of n strings 
with l bits, one may consider the set of all possible schemata. First, from that 
set one should remove the schemata that do not resist well crossover and mu-
tation. So we only consider the schemata that have a probability to survive 
the genetic operators of at least Ps • According to the probabilities of survival 
computed in the previous section, such schemata must have a defining length 
strictly smaller than ls = (1 - Ps )(l - 1 )  + 1. 

The number of schemata of the length smaller than ls that a string of length 
l belongs to is 21, - 2 (l - ls + 1). As there are n strings in the population, the
number of schemata usefully processed in a population of size n is: 

- 2(z.,-z) (l l + 1)'Tl,S - 'TI, ' - 'S  

However, some low order schema have been counted several times because they 
are common to several strings. So finally, only the schemata with an order 
greater than ½-are considered. In addition, one assumes that the population
has a size n = 2 ' f  in order to count each schema once on the average. So the 
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estimation of n8 now becomes: 

n3 (l - l s + l ) 
ns 2 4

which amounts to: 

G. VENTURINI, S. ROCHET, M. SLIMANE 

One should notice that this demonstration has been extended to population 
of size n = 2 k l where k is a positive parameter (Bertoni and Dorigo, 1993). 
The authors are also able to compute a lower bound on the average number 
of schemata that will be present in a uniformly distributed population for all 
k > 0. This lower bound is optimum when k 2: 1. 

2.3.3. Discussion on implicit parallelism 

This optimistic result is tempered however by several authors (Baker and Grefen-
stette, 1989; Grefenstette, 1991). Such a parallelism is possible only when the 
population is large enough and spread uniformly over {O, 1 } 1 . Those conditions 
are met at the beginning of the search, just after the random initialization, but 
after a few generations, the population has already converged and contains less 
schemata. This is true for Golberg's discussion on implicit parallelism but also 
for Bertoni and Dorigo's paper. Goldberg has already identified this problem 
and proposes a solution he called "messy GAs" (Goldberg et al., 1991). These 
new algorithms exploit directly the recombination of building blocks but the 
cost is as of now prohibitive even though a fast version of this algorithm has 
been developed (Goldberg et al., 1993; Kargupta, 1995). 

2.4. The k-armed bandit analogy 

2.4.1. Intuitive view 

The point studied here is about how the CGA explores or exploits schemata, 
a problem known as the exploration versus exploitation dilemma. Exploration 
consists in testing new regions in S and is necessary to get away from local 
optima, it is more likely to be unsuccessful. Exploitation consists in concen-
trating the search effort in the promising regions already visited. It is necessary 
to do this once the right region has been found. But if the region is not really 
the best one, then exploitation may lead the search to a local optimum. Both 
actions are necessary but they work in opposite directions. Finding the right 
balance between exploration and exploitation is to resolve the exploration versus 
exploitation dilemma. 

This dilemma can be formalized by considering bandit machines traditionally 
used in decision theory. The arms of the machine represent areas, or more 
precisely schemata, as represented in Fig. 3. The CGA has to select whether 
it explores new schemata with unknown fitness, or whether it concentrates on 
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□□ □
<::.::.., _ _ _  _,7 

Figure 3. The k-armed bandit analogy: the CGA plays with a k-armed bandit 
machine where arms represent schemata. A trial of a given arm represent an 
additional string sampled in this schema. 

existing schemata with relatively high fitness. Exploration is important in order 
to avoid local minima. Exploitation is important in order to converge to a good 
region. The answer provided by Holland on a two-armed bandit machine is that 
the optimal strategy is to allocate an exponentially increasing number of trials 
to the observed best arm. This is precisely what the CGA does, as shown in 
Section 2.2.2. It increases exponentially the number of strings that belong to 
schemata with more than average fitness. 

2.4.2. Principle 

Holland's demonstration is based on a two-armed bandit machine as repre-
sented in Fig. 4. When activated, one arm of the machine generates a payoff 
that is computed according to a probability distribution. The payoff associated 
to A1 (respectively A2) is generated according to a probability distribution of 
mean µ1 (resp. µ2) and standard deviation a1 (resp. ir2). These two distribu-
tions are supposed to be overlapping and are such that µ1 > µ2. One should 
assume that (µ1, a1) and (µ2,a2) are known values but one does not know to 
which arm they correspond. Thus, it is not possible to decide definitely that 
one arm is better than the other in a fixed amount of trials. There will always 
be a small probability of error. 

The aim is to find a strategy that minimizes the losses when playing N trials 
on this machine. After N trials, one of the two arms will have received on the 
average more payoff than the other. This arm is named the observed best arm, 
but it may not correspond necessarily to the real best arm (µ1 , a 1) because of 
sampling errors. The other arm is named the observed worst arm. n denotes the 
number of trials allocated to the observed worst arm, and N - n thus represents 
the number of trials allocated to the observed best arm. 

The first part of Holland demonstration consists in showing that there is an 
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Figure 4. The two-armed bandit machine used in Holland's demonstration. 

optimal value of n, denoted by n*, which minimizes the losses in N trials. Two 
sources of losses exist in this problem. The first one is due to allocating n trials 
to the observed worst arm when this arm is really the worst one (A2) . This is 
the correct behavior: the observed best arm is really the best arm A1 , and the 
observed worst arm is A2, These n trials are, however, necessary because the 
worst arm must be sampled anyway in order to determine what payoff it brings. 
The second source of loss is due to allocating N - n trials to the best observed 
arm when this arm is in fact the worst arm (A2) . In this case, sampling errors 
have been such that A1 has been worse on the average than A2, while µ1 > µ 2.
These two sources of loss are weighted by their probability of occurrence which 
depends on n. Holland demonstrates that the optimal value of n* is such that 
the number of trials allocated to the observed best arm (N-n*) is an exponential 
of the number of trials allocated to the observed worst arm (n*). 

However, this strategy is not useful in practice, because in the demonstration 
it is assumed that one knows which arm is the observed best arm even before 
you start playing. · This strategy would thus require an oracle that would tell 
which arm will be the observed best one, and this is not realizable in practice. 
So, the second step of Holland's demonstration is to show that there exists a re-
alizable strategy that asymptotically approximates the optimal but unrealizable 
strategy. This strategy can be stated as follows: (1) compute the value of n*, 
(2) allocate n* trials to each arm (i.e. a total of 2n* trials), and (3) allocate the
remaining trials (N - 2n*) to the observed best arm in the previous step (2). 

Once these theoretical points are established, they can be related to schemata. 
The previous exponential ratio is used as a guideline for designing good strate-
gies. When several schemata are in competition, a strategy that is the closest to 
the optimal but urirealizable one is to allocate an exponential number of trials to 
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the observed best schemata with respect to the others. From one generation to 
the other, is has been shown that the number of strings in a schema increases ex-
ponentially when this schema has a fitness above the average (see Section 2.2.2). 
This is precisely the behavior suggested by Holland's demonstration. 

In the second version of his book (Holland, 1992), Holland provides a differ-
ent version of this demonstration. 

2.4.3. Discussion on the bandit analogy 

The optimal strategy is hence the one applied by the CGA. One should no-
tice that this strategy docs not imply that the CGA will reach the optimum 
(De Jong, 1992): the CGA will only look for an optimal strategy for allocating 
trials. 

This analogy also has limitations. The way the CGA solves competitions 
between schemata is not as simple as in the bandit machine. For instance, 
the schemata usefully processed may vary dynamically during the search. In 
practice, this strategy implies a too fast convergence, usually towards a local 
optimum that contains some building blocks. The sampling errors related to 
the small size of the population compared to 21 , create this early convergence 
and reinforce the genetic drift phenomenon (Goldberg and Segrest, 1987): when 
two chromosomes have very close fitness but are very different f rom each other 
in the bit string space, the stochastic behavior of selection will make the CGA 
converge only towards one of those two strings. This implies a loss of diversity 
in the population that is not taken into account in the determination of the 
optimal strategy. 

2.5. Other work on schema analysis 

Schema analysis is the basis for analyzing the CGA and is used in many theoret-
ical works as can be seen in the remainder of this paper. Hence, the correspond-
ing list of references would be too long and too general. However, concerning the 
fundamental theorem and other results presented in this section, an important 
part of the other work deals with the generalization to non-binary represen-
tations. This may concern alphabets with higher cardinality (Antonisse, 1989; 
Radcliffe, 1991; Radcliffe and Surry, 1994), set representations (Radcliffe, 1992), 
sequence representations (Fox and McMahon, 1991) or real-coded representa-
tions (Wright, 1991; Eshelman and Schaffer, 1992). All these representations 
are usually more efficient than binary ones, and it is important to generalize the 
theory ofthe binary CGA to other GAs. 

3  Convergence theorems 
Several standard methods in optimization are such that when they stop, the 
output solution is the optimum. This is the case for instance for branch and 
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bound algorithms. The CGA does not provide such information. However, 
several theorems characterize how the convergence of the CGA takes place. 

3.1. Convergence without mutation 

This first theorem described in Ankenbrandt (1991), states that the CGA with-
out mutation will converge to a uniform population in a given time. This popu-
lation contains only one individual. However, this theorem does not tell whether 
this individual is the optimum or not. 

Let us consider a population of randomly generated strings. The "fitness 
ratio" r is defined as follows: for a given position i in the string ( i E [LZ]), let 
ri denote the ratio of the mean fitness of strings in a population with a " l "  at 
position i over the mean fitness of strings with a "O" at this position. That is: 

f(*1 .. *i-1 l i  *i+1 .. *z, t )
ri = 

f(*1 .. *i-1 Qi *i+l .. *z, t )
Here, dynamic fitness is used and is considered at time t = 0. One may always 
assume that the binary encoding is such that ri   l .  Let r denote the smallest 
ratio ri among r 1, . . .  ,r1 • If no mutation is used in the CGA, the number of 
generations needed to obtain a uniform population is, in the average case, in 
the order of: 

Order(!) nln(n) 
ln(r) 

where n is the population size and where Order(!) is the time complexity of the 
algorithm that computes the fitness function f .  The complexity of f is taken 
into account. This theorem does not take into account the mutation operator 
because this operator makes the population diverge. This theorem can also be 
generalized for non binary strings. 

3.2. Syntactic convergence 

This theorem takes also into account only crossover and selection (Louis and 
Rawlins, 1992). It uses the mean of Hamming distances among the strings of 
the population as a measure of convergence of the population. Initially, this 
measure equals ½ on the average for a randomly generated population. When 
the population has converged to a single individual, then this measure equals 0. 
The authors show that standard crossover operators usually do not change the 
average Hamming distance of the strings. Mutation maintains a minimal value 
of this Hamming distance by changing randomly some bits and thus introducing 
different bit values at the same location. Selection makes this distance converge. 
The authors give an upper bound on the probability that all bits have converged 
at generation t. This upper bound equals: 

[l _ 6po(l - Po) ( l  _   /]z
n n 
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where p0 is the initial proportion of 0's in the population (which equals ½ in a 
randomly generated population). 

3.3. Markov chain analysis of the CGA convergence 

The CGA can be modeled by a Markov chain (Goldberg and Segrest, 1987; 
Eiben et al., 1991, a survey in De Jong et al., 1994), because this mathematical 
model allows to formalize stochastic processes where the probability that the 
process goes into a particular state depends only on the previous state. GAs are 
such that the new population is constructed only from the previous one. Markov 
chains are a very powerful tool to analyze their behavior. Finite chains can be 
specified using a transition matrix M = [pi.ikJEG that contains the probability 
that the system jumps from state i to state j, where 8 denotes the set of all 
possible states of the system. For the CGA, 8 represents the set of all possible 
populations, and Pi.i the probability that population i becomes population j 
after one generation. Some theoretical works use the properties of this matrix 
M to obtain information about the behavior of the stochastic process. 

In Goldberg and Segrest (1987), the authors studied the genetic drift, com-
puting the expected time of convergence and comparing it for different models. 
This unexpected convergence, even without any selection pressure implies a loss 
of diversity in the population and some techniques have been created against 
it. For example, the creation of niches (subpopulations that evolve in parallel, 
De Jong, 1975; Goldberg and Richardson, 1987; Mahfoud, 1995; Jelasity and 
Dombi, 1995), is a good way to preserve the population from an early conver-
gence. This technique has been studied also with Markov chains (Horn, 1993), 
and it has been proven that the expected time of convergence computed from M 
increases with the creation of niches, because this preserves the diversity in the 
population. Another way to slow convergence is to temper the selection pressure, 
using another selection operator. In Mahfoud (1993) the tournament selection 
is shown to reduce the convergence speed compared to the classic roulette wheel 
selection. 

Another analysis using the transition matrix of a Markov chain model of 
GAs can be found in Rudolph (1994). The study of the limit distribution shows 
that elitism (keeping the best individual found so far through generations) is 
necessary to ensure convergence: the probability that the global optimum is 
in the population goes to 1. Along the same lines, the eigenvalues of M can 
be analyzed (Suzuki, 1993) and it can be shown that the probability that the 
populatation contains the optimum is bounded by 1-O(I>.(), l>-1 < 1, where t is 
the number of the generation and where>. is a specific eigenvalue of M. Suzuki 
also indicates how to choose the mutation rate in order to minimize >.. 

Results presented here come from the study of the properties of the transition 
matrix. In each model, simplifications were needed to extract usable results. 
This kind of approach allows mainly to compare the convergence speed of models 
of GAs using different operators, and using a simplified model of the fitness 
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function. Another way to exploit the power of Markov chains model is presented 
now. Davis and Principe (1991) and Cerf (1995) are using similar principles 
to prove the convergence of GAs: modeling this algorithm with a simulated-
annealing-like theory. The paper of Cerf goes further into the model: the CGA 
is viewed as a simple determinist selection process, perturbed by a Brownian 
movement that goes to zero with time. The theory of Freidlin and Wentzell 
(Freidlin and Wentzell, 1984) is then used to prove that, if the population is 
large enough and if the intensity of perturbations goes to zero slowly enough, 
the algorithm converges to the global optimum. This requires, among other 
things, that the mutation rate be decreasing in conjunction with higher and 
higher selective pressure. Several questions arise from the results obtained here. 
For instance, crossover is apprently not essential to obtain convergence but 
has a role to play in the speed of convergence. Also, in practice, conditions 
that ensure convergence are impossible to establish (the same problem as for 
simulated annealing), but this model gives a very good insight of the CGA 
convergence. 

Finally, using infinite population model one can extract information about 
the role of crossover and mutation dispersion (Qi and Palmieri, 1994a; Qi and 
Palmieri, 1994b; Srinivas and Patnaik, 1993). It can be also proven that using 
this model in the specific case of a quadratic fitness function, the density of 
population is concentrating on the optimum. Some necessary conditions on the 
increase of mean evaluation are given, too. 

All these models bring an insight into the way GAs converge, or diverge. 
But this depends strongly on the chosen definition of convergence, and also on 
the fitness landscape imposed by the encoding, the genetic operators as well as 
the fitness function itself. Even in practice, stopping criteria are very difficult to 
define in a satisfactory way. Models presented here allow to better understand 
the needed conditions to ensure convergence, and are promising. However, those 
conditions are as yet generally never realizable in practice, except for very simple 
evaluation functions that do not really need a GA to be optimized. 

4. GA-easy or GA-hard?

4.1. General theorems 

Some general theorems concern the optimization problem that the CGA is trying 
to solve. A summary of the consequences of the two general theorems presented 
in the following is that it is essential to characterize which functions are easy 
or hard to optimize with the CGA (as with any other search algorithm). This 
helps in understanding how the CGA really works, and it helps the engineer or 
user to aecide which search algorithm will best fit his problem. 
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4.1.1. An NP-hard problem 

The optimization problem described in the introduction of this paper can be 
formalized into the DGA-max problem where f takes as input a binary string 
of length l and can give a positive or negative integer as output. f also has to 
be computed in polynomial time. DGA-max consists in finding s* as defined 
previously. It is shown in Hart and Belew (1991), that DGA-Max is an NP-
hard problem. This means that there are no polynomial time algorithms, either 
deterministic or probabilistic, that can find the maximum of f without any 
further hypothesis on f, unless P=NP. In particular, this is the case for the CGA. 
Furthermore, Hart and Belew show that no polynomial time algorithms, either 
deterministic or probabilistic, can approximate the maximum f(s*) within a 
given percentage of approximation. 

The conclusion of this theorem is that it is useless to claim that an algorithm 
performs well on arbitrary functions, unless it explores the whole search space. 
This suggests, as will be highlighted by the next theorem, that characterizing 
which functions fit the CGA is very important. 

4.1.2. No free lunch theorems 

We will not go into philosophical discussion about the no free lunch theorems 
concerning search (Wolpert and Macready, 1995). The optimization problem the 
CGA deals with is also similar to the one studied by Wolpert and Macready. 
The no free lunch theorem mainly states that the performances of two search 
algorithms are equivalent when averaged on the set of all possible functions f, 
under a distribution P(f) of functions which is uniform. We will not discuss 
here whether this theorem exactly applies to the CGA or not. However, it is 
interesting to notice that the consequence of this theorem is in a way similar 
to the one of the previous theorem: it is essential to know which distribution 
of functions P(f) one is dealing with in a given problem, and it is essential to 
know how fit the CGA is with respect to these functions (Radcliffe and Surry, 
1995). 

4.2. Deception 

We recall here several definitions and concepts introduced in Goldberg (1987; 
1989a), Whitley (1991), Liepins and Vose (1991), Das and Whitley (1991). 

4.2.1. Intuitive view 

The behavior of the CGA can be modeled in a simple way as follows: initially, in 
a randomly generated population, many schemata of low order are represented 
in the population. Then, the order of frequently sampled schemata· increases. 
For instance, if sampling errors arc negligible and if for instance f (0 * * . . .  * *) > 
f ( l  * * . . .  * *), then the CGA will concentrate in the first region O * * ·  . .  * * 
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rather than 1 * * . . .  * *· These two schemata can be viewed as competing 
schemata, because each of them would like to drive the search in the opposite 
direction of the other: the first schema assigns a O to the first location, and the 
second schema assigns a 1 to the same location. This intuitive notion has been 
formalized as a competition between schemata that have the same locations 
instanciated with different bits. The winner of such a competition, that is the 
schema with the highest fitness among the competing schemata, will drive the 
search of the CGA in its direction. This seems reasonable if the winning schema 
contains the optimum: the CGA is driven towards a region of S that contains 
s*. However, if the winning schema does not contains*, then the CGA is driven 
away from the optimum. In this case, f is said to be deceptive. The work on 
deception is centered around this notion, as described in the following. 

4.2.2. Competitions between schemata 

Let us define first more precisely the notion of competition between schemata. A 
primary competition of order N is defined by comparing the fitness of schemata 
of order N which have * characters at the same locations and different instan-
ciated bits. For instance, one may define a competition c1 of order 1 between 
the 2 following schemata: 

Hi= 1 * * * **

One may also define a competition c2 of order 2 between the 4 following schemata: 

H'J;. = 0 * 0 * **

HJ= 0 * 1 * **

HJ= 1 * 0 * **

Hi,= 1 * 1 * **

The schema that wins a competition c is the schema which has the highest static 
fitness among the schemata involved in c. For instance, if the two schemata 
involved in c1 are such that f(Hf) > f(Hi), which would be the case for the 
Onemax function, then Hf is the winner of competition c1. 

A competition CK of order K is relevant to a competition CN of order N 
with N < K if every schema of cK is included in a schema of cN. For instance, 
the previous competition c2 is relevant to c1 . The schemata HJ, and H'#, are 
included in H.f, and HJ and Hi are included in Hf. The following competition 
c ;  of order 2: 

H '   = *00 * * 
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H '   = *01 * * 

H '   = * 1 0 * *  

H '   = *11 * * 
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is not relevant to c1 , because, for instance, H '   is neither included in H l  nor in 
Hf, 

4.2.3. Deceptive functions 

A function is (partially) deceptive of order N when there exists at least one 
competition CN of order N such that the winner of this competition has different 
bits than some winners of competitions of order less than N relevant to cN, More 
precisely, it is not necessary for all competitions that are relevant to CN to be 
misleading. Only one "path" of nested competitions relevant to cN has to be 
misleading. Also, one will be especially interested in the case where cN leads to 
f's optimum s* while the misleading competitions do not. For instance, let us 
consider the two previous competitions c1 and c2 on again. Let us suppose that 
the fitness function f is such that: 

f (Hi) > f (H'f) 

Then the winner of c1 is the schema 0 * * * **· It assigns a "O'' to the first 
location. Furthermore, if the function f is such that: 

f(Hi) > f(HJ,), f(H?), f(H?) 

then the winner of c2 is the schema 1 * 1 * ** which assigns a "1" to the first 
location. The two competitions give two contradictory search directions. If the 
optimum s* really belonged to H#, = 1 * 1 * **, then solving the first order com-
petition c1 would lead away from that optimum. c1 is a deceptive competition. 

However, in partially deceptive functions, there may exist competitions which 
are not deceptive. For instance, another competition di_ of order 1, like for in-
stance: 

H'i = * * * * *0

H '   = * * * * *1

may not be deceptive and may lead to the an optimum. In a partially deceptive 
function, there may exist a "path" of nested relevant competitions from order 
1 to l which are not deceptive and which lead to the optimum. 
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4.2.4. Non deceptive functions 

A function is non deceptive if all competitions of any order N lead to the 
optimum s*. In those competitions, all schemata that win contain s*. The 
Onemax function is a standard example of a non deceptive function. Let us 
consider Onemax for l = 3: 

f(000) = 0, f (001) = 1, f (010) = 1, f (011) = 2

f(lO0) = 1, f(101) = 2, f ( l l 0 )  = 2, f ( l l l )  = 3
One can check that any competition is won by a schema that contains the 
optimum s* = 111. For instance, the following inequalities involving first order 
competitions hold: 

f ( l * * )  > f ( 0 * * )  

f(*1*) > f(*0*) 

f ( * * l )  > f ( * * 0 )  

Any schema that contains s* = 111 wins the competition it is involved in. In 
the same way, the following inequalities hold for the second order: 

f(11*) > f(00*), !(01*), f(lO*) 

f ( l  * 1) > f(0  * 0), f (0 * 1), f ( l  * 0) 

f ( * l l )  > f(*00), f(*Ol), f(*lO) 

Finally, the order 3 competition is won by the optimum: 

f ( l l l )  > f(000), f (001), . . .  f (100), f(lOl) 

4.2.5. Fully deceptive functions 

A function is fully deceptive of order N whenever there exists a competition CN 
of order N where all competitions relevant to CN of order less than N lead to a 
deceptive attractor H-,  which is different from the winning schema H* of cN. 
It is possible to show that this deceptive attractor is the binary complement 
of H*, and that it is not necessarily a local optimum in the Hamming space 
(Whitley, 1991). 

Let us detail a fully deceptive function of order 3 described in Whitley and 
Starkweather (1990). So let us suppose that l = 3 and that the global maximum 
of the function is s* = 111. This implies that the deceptive attractor is s - = 000. 
All competitions of order 1 must be won by the schemata which contain 000. 
The following inequalities must hold: 
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f(*0*) > f ( * h )  

f ( * * 0 ) > f ( * * l )
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In the same way, all competitions of order 2 must be won by the schemata which 
contain s - ,  which implies: 

f(00*) > f ( 0 h ) ,  f(lO*), f ( l h )  

f(0 * 0) > f(0 * 1), f ( l  * 0), f ( l  * 1) 

f(*00) > f(*01), f ( * l0) ,  f ( * l l )  

Finally, only the third order competition is won by s*: 

f ( l l l )  > f(000), f(001), . . .  f(lO0), f( lOl) 
An example of such a function is: 

f (000) = 28, f (001) = 26, !(010) = 22, f (011) = 0 

f (100) = 14, f (101) = 0, f (110) = 0, f (111) = 30 

4.2.6. The CGA and deception 

As mentioned in the introduction of this section, many low order schemata are 
present in the first generation of individuals. The CGA solves competitions 
between schemata because it selects more often individuals with high fitness. If 
a competition is misleading, the CGA will get away from the optimum. 

One would naturally be tempted to say that non deceptive functions are 
the GA-easy functions and that the fully deceptive functions are the GA-hard 
functions. However, this definition would be partially false, as explained in 
Grefenstette (1992). For instance, a "needle in a haystack" function with only 
one point with a fitness higher than O would be GA-easy: any schema containing 
s* would win the competition it is involved in because the other schema would 
have a fitness of 0. This function, while being non deceptive, is hard to optimize 
for any robust search method including the CGA. Another example of non 
deceptive functions which gives troubles to the CGA are the royal road functions 
(Mitchell et al., 1991; Forrest and Mitchell, 1992; Mitchell and Holland, 1993). 
The current studies of deception fail to catch the dynamic properties of the CGA 
as they only consider static fitness, for instance, instead of dynamic fitness. 

Experimental results on fully deceptive functions show that the CGA or other 
genetic algorithms usually do not find the optimum (Das and Whitley, 1991; see 
Grefenstette, 1992, for an exception). Experiments with non deceptive functions 
generally show that the CGA is able to find the optimum (Wilson, 1991). So 
deception has certainly got something to do with the CGA. 

Several authors have proposed specific solutions for dealing with non decep-
tive and fully deceptive functions (Grefenstette, 1992; Louis and Rawlins, 1992). 
These solutions involve generally the use also of the complement of the strings, 
as will be explained in the following in the section on global search techniques. 
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4.3. Measures of function difficulty 

The difficulty of functions can also be characterized by several measures that 
can be computed on a sample of strings. 

4.3.1. Epistasis measures 

An epistasis measure is useful to determine the correlations that may exist 
between binary genes (Davidor, 1991; Manela and Campbell, 1992; Reeves and 
Wright, 1995) or real-coded genes (Rochet et al., 1996). If no such correlations 
exist, then the influence of each bit value on the fitness function is independent 
of the values of the other bits. With this kind of measures, it is possible to 
define classes of functions which can be easy or hard for the CGA. Let us give 
an example of how a simple measure of epistasis can be computed with l = 3. 

The aim of this measure is thus to tell how independent the bits are in a 
representation with respect to the fitness function f. For instance, if you can 
compute f(000) with knowledge of only f ( 0  * *), f(*0*) and f ( *  * 0), then the 
epistasis for these three bits will be low. In that case, you can determine f(s) 
only by computing the interest of each bit of s independently from each other. 
This estimated value of f(s), denoted by A(s), is equal to (for s = 000):

A(000) = (f(0 * *) - f ( *  * *)) + (f(*0*) - f ( *  * *))+

(!( * * 0) - f ( * * *)) + f ( * * *)

For instance, f ( 0  * *) - f ( *  * *) measures the interest of strings starting with 
0 relative to all strings. If we consider the Onemax function for l = 3, then 
f (0 * *) = f ( *0*) = f ( * * 0) = 1 and f ( * * *) = 1.5. Thus, A(000) equals:

(1 - 1.5) + (1 - 1.5) + (1 - 1.5) + 1.5 = 0
In this case, the value o f f  (000) is correctly predicted, and the epistasis of the 
string 000, measured by f(000) - A(000), equals 0. 

One may compute for every strings from 000 to 111 the value of A(s). Then 
an epistasis measure can be defined by computing the variance of the variable 
( f ( s ) -A(s) )  for every strings. For Onemax on three bits, this measure equals 0. 
For the fully deceptive function of order 3 shown in Table 1 the epistasis measure 
equals 0.92. 

In these two examples, we have implicitly assumed that the static fitness 
of schemata was used. The epistasis measure can be computed also only on 
the basis of the strings which are present in the population, i.e. with dynamic 
fitness of schemata. Davidor provides useful insight about the effect of sampling 
errors, which can change greatly the observed epistasis. 

Functions with 0 static epistasis measure are non deceptive functions, and 
are always computed as linear weighted sum of the bits. Functions with high 
epistasis are generally deceptive, but counterexamples can be found where a 
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s J(s) A(s) 
000 0.2 1.45 
001 1.4 1.525 
010 1.6 1.525 
011 2.9 1.6 
100 3 1.275 
101 1 1.35 
110 0.8 1.35 
111 0.6 1.425 

Table l .  

highly epistatic function is easy for the CGA (Manela and Campbell, 1992). If 
one increases the order of schemata which are used to compute the epistasis, 
then the epistasis may decrease, and this is the case for the function described 
in Manela and Campbell (1992) where a second order epistasis measure equals 
0 (Rochet, 1996). This measure used second order schemata to compute A(s). 

4.3.2. Fitness/distance correlation 

The fitness/distance correlation measures the correlation that may exist between 
the fitness value of a string s and its Hamming distance to the optimum s* or 
the closest optimum when this function is multimodal (Jones and Forrest, 1995). 
This correlation is computed with a sample of points in S but requires that the 
global optima of f be known: one must collect n strings s 1, . . .  , Sn and evaluate 
their fitness f ( s1) , . . .  , f ( sn ) as well as their distance to the closest global 
optimum d1, . . .  , dn . Then, the fitness/distance correlation is the correlation of 
the couple ( f ( s i ), di ). When this correlation is close to -1, then the closer you get 
to one global optimums* the higher the fitness is. This is the case, for instance, 
of the Onemax function. This moans that f is easy to optimize by a GA, and 
most certainly easy for other methods, too. When this correlation is close to 1, 
the fitness function f is misleading, which is the case of fully deceptive functions, 
for instance. When this correlation is close to 0, no indication is really given 
about f ' s  difficulty: f can be a "needle in a haystack" function, or a function 
with many high peaks located all over the search space. 

4.3.3. Variance of  schemata 

Another way to obtain information about the expected behavior of the CGA is 
to consider the variance of fitness of schemata (Radcliffe, 1992). The schema 
theorem underlines the importance of building block recombination. Schemata 
with more than average dynamic evaluation, short length and small order are 
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given an increasing number of copies in the subsequent generations. Depending 
on the binary strings of a schema that are present in a population, this schema 
will receive a growing or a decreasing number of strings. However, if the fitness 
values of strings that belong to a schema are very different from each other, i.e. 
have a high variance, then the CGA will consider this schema as a good or a 
bad one depending on the strings that are present in the current population. 
On the other hand, if the fitness values of strings that belong to this schema 
are close to each other, i.e. have low variance, then whichever strings are in the 
current population, the schema will be correctly evaluated. 

As a consequence, studying the fitness variance in each schema can give an 
indication on the CGA behavior. In Radcliffe and Surry (1994) this tool is used 
to compare the performance of many encoding schemes on ordered chromosomes 
for the travelling salesman problem, with very good predictive results that allow 
to choose the right encoding for the problem to be solved. 

4.4. Relations to other search methods 

The definitions of easy and hard functions introduced in the previous sections 
can be related to each other. In addition, several authors have compared those 
definitions to other search methods like global search or hill climbing. It is 
interesting to notice, for instance, that non deceptive functions can be hard for 
other methods, or that fully deceptive functions can be easy for some other 
methods. 

4.4.1. Global search 

Non deceptive functions can be optimized by a simple and straightforward 
method introduced in Das and Whitley (1991). Since non deceptive functions 
are such that the optimum always wins the competition it is involved in, then 
this optimum can be reliably found by looking only at the first order schemata, 
which is a much simpler method than the CGA. This method is a global search 
algorithm which uses the following principle: 

1. Generate a set S 1 of strings in {O, 1 } 1 , 

2. Evaluate each string of S 1 , 

3. Compute the fitness of all the first order schemata,
4. Generate the output st by solving the competitions of order 1: 

• the first bit of st equals 1 if f(l * . . .  *) > f(0 * . . .  *) ,else 0, 
• the second bit of st equals 1 if /(*1 * . . .  *) > f(*0 * . . .  *) ,else 0, 
• and so on until the last bit,

More precisely, a statistical test, e.g. the T-test, can be used to determine 
whether more points should be generated or not. If the competitions are solved 
independently, then this algorithm can only deal with non deceptive functions. 
It  may solve the partially deceptive functions in the following way: solve first 
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the first order competition with the greatest fitness ratio to determine one bit 
of s1, and apply the same algorithm recursively to the remaining bits to be 
instanciated. 

This global search can be simply extended to solve also fully deceptive func-
tions (Venturini, 1995). The extended algorithm outputs the best of the two 
strings sj' and sj', where sj' denotes the binary complement of s1. Fully deceptive 
functions are such that competitions of low order arc won by schemata which 
contain the binary complement of the optimum. For such a function, solving the 
first order competitions leads to s*. This simple extension of the global search 
can deal efficiently with non deceptive or fully deceptive functions. 

One should not conclude from the above that such algorithms are useful in 
practice. The set of functions that they can solved efficiently is reduced, and is 
certainly different from the set of real world problems. Functions can be found 
which drive these algorithms directly to the worst string of S. However, it is 
clear that non deceptive or fully deceptive functions are not difficult problems 
for global search methods. 

4.4.2. Hill climbing 

We consider a simple hill climbing algorithm which can be stated as follows: 
1. Choose randomly a starting point s,
2. Generate the points s1, . . .  , si in the neighbourhood of s by changing one

bit of s,
3. Let Si, i E [1, l], be the best point in the neighbourhood of s,
4. If f ( s ; )  > f ( s )  then s +- si and go to 2, else Stop.

This simple algorithm uses a Hamming distance to determine the neighbourhood 
of s. For instance with l = 3, the neighbours of 000 are 001, 010 and 100. In 
steps 3 and 4, the algorithm usually chooses the steepest ascent. We consider 
that a function f is easy for such a hill climber when it can get to the optimum 
whatever the starting point is. Otherwise, f is hard for hill climbing. 

Wilson has shown that non deceptive functions arc not necessarily easy for 
hill climbers (Wilson, 1991) by giving a non deceptive function which contains 
local optima in the Hamming space. This function can be generalized to any 
dimension l = 3k. 

Whitley has shown that fully deceptive functions necessarily contain a local 
optimum in the Hamming space (Whitley, 1991). These functions are thus hard 
for hill climbers. 

One should not conclude from this that hill climbers should not be used in 
cooperation with evolutionary techniques (Mulhenbein, 1992). B y  "hill climbing 
hard", one usually means that there may exist at least one local optimum in 
the Hamming space. However there may exist another path that leads to the 
optimum without getting trapped in a local optimum. 
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f(s) 
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Figure 5. A fully deceptive function of order 3 which is gradient-easy. 

4.4.3. Gradient search 

Let us consider that the binary space is used to encode a parameter x. A 
gradient search could thus be used to optimize f. Here is an example of a 
unimodal, and thus easy for gradient search, but fully deceptive function for 
l = 3 (Venturini, 1995). The function's values are the following:

f (000) = 0.2, f (001) = 1.4, f (010) = 1.6, f (011) = 2.9 

f (100) = 3, !(101) = 1, f (110) = 0.8, !(111) = 0.6 

The optimum of this function is s* = 100, and the deceptive attractor is thus 
s - = 011. This function is represented in Fig. 5 and it is obviously unimodal 
and easy for a gradient search. 

4.5. Other work on GA-easy and GA-hard functions 

Several other works have not been presented here. Among them, let us cite first 
the earlier work on deception which concerned the Walsh transform (Bethke, 
1980; Goldberg, 1989b; 1989c; Bridges and Goldberg, 1991) or hyperplane trans-
form (Holland, 1989). 

Muhlenbein has computed for simple evolutionary algorithms the expected 
time to convergence to the optimum for three different functions (Muhlenbein, 
1992). It is also possible to characterize the CGA behavior for several functions 
using entropy measures (Davidor and Ben-Kiki, 1992). 

The study of royal road functions is also interesting as showing that a non 
deceptive function can be difficult to optimize because of the hitch-hiking phe-
nomenon (Mitchell et al., 1991; Forrest and Mitchell, 1992; Mitchell and Hol-
land, 1993). In these functions, chromosomes that contain good building blocks 
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are reproduced with the bad schemata they may contain too. This phenomenon, 
called hitch-hiking, prevents the CGA from converging even if the fitness func-
tion seems easy at a first sight. Deception can also be analyzed for a given class 
of functions, like trap functions (Deb and Goldberg, 1992). For this class of 
functions, the proportion of fully deceptive, non deceptive or partially deceptive 
functions can be computed. 

Messy GAs have also been designed to solve some of the problems inherent to 
the CGA and deception (Goldberg et al., 1991; Goldberg et al., 1993; Kargupta, 
1995). One should also cite the works on the correlation of operators and on 
virtual GAs (Manderick et al., 1991; Grefenstette, 1995), which also characterize 
the difficulty of a function with respect to the genetic operators. 

Finally, the CGA is not initially an optimization algorithm, and this explains 
some of its limitation from the optimization point of view (De Jong, 1992). As 
can be seen, it would be hazardous to fix definitely the definition of GA-easy and 
GA-hard functions, because additional understanding of the CGA is necessary. 

5. Conclusion

In this paper, we have reviewed several important aspects of the theory of the 
simple GA. Many different mathematical tools are involved and many aspects of 
the CGA are concerned. They all contribute to the understanding of the CGA. 
The reader may have now a better idea of the important gap that exists between 
the easiness of description of the CGA and the difficulty of its analysis. We have 
only dealt here with the CGA, but several other evolutionary algorithms have 
been analyzecl theoretically (Spears et al., 1993). 

However, the current theory of the CGA provides promising, though still 
partial answers to the fundamental questions stated in the introduction to this 
paper. Therefore, theoretical analysis of the CGA may look like a puzzle with 
different pieces that do not fit well altogether yet. This theory is not yet unified, 
and this is clue to the difficulty of the analysis. There are still many things to 
discover. 

So perhaps the most fundamental question for the reader is about the use-
fulness of this theory in practical applications? The difficulty of the GA analysis 
is such that the theory is mainly dealing with the understanding, explanation 
or characterization of the GA behavior rather than with providing guidelines 
for empirical work. This will probably come later on, when the first aspects of 
the GA theory will have progressed. 

From this point of view, it is possible to sketch what makes theoretical 
studies useful for practice. Thus, such studies should be: 

• realistic: this involves probably dynamic versus static fitness, since dy-
namic fitness is the relevant fitness in a GA run. It should also involve all
aspects of the GA, and not simply the operators alone, or the selection
scheme alone, etc.
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• realizable: this involves probably a sample of points rather than the whole
search space. It involves also reasonable computational costs for modeling
the GA.

• relevant: it should help practitioners to get the most from GAs for solving
their current problems.
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