
C o n t r o l a n d C y b e r n e t i c s

vol. 2 6 (1997) No. 3

S c h e m a t a a n d d e c e p t i o n i n b i n a r y g e n e t i c a l g o r i t h m s :
a t u t o r i a l

by

G . Venturini* S . Rochet** M . Slimane*

* Laboratoire d'Informatique, E3i, Universite de Tours,
64, Avenue Jean Portalis, 37913 Tours, France,

e-mail: venturini,slimane@univ-tours.fr

** Neurinfo and Universite d'Aix Marseille, Europarc Bat C,
Technopole de Chateau Gombert, 13453 Marseille, France,

e-mail: rochet@gyptis.univ-mrs.fr

A b s t r a c t : In this paper, we present a survey of the theory con-
cerning the canonical genetic algorithm (CGA). We first describe
this algorithm and show that several questions should be answered
about it in order to understand precisely its behavior: how does
the CGA explore its search space, how does it converge, how diffi-
cult is the function it optimizes? We present the answers which are
provided by the CGA theory. For the first question, this consists
in the classical schema analysis, with the fundamental theorem, the
implicit parallelism and the k-armed bandit analogy. For the sec-
ond question, we describe several convergence theorems. Finally, to
answer the last question, we review the work on GA-easy and GA-
hard functions, which includes general theorems, deception theory,
measures of function difficulty like epistasis measures, and we relate
these definitions to other search methods.

Keywords : canonical genetic algoritm, schema analysis, con-
vergence, deception, GA-easy, GA-hard

1 . I n t r o d u c t i o n

1.1. T h e optimization problem

Genetic algorithms (GAs) (Holland, 1975, De Jong, 1975; 1988) are now much
more popular than a few years ago, and especially so from the applications point
of view. In many domains, GAs represent an important alternative to gradient
or heuristic search, for instance, and positive results obtained in practice are
mainly responsible for their success. However, theoretical analysis of GAs is the

3 4 0 G. VENTURINI, S. ROCHET, M. SLIMANE

fundamental point to be explored if one wants to analyze, explain and forecast
the behavior of GAs. Thus, this paper does not emphasize at all the practical
applications of GAs, but rather aims at giving some insight about the theoretical
analysis of GAs.

We will assume that the problem P to be solved has been formalized as
an optimization problem. This optimization problem consists in finding in a
search space S a point s* that maximizes a function f. We will assume that the
solution space S i s a binary search space, i.e. S = {O, 1 } 1 , where l is a constant
denoting the number of bits used to encode the solutions to problem P.

Many methods can be used for solving this optimization problem. Some of
them can be called "direct" methods and compute s* provided that useful infor-
mation is available about f. For instance, if it is known that f (s) = - s 2 + 2 s - 1 ,
then it is possible to compute s* directly. When less information is available
about f, such direct methods cannot be applied. In this case, the optimization
methods must enumerate points in the search space S. Such enumeration can
be deterministic or probabilistic. Deterministic enumerative methods always
enumerate the same points in S when the initial point is the same. This is the
case for instance of a standard gradient search. Probabilistic methods may not
follow the same path in S for a given initial point. GAs belong to this second
category of methods.

1.2. The canonical GA

A simple genetic algorithm, referred to as the canonical GA (CGA) in the
following, considers that a binary string s E S i s the genotype of an individual.
One bit at a given location in s can be viewed as a gene. The CGA processes a
population of such individuals and applies to them the search operators called
genetic operators that modify the genes. The function f is viewed as the fitness
function of an individual and represents its ability to survive in the environment.
The CGA simulates the natural selection and gives an opportunity to the fittest
individuals to reproduce in order to possibly improve the fitness of the generated
offspring. The CGA uses the following principles:

1. Generate randomly and Evaluate an initial population P(O) of n individ-
uals,
t +----- 0,

2. Generate P (t + 1)
(a) Select n individuals from P(t) to form a population P s (t) with the fol-

lowing probability distribution: 1:/s E P(t), P s elect (s) = I: f(s) f(s ') '
s1 EP(t)

(b) Recombine individuals of P s (t) into a population Pr(t) with the one
point crossover operator. Pairs of individuals are considered, and the
crossover is applied to one pair with a probability Pcr o s s ·

(c) Mutate individuals of Pr (t) to form P (t + 1) by modifying bits in the
individuals with a probability Pm u t ,

Schemata and deception in binary genetic algorithms: a tutorial 341

3. Evaluate the individuals in P (t + 1),
4. t f - - t + 1,
5. Go to 2 or Stop.
This algorithm is a parallel one, even if you implement it on a sequential

computer. If you consider that the population is a vector of n variables, then the
variables at generation t + 1 evolve in parallel and according to the variables at
generation t. Truly sequential versions of the CGA exist where only one variable
changes at each generation. These are the so-called steady state GAs such as
the Genitor (Whitley, 1989). Parallel models have also been designed for coarse
or fine grained parallelization (Whitley and Starkweather, 1990, Spiessens and
Manderick, 1991, Muhlenbein, 1991). GAs may also use various representations
and operators. However, most of the theoretical studies concern the CGA, so
this paper concentrates on this simple algorithm.

The initial population P(0) is generated randomly by choosing n points in S
with a uniform distribution (step 1 in the previous algorithm). Using P(0) and
genetic operators, the CGA will generate the population P(l). More generally,
the CGA generates population P (t + 1) from P(t): the search for new solutions
is guided by the previously explored solutions.

The first intermediary population P8(t) is selected (step 2a) by perform-
ing n sampling with replacement from P(t) with the probability distribution
mentioned previously: an individual s is selected with probability P s e l e c t (s) =

f (s)

L s1
E P (t) f(s').

The second intermediary population Pr(t) is computed by recombining pairs
of individuals of P8 (t) with the crossover operator (step 2b). One way to select
which individuals of P8(t) will recombine, is to scan the population P s (t) and
select an individual for recombination with a probability Pcr os s · Selected indi-
viduals can be considered by pairs in the order of their selection, for instance.
For a given pair of individuals, the one point crossover operator selects randomly
and uniformly a cutting point between 2 and l, and exchanges between the two
individuals the two sub-strings delimited by the cutting point. The offspring
generated this way will replace their parents in the population, transforming
P s (t) into Pr(t).

The final population P(t+l) is computed by applying the mutation operator
to the population Pr (t) (step 2c). This operator considers the whole population
of binary strings as a single string, and modifies every bit of this string with a
probability Pmu t •

Several stopping criteria can be used (step 5). For instance, the CGA may
stop when the quality of the best individual is above a given threshold, or when
a given number of generations have been performed, or when the search does
not improve any more.

In this paper, we will consider an example of a simple function, called the
Onemax function (Ackley, 1987; Syswerda, 1989). This function simply sums
the bits in a given binary string. For instance with l = 6 bits, f (000000) equals

342 G. VENTURINI, S. ROCHET, M. SLIMANE

0, !(000011) equals 2 and !(111111) equals 6. This function has only one
optimum which in this example is the s t r i n g s * = 111111.

1.3. Fundamental questions about the CGA

Several fundamental questions are raised about the CGA, but the CGA algo-
rithmic description does not provide an explicit and direct answer to them. For
instance, one may ask:

• How does the CGA explore S? The CGA uses its population of points to
guide the search. This strategy works in a more global way than other enu-
merative methods like simulated annealing, for instance. The earlier work
on the CGA has concerned the characterization of this strategy (Holland,
1975; Goldberg, 1989a) by using schema analysis as described in Section 2.

• What about convergence? Another point that one should consider about
search methods is the stopping criterion, and more precisely, under which
conditions does the method stops, and what kind of solution s you get
when it stops. For instance, a gradient search usually stops when the
derivatives of f equal 0. When f is unimodal, the output solution is s*.
GAs do not guarantee in practice that you will get the optimum. Section 3
presents several convergence theorems about GAs.

• How to characterize the difficulty of f? When comparing enumerative
search methods, one should consider the assumptions about f under which
one method is likely to work well. Such assumptions are known for in-
stance for a gradient search. One could be tempted to say that GAs
make less assumptions about f than other methods. It is true that GAs
can deal for instance with noisy, multimodal (De Jong, 1975; Goldberg
and Richardson, 1987; Mahfoud, 1995), or time dependent (Cobb and
Grcfenstette, 1993) functions. However, it is also true that GAs do make
assumptions about f, but these assumptions are not yet well understood,
and arc different from the traditional ones. This is precisely one aim of
the GA theory of deceptiveness. An introduction to this part of theory is
presented in Section 4.

The remaining of this paper is organized as follows. Section 2 desr;ribes
the basic schema analysis, which includes the schema theorem, the implicit
parallelism, and the two-armed bandit analogy. Section 3 gives some examP.les
of convergence theorems about GAs. Section 4 describes how the difficulty of a
problem can be characterized from the GA point of view. This concerns mainly
the deceptive problems, GA-easy and GA-hard functions.

Schemata and deception in binary genetic algorithms: a tutorial

s

.. ,
i········· .. ····················· .. ·················"··i

I :i [;; : J : , l '.'.
H1 !"

.............
;· -

...............
,

: , , .. , , , , , :

343

Figure 1. The CGA processes points in S (s 1 to s5) but also regions of S (H1
to H4).

2. S c h e m a analysis

2.1. Basic concepts

2.1.1. Schema: a region and a building block

A schema H is a string of symbols of length l, the same length as the binary
strings in S , but over the alphabet of 3 symbols {O, 1, * }. "O" and "1" are used
to represent fixed bits in the schema. "*" is a wildcard symbol that replaces
either a "O" or a " l " . For instance, with l = 6, the following schema:

H1 = 111 * **

represents the region in S that contains all strings that start with "111" and
that have any other bits in the remaining positions. The following schema:

H2 = 1 * * * *O

represents the region in S where all strings start with 1 and end with 0.
A schema thus can be viewed as a region in S, or a set of strings, or a

hyperplane of S or also a search direction in S. However, a schema does not
only formalize the notion of region, it also formalizes the notion of a building
block. For instance, the two schemata O * * * ** and * * * * *1 represent two
blocks of one bit each. Such blocks are useful to explain the CGA behavior. For
instance, the CGA may combine these two blocks to produce a third schema
o * * * * 1 .

344 G. VENTURINI, S, ROCHET, M. SLIMANE

Evaluation Schemata

* * * * * l

Population

101001, 3

100111, 4

011011, 4
1 0 * * * *

-...... , __ ,,_ 001011, 3

001110, 3
"·•--·-:: ... -•-· * * * * l * ----·-...

Figure 2. Strings in the population may belong to several schemata. One
schema may be represented by several strings in the population. We have repre-
sented the evaluation of binary strings that would be obtained with the Onemax
function.

2.1.2. Order and defining length of a schema

The order of a schema H, denoted by o(H), is the number of fixed bits in H,
like for instance:

o(H1) = o (l l l * **) = 3, o(H2) = o(l * * * *0) = 2

The number of strings in H equals r 2o (H).
The defining length of a schema H, denoted by 8(H), is the difference be-

tween the position of the last and the first fixed bits in H, like for instance:

2.1.3. Schemata and the population of binary strings

As explained before, by processing strings the CGA also processes schemata. In
fact, binary strings can be related to the schemata they belong to, as shown in
Fig. 2. Several strings may belong to the same schema. Also, several schemata
may have one or several strings in common.

For a given population of strings, one can define the set of all schemata
that contain at least one string of the population. When the population is very
diverse, this set may contain many schemata. However, as will be shown in the
section 2.4 on implicit parallelism, not all such defined schemata are usefully
processed by the CGA, mainly because the sampling of strings is generally not
uniform and not large enough.

Schemata and deception in binary genetic algorithms: a tutorial

2.1.4. Static and dynamic schema fitness

345

In a general way, the fitness of a schema H i s the mean fitness of binary strings
that belong to H. More precisely, one may consider either the set of all strings
that belong to H irrespective of the strings that are in the population, or only
the strings in the population that belong to H. In the first case, the fitness of H
does not depend on the population, but only on the fitness landscape of f, and
is therefore called the static fitness. It is constant for a given fitness function f,
and equals:

1
f(H) = IHI L f(s)

s E H
In the second case, the fitness of a schema H depends on the fitness landscape

but also on the current population of binary strings, and is therefore called the
dynamic or observed fitness. It may change over time depending on how the
CGA samples strings in S, and equals:

1
f(H, t) = IH n P(t)I L f(s)

s EHnP (t)

Static fitness will be used in the section on deception. It has the advantage
of facilitating the analysis of the CGA, but it does not consider its dynamic
behavior. Dynamic fitness will be used in the fundamental theorem in the next
section but is much more difficult to analyze than static fitness.

2.2. The fundamental theorem

2.2.1. Notations

The discussion of this theorem is detailed in Goldberg (1989a), and is performed
in three steps, where each step takes into account the selection alone, the selec-
tion and the crossover operator, and finally the selection, crossover and mutation
simultaneously. We present here this discussion. The following notations are
used:

• m(H, t) = IHnP(t)I denotes the number of strings in the population P(t)
at generation t that belong to schema H. In the following, these strings
will be said to "represent" H.

• f(t) = ¼ I:: s E P (t) f(s), denotes the mean fitness of strings in the popula-
tion at generation t.

For a given schema H, let us try to express E(m(H, t+ 1)), the average number
of strings that represent H i n the next generation, as a function of m(H, t).

2.2.2. Selection only

Firstly, let us consider the CGA without crossover or mutation. In this simpli-
fied algorithm, only the selection operator is used. It selects n strings in P(t)

346 G. VENTURINI, S. R.OCHET, M. SLIMANE

with the probabilities I: f(s)
f(s')

described previously. Let us suppose that
s1 EP(t)

m(H, t) = k and let s1, . . . , si, ... , Sk denote all the strings in P(t) that belong
to H. After selection which selects randomly n strings in P(t), each string Si
will be represented on the average ni times in P(t + 1) with:

ni = n
L s ' EP(t) f(s ')

In P(t + 1), there will thus be E(m(H, t + 1)) = n1 + ... + ni + ... + nk strings
that belong to H. This gives:

E(m(H, t + 1)) = n f(s1) + ... + f sk)
L s 'EP(t) f (s)

The above equation can be rewritten using the two following equalities:

and:

n 1
L s 'EP(t) f (3') f(t)

f(s1) + ... + f(sk) = kf(H, t) = m(H, t)f(H, t)

This results in the fundamental theorem limited to the selection only:

()) () f(H,t) E(m H,t+ 1 = m H,t - - - -
f (t)

This equation states that schemata which have a dynamic fitness above the
average fitness of the strings in the population will be given on the average
more strings in the next population. Furthermore, if one assumes that 1t %')t) is
a constant denoted by c, then the increase or decrease of m(H, t) is exponential
(i.e. m(H, t) = et). This property will be important when describing the k-
armed bandit problem. Of course, c is unlikely to be constant all the time.

2.2.3. Selection and crossover

Let us consider now the influence of crossover. Once selection has been per-
formed, an intermediary population P8(t) is created. Each strings in P8(t) has
a probability of Pcross to be involved in a crossover. Let us consider a given
schema H and one string s in P8(t) that belongs to H. Let us suppose that s
has been selected for crossover, and let s' denote the second string involved in
the crossover. We remind the reader that the offspring generated by crossover
replace their parents in the population.

The probability that s still belongs to H after crossover depends on the
cutting point that has been chosen and on the two parents s and s'. When the
cutting point is between two bits of H, then H i s unlikely to survive i n s and will

Schemata and deception in binary genetic algorithms: a tutorial 347

be disrupted, unless the two parents belong to H. For instance, let us consider
the schema H = l * * * 0* and the two strings s = 101000 and s' = 010011. If
the crossover between s and s' takes place between the two bits of H, i.e. after
position 1, 2, 3 or 4, then H will not survive in s. If crossover takes place after
position 5, then H will survive in s. Also, i f s ' has a "0" in position 5, then H
will always survive in s.

The probability Pcv.t (H) that the cutting point takes place between two bits
of a schema H depends on the defining length o(H) of H a n d is equal to:

o(H)
Pcu t (H) =

l _ l

i.e., the number of cutting points that disrupt H divided_ by the total number
of cutting points on strings of length l. As mentioned in the previous example,
the probability that H does not survive in s is, however, smaller than Pcu t (H)
because the two parents may be equal, for instance, or may both belong to H.
So the probability that H survives in s after crossover is thus:

Ps u r 11i11e(H) 2 1 - Pcros s Pcu t (H)

which can be rewritten as:

o(H)
Ps u r vive(H) 2 1 - Pc r oss l _ l

This probability must be related now to the previous equality between
m(H, t) and E(m(H, t + 1)):

f (H , t)
E(m(H , t + 1)) = m(H , t) - - -

f (t)

Taking into account the influence of crossover, this equality becomes:

E(m(H , t + 1)) = m(H , t) f H , t)
Ps u r v ive(H)

f (t)

Using the previous minoration of Ps vr vive(H), this results in the fundamental
theorem limited to selection and crossover:

f (H , t) o(H)
E(m(H , t + 1)) 2 m(H , t) - - - [1 - Pcr os s -l -]

f(t) , - 1

Selection and crossover increase the number of representing strings of schemata
with fitness above the average and whose defined bits are compact, i.e. close to
each other in the binary string representation.

348 G. VENTURINI, S. ROCHET, M. SLIMANE

2.2.4. Selection, crossover and mutation

Let us consider now the effect of mutation. This operator modifies a bit with
a probability Pm ,tt · A string s will still belong to a schema H after mutation
as soon as no mutation takes place in s on the defined bits of H. The number
of defined bits of H has been defined previously as the order o(H) of H. The
probability that no defined bits of H are altered by mutation is thus equal to:

(1 - Pm ut)o (H)

For instance, for H = l * * * 0* and Pm nt = 0.01, this probability is equal to
(0.99) 2 ':::::'. 0.98. This schema will survive a mutation with a higher probability
than the schema 10 * * * 0* for instance.

If one considers that Pm ut < < l , then this probability can be approximated
by 1 - Pm ,,.to(H). Taking into account crossover and mutation, the probability
that H survive application of these two operators is such that:

Ps ur uiue(H) 2 (1 - Pc r o s s : ;)()
' - - v - - ' m utation influ.en ce

crossover influence

If one assumes that the cross product, i.e. Pcr o s s [z l) Pm u.to(H), is small, then
this expression can be simplified into:

Ps ur vive(H) 2 1 - Pcr o s s : i - Pm uto(H)

The fundamental theorem can now be rewritten in its final form:

f (H, t) o(H) E(rn(H, t + 1)) 2 m(H, t) - - - - [1 - Pcro s s -
z

- - Pm uto(H)] f (t) , - 1

This theorem states that a schema will be given an increasing number of repre-
senting strings in P(t) when:

• its fitness is above the average, and
• it is short, and
• it is compact,

2.2.5. Discussion of the fundamental theorem

This theorem gives some insight about how the CGA behaves but has, however,
several limitations. For instance, it only describes the mean behavior of the
CGA: standard deviations may have an important role to play, especially in the
way the CGA concentrates in a given area of the search space. This point is
discussed for instance in Radcliffe and Surry (1994) (see section 4.3.3 in this pa-
per). Also, the fundamental theorem does not tell anything about reaching the
optimum, neither in term of convergence time nor in term of quality of the best

Schemata and deception in binary genetic algorithms: a tutorial 349

string obtained (see section 3). It does not tell which encoding would be the best
one for solving the problem. This can be seen by considering that there exists
Ml different binary encodings of a space of size M, that all verify the theorem,
and it would be surprising that all give the same results in practice. Finally, the
role of genetic operators is not really taken into account as it should: on one
hand genetic operators of crossover and mutation are considered as bad pertur-
bations because their effects must be bounded in order to prove the theorem,
but on the other hand, the recombination of building blocks through crossover
and the necessary pertubations of mutatio are claimed to be the basis of GAs
success.

Thus, this theorem is more useful from the point of view of adaptive systems
than from the point of view of optimization.

2.3. Implicit parallelism

2.3.1. Intuitive view

Now that we know which schemata are favored by the CGA, an important issue
is to know how many schemata are processed by the CGA at the same time.
This number of schemata can be approximated by n3 , where n is the number of
strings in the population (Goldberg, 1989a). The number of schemata processed
by the CGA is thus much higher than the number of strings themselves.

2.3.2. Principle

This demonstration concerning implicit parallelism is detailed in Goldberg
(1989a). Let us denote by n s the number of schemata or search directions
processed by the CGA. To evaluate the value of n s for a population of n strings
with l bits, one may consider the set of all possible schemata. First, from that
set one should remove the schemata that do not resist well crossover and mu-
tation. So we only consider the schemata that have a probability to survive
the genetic operators of at least Ps • According to the probabilities of survival
computed in the previous section, such schemata must have a defining length
strictly smaller than ls = (1 - Ps)(l - 1) + 1.

The number of schemata of the length smaller than ls that a string of length
l belongs to is 21, - 2 (l - ls + 1). As there are n strings in the population, the
number of schemata usefully processed in a population of size n is:

- 2(z.,-z) (l l + 1)'Tl,S - 'TI, ' - 'S

However, some low order schema have been counted several times because they
are common to several strings. So finally, only the schemata with an order
greater than ½-are considered. In addition, one assumes that the population
has a size n = 2 ' f in order to count each schema once on the average. So the

350

estimation of n8 now becomes:

n3 (l - l s + l)
ns 2 4

which amounts to:

G. VENTURINI, S. ROCHET, M. SLIMANE

One should notice that this demonstration has been extended to population
of size n = 2 k l where k is a positive parameter (Bertoni and Dorigo, 1993).
The authors are also able to compute a lower bound on the average number
of schemata that will be present in a uniformly distributed population for all
k > 0. This lower bound is optimum when k 2: 1.

2.3.3. Discussion on implicit parallelism

This optimistic result is tempered however by several authors (Baker and Grefen-
stette, 1989; Grefenstette, 1991). Such a parallelism is possible only when the
population is large enough and spread uniformly over {O, 1 } 1 . Those conditions
are met at the beginning of the search, just after the random initialization, but
after a few generations, the population has already converged and contains less
schemata. This is true for Golberg's discussion on implicit parallelism but also
for Bertoni and Dorigo's paper. Goldberg has already identified this problem
and proposes a solution he called "messy GAs" (Goldberg et al., 1991). These
new algorithms exploit directly the recombination of building blocks but the
cost is as of now prohibitive even though a fast version of this algorithm has
been developed (Goldberg et al., 1993; Kargupta, 1995).

2.4. The k-armed bandit analogy

2.4.1. Intuitive view

The point studied here is about how the CGA explores or exploits schemata,
a problem known as the exploration versus exploitation dilemma. Exploration
consists in testing new regions in S and is necessary to get away from local
optima, it is more likely to be unsuccessful. Exploitation consists in concen-
trating the search effort in the promising regions already visited. It is necessary
to do this once the right region has been found. But if the region is not really
the best one, then exploitation may lead the search to a local optimum. Both
actions are necessary but they work in opposite directions. Finding the right
balance between exploration and exploitation is to resolve the exploration versus
exploitation dilemma.

This dilemma can be formalized by considering bandit machines traditionally
used in decision theory. The arms of the machine represent areas, or more
precisely schemata, as represented in Fig. 3. The CGA has to select whether
it explores new schemata with unknown fitness, or whether it concentrates on

Schemata and deception in binary genetic algorithms: a tutorial 351

□□ □
<::.::.., _ _ _ _,7

Figure 3. The k-armed bandit analogy: the CGA plays with a k-armed bandit
machine where arms represent schemata. A trial of a given arm represent an
additional string sampled in this schema.

existing schemata with relatively high fitness. Exploration is important in order
to avoid local minima. Exploitation is important in order to converge to a good
region. The answer provided by Holland on a two-armed bandit machine is that
the optimal strategy is to allocate an exponentially increasing number of trials
to the observed best arm. This is precisely what the CGA does, as shown in
Section 2.2.2. It increases exponentially the number of strings that belong to
schemata with more than average fitness.

2.4.2. Principle

Holland's demonstration is based on a two-armed bandit machine as repre-
sented in Fig. 4. When activated, one arm of the machine generates a payoff
that is computed according to a probability distribution. The payoff associated
to A1 (respectively A2) is generated according to a probability distribution of
mean µ1 (resp. µ2) and standard deviation a1 (resp. ir2). These two distribu-
tions are supposed to be overlapping and are such that µ1 > µ2. One should
assume that (µ1, a1) and (µ2,a2) are known values but one does not know to
which arm they correspond. Thus, it is not possible to decide definitely that
one arm is better than the other in a fixed amount of trials. There will always
be a small probability of error.

The aim is to find a strategy that minimizes the losses when playing N trials
on this machine. After N trials, one of the two arms will have received on the
average more payoff than the other. This arm is named the observed best arm,
but it may not correspond necessarily to the real best arm (µ1 , a 1) because of
sampling errors. The other arm is named the observed worst arm. n denotes the
number of trials allocated to the observed worst arm, and N - n thus represents
the number of trials allocated to the observed best arm.

The first part of Holland demonstration consists in showing that there is an

352 G. VENTURINI, S. ROCHET, M. SLIMANE

□□ □
,_,> , ____ _,,,,--

Figure 4. The two-armed bandit machine used in Holland's demonstration.

optimal value of n, denoted by n*, which minimizes the losses in N trials. Two
sources of losses exist in this problem. The first one is due to allocating n trials
to the observed worst arm when this arm is really the worst one (A2) . This is
the correct behavior: the observed best arm is really the best arm A1 , and the
observed worst arm is A2, These n trials are, however, necessary because the
worst arm must be sampled anyway in order to determine what payoff it brings.
The second source of loss is due to allocating N - n trials to the best observed
arm when this arm is in fact the worst arm (A2) . In this case, sampling errors
have been such that A1 has been worse on the average than A2, while µ1 > µ 2.
These two sources of loss are weighted by their probability of occurrence which
depends on n. Holland demonstrates that the optimal value of n* is such that
the number of trials allocated to the observed best arm (N-n*) is an exponential
of the number of trials allocated to the observed worst arm (n*).

However, this strategy is not useful in practice, because in the demonstration
it is assumed that one knows which arm is the observed best arm even before
you start playing. · This strategy would thus require an oracle that would tell
which arm will be the observed best one, and this is not realizable in practice.
So, the second step of Holland's demonstration is to show that there exists a re-
alizable strategy that asymptotically approximates the optimal but unrealizable
strategy. This strategy can be stated as follows: (1) compute the value of n*,
(2) allocate n* trials to each arm (i.e. a total of 2n* trials), and (3) allocate the
remaining trials (N - 2n*) to the observed best arm in the previous step (2).

Once these theoretical points are established, they can be related to schemata.
The previous exponential ratio is used as a guideline for designing good strate-
gies. When several schemata are in competition, a strategy that is the closest to
the optimal but urirealizable one is to allocate an exponential number of trials to

Schemata and deception in binary genetic algorithms: a tutorial 353

the observed best schemata with respect to the others. From one generation to
the other, is has been shown that the number of strings in a schema increases ex-
ponentially when this schema has a fitness above the average (see Section 2.2.2).
This is precisely the behavior suggested by Holland's demonstration.

In the second version of his book (Holland, 1992), Holland provides a differ-
ent version of this demonstration.

2.4.3. Discussion on the bandit analogy

The optimal strategy is hence the one applied by the CGA. One should no-
tice that this strategy docs not imply that the CGA will reach the optimum
(De Jong, 1992): the CGA will only look for an optimal strategy for allocating
trials.

This analogy also has limitations. The way the CGA solves competitions
between schemata is not as simple as in the bandit machine. For instance,
the schemata usefully processed may vary dynamically during the search. In
practice, this strategy implies a too fast convergence, usually towards a local
optimum that contains some building blocks. The sampling errors related to
the small size of the population compared to 21 , create this early convergence
and reinforce the genetic drift phenomenon (Goldberg and Segrest, 1987): when
two chromosomes have very close fitness but are very different f rom each other
in the bit string space, the stochastic behavior of selection will make the CGA
converge only towards one of those two strings. This implies a loss of diversity
in the population that is not taken into account in the determination of the
optimal strategy.

2.5. Other work on schema analysis

Schema analysis is the basis for analyzing the CGA and is used in many theoret-
ical works as can be seen in the remainder of this paper. Hence, the correspond-
ing list of references would be too long and too general. However, concerning the
fundamental theorem and other results presented in this section, an important
part of the other work deals with the generalization to non-binary represen-
tations. This may concern alphabets with higher cardinality (Antonisse, 1989;
Radcliffe, 1991; Radcliffe and Surry, 1994), set representations (Radcliffe, 1992),
sequence representations (Fox and McMahon, 1991) or real-coded representa-
tions (Wright, 1991; Eshelman and Schaffer, 1992). All these representations
are usually more efficient than binary ones, and it is important to generalize the
theory ofthe binary CGA to other GAs.

3 Convergence theorems
Several standard methods in optimization are such that when they stop, the
output solution is the optimum. This is the case for instance for branch and

354 G. VENTURINI, S. ROCHET, M. SLIMANE

bound algorithms. The CGA does not provide such information. However,
several theorems characterize how the convergence of the CGA takes place.

3.1. Convergence without mutation

This first theorem described in Ankenbrandt (1991), states that the CGA with-
out mutation will converge to a uniform population in a given time. This popu-
lation contains only one individual. However, this theorem does not tell whether
this individual is the optimum or not.

Let us consider a population of randomly generated strings. The "fitness
ratio" r is defined as follows: for a given position i in the string (i E [LZ]), let
ri denote the ratio of the mean fitness of strings in a population with a " l " at
position i over the mean fitness of strings with a "O" at this position. That is:

f(*1 .. *i-1 l i *i+1 .. *z, t)
ri =

f(*1 .. *i-1 Qi *i+l .. *z, t)
Here, dynamic fitness is used and is considered at time t = 0. One may always
assume that the binary encoding is such that ri l . Let r denote the smallest
ratio ri among r 1, . . . ,r1 • If no mutation is used in the CGA, the number of
generations needed to obtain a uniform population is, in the average case, in
the order of:

Order(!) nln(n)
ln(r)

where n is the population size and where Order(!) is the time complexity of the
algorithm that computes the fitness function f . The complexity of f is taken
into account. This theorem does not take into account the mutation operator
because this operator makes the population diverge. This theorem can also be
generalized for non binary strings.

3.2. Syntactic convergence

This theorem takes also into account only crossover and selection (Louis and
Rawlins, 1992). It uses the mean of Hamming distances among the strings of
the population as a measure of convergence of the population. Initially, this
measure equals ½ on the average for a randomly generated population. When
the population has converged to a single individual, then this measure equals 0.
The authors show that standard crossover operators usually do not change the
average Hamming distance of the strings. Mutation maintains a minimal value
of this Hamming distance by changing randomly some bits and thus introducing
different bit values at the same location. Selection makes this distance converge.
The authors give an upper bound on the probability that all bits have converged
at generation t. This upper bound equals:

[l _ 6po(l - Po) (l _ /]z
n n

Schemata and deception in binary genetic algorithms: a tutorial 355

where p0 is the initial proportion of 0's in the population (which equals ½ in a
randomly generated population).

3.3. Markov chain analysis of the CGA convergence

The CGA can be modeled by a Markov chain (Goldberg and Segrest, 1987;
Eiben et al., 1991, a survey in De Jong et al., 1994), because this mathematical
model allows to formalize stochastic processes where the probability that the
process goes into a particular state depends only on the previous state. GAs are
such that the new population is constructed only from the previous one. Markov
chains are a very powerful tool to analyze their behavior. Finite chains can be
specified using a transition matrix M = [pi.ikJEG that contains the probability
that the system jumps from state i to state j, where 8 denotes the set of all
possible states of the system. For the CGA, 8 represents the set of all possible
populations, and Pi.i the probability that population i becomes population j
after one generation. Some theoretical works use the properties of this matrix
M to obtain information about the behavior of the stochastic process.

In Goldberg and Segrest (1987), the authors studied the genetic drift, com-
puting the expected time of convergence and comparing it for different models.
This unexpected convergence, even without any selection pressure implies a loss
of diversity in the population and some techniques have been created against
it. For example, the creation of niches (subpopulations that evolve in parallel,
De Jong, 1975; Goldberg and Richardson, 1987; Mahfoud, 1995; Jelasity and
Dombi, 1995), is a good way to preserve the population from an early conver-
gence. This technique has been studied also with Markov chains (Horn, 1993),
and it has been proven that the expected time of convergence computed from M
increases with the creation of niches, because this preserves the diversity in the
population. Another way to slow convergence is to temper the selection pressure,
using another selection operator. In Mahfoud (1993) the tournament selection
is shown to reduce the convergence speed compared to the classic roulette wheel
selection.

Another analysis using the transition matrix of a Markov chain model of
GAs can be found in Rudolph (1994). The study of the limit distribution shows
that elitism (keeping the best individual found so far through generations) is
necessary to ensure convergence: the probability that the global optimum is
in the population goes to 1. Along the same lines, the eigenvalues of M can
be analyzed (Suzuki, 1993) and it can be shown that the probability that the
populatation contains the optimum is bounded by 1-O(I>.(), l>-1 < 1, where t is
the number of the generation and where>. is a specific eigenvalue of M. Suzuki
also indicates how to choose the mutation rate in order to minimize >..

Results presented here come from the study of the properties of the transition
matrix. In each model, simplifications were needed to extract usable results.
This kind of approach allows mainly to compare the convergence speed of models
of GAs using different operators, and using a simplified model of the fitness

356 G. VENTURINI, S. ROCHET, M. SLIMANE

function. Another way to exploit the power of Markov chains model is presented
now. Davis and Principe (1991) and Cerf (1995) are using similar principles
to prove the convergence of GAs: modeling this algorithm with a simulated-
annealing-like theory. The paper of Cerf goes further into the model: the CGA
is viewed as a simple determinist selection process, perturbed by a Brownian
movement that goes to zero with time. The theory of Freidlin and Wentzell
(Freidlin and Wentzell, 1984) is then used to prove that, if the population is
large enough and if the intensity of perturbations goes to zero slowly enough,
the algorithm converges to the global optimum. This requires, among other
things, that the mutation rate be decreasing in conjunction with higher and
higher selective pressure. Several questions arise from the results obtained here.
For instance, crossover is apprently not essential to obtain convergence but
has a role to play in the speed of convergence. Also, in practice, conditions
that ensure convergence are impossible to establish (the same problem as for
simulated annealing), but this model gives a very good insight of the CGA
convergence.

Finally, using infinite population model one can extract information about
the role of crossover and mutation dispersion (Qi and Palmieri, 1994a; Qi and
Palmieri, 1994b; Srinivas and Patnaik, 1993). It can be also proven that using
this model in the specific case of a quadratic fitness function, the density of
population is concentrating on the optimum. Some necessary conditions on the
increase of mean evaluation are given, too.

All these models bring an insight into the way GAs converge, or diverge.
But this depends strongly on the chosen definition of convergence, and also on
the fitness landscape imposed by the encoding, the genetic operators as well as
the fitness function itself. Even in practice, stopping criteria are very difficult to
define in a satisfactory way. Models presented here allow to better understand
the needed conditions to ensure convergence, and are promising. However, those
conditions are as yet generally never realizable in practice, except for very simple
evaluation functions that do not really need a GA to be optimized.

4. GA-easy or GA-hard?

4.1. General theorems

Some general theorems concern the optimization problem that the CGA is trying
to solve. A summary of the consequences of the two general theorems presented
in the following is that it is essential to characterize which functions are easy
or hard to optimize with the CGA (as with any other search algorithm). This
helps in understanding how the CGA really works, and it helps the engineer or
user to aecide which search algorithm will best fit his problem.

Schemata and deception in binary genetic algorithms: a tutorial 357

4.1.1. An NP-hard problem

The optimization problem described in the introduction of this paper can be
formalized into the DGA-max problem where f takes as input a binary string
of length l and can give a positive or negative integer as output. f also has to
be computed in polynomial time. DGA-max consists in finding s* as defined
previously. It is shown in Hart and Belew (1991), that DGA-Max is an NP-
hard problem. This means that there are no polynomial time algorithms, either
deterministic or probabilistic, that can find the maximum of f without any
further hypothesis on f, unless P=NP. In particular, this is the case for the CGA.
Furthermore, Hart and Belew show that no polynomial time algorithms, either
deterministic or probabilistic, can approximate the maximum f(s*) within a
given percentage of approximation.

The conclusion of this theorem is that it is useless to claim that an algorithm
performs well on arbitrary functions, unless it explores the whole search space.
This suggests, as will be highlighted by the next theorem, that characterizing
which functions fit the CGA is very important.

4.1.2. No free lunch theorems

We will not go into philosophical discussion about the no free lunch theorems
concerning search (Wolpert and Macready, 1995). The optimization problem the
CGA deals with is also similar to the one studied by Wolpert and Macready.
The no free lunch theorem mainly states that the performances of two search
algorithms are equivalent when averaged on the set of all possible functions f,
under a distribution P(f) of functions which is uniform. We will not discuss
here whether this theorem exactly applies to the CGA or not. However, it is
interesting to notice that the consequence of this theorem is in a way similar
to the one of the previous theorem: it is essential to know which distribution
of functions P(f) one is dealing with in a given problem, and it is essential to
know how fit the CGA is with respect to these functions (Radcliffe and Surry,
1995).

4.2. Deception

We recall here several definitions and concepts introduced in Goldberg (1987;
1989a), Whitley (1991), Liepins and Vose (1991), Das and Whitley (1991).

4.2.1. Intuitive view

The behavior of the CGA can be modeled in a simple way as follows: initially, in
a randomly generated population, many schemata of low order are represented
in the population. Then, the order of frequently sampled schemata· increases.
For instance, if sampling errors arc negligible and if for instance f (0 * * . . . * *) >
f (l * * . . . * *), then the CGA will concentrate in the first region O * * · . . * *

358 G. VENTURINI, S. ROCHET, M. SLIMANE

rather than 1 * * . . . * *· These two schemata can be viewed as competing
schemata, because each of them would like to drive the search in the opposite
direction of the other: the first schema assigns a O to the first location, and the
second schema assigns a 1 to the same location. This intuitive notion has been
formalized as a competition between schemata that have the same locations
instanciated with different bits. The winner of such a competition, that is the
schema with the highest fitness among the competing schemata, will drive the
search of the CGA in its direction. This seems reasonable if the winning schema
contains the optimum: the CGA is driven towards a region of S that contains
s*. However, if the winning schema does not contains*, then the CGA is driven
away from the optimum. In this case, f is said to be deceptive. The work on
deception is centered around this notion, as described in the following.

4.2.2. Competitions between schemata

Let us define first more precisely the notion of competition between schemata. A
primary competition of order N is defined by comparing the fitness of schemata
of order N which have * characters at the same locations and different instan-
ciated bits. For instance, one may define a competition c1 of order 1 between
the 2 following schemata:

Hi= 1 * * * **

One may also define a competition c2 of order 2 between the 4 following schemata:

H'J;. = 0 * 0 * **

HJ= 0 * 1 * **

HJ= 1 * 0 * **

Hi,= 1 * 1 * **

The schema that wins a competition c is the schema which has the highest static
fitness among the schemata involved in c. For instance, if the two schemata
involved in c1 are such that f(Hf) > f(Hi), which would be the case for the
Onemax function, then Hf is the winner of competition c1.

A competition CK of order K is relevant to a competition CN of order N
with N < K if every schema of cK is included in a schema of cN. For instance,
the previous competition c2 is relevant to c1 . The schemata HJ, and H'#, are
included in H.f, and HJ and Hi are included in Hf. The following competition
c ; of order 2:

H ' = *00 * *

Schemata and deception in binary genetic algorithms: a tutorial

H ' = *01 * *

H ' = * 1 0 * *

H ' = *11 * *

359

is not relevant to c1 , because, for instance, H ' is neither included in H l nor in
Hf,

4.2.3. Deceptive functions

A function is (partially) deceptive of order N when there exists at least one
competition CN of order N such that the winner of this competition has different
bits than some winners of competitions of order less than N relevant to cN, More
precisely, it is not necessary for all competitions that are relevant to CN to be
misleading. Only one "path" of nested competitions relevant to cN has to be
misleading. Also, one will be especially interested in the case where cN leads to
f's optimum s* while the misleading competitions do not. For instance, let us
consider the two previous competitions c1 and c2 on again. Let us suppose that
the fitness function f is such that:

f (Hi) > f (H'f)

Then the winner of c1 is the schema 0 * * * **· It assigns a "O'' to the first
location. Furthermore, if the function f is such that:

f(Hi) > f(HJ,), f(H?), f(H?)

then the winner of c2 is the schema 1 * 1 * ** which assigns a "1" to the first
location. The two competitions give two contradictory search directions. If the
optimum s* really belonged to H#, = 1 * 1 * **, then solving the first order com-
petition c1 would lead away from that optimum. c1 is a deceptive competition.

However, in partially deceptive functions, there may exist competitions which
are not deceptive. For instance, another competition di_ of order 1, like for in-
stance:

H'i = * * * * *0

H ' = * * * * *1

may not be deceptive and may lead to the an optimum. In a partially deceptive
function, there may exist a "path" of nested relevant competitions from order
1 to l which are not deceptive and which lead to the optimum.

' '
I .

360 G. VENTURINI, S. ROCHET, M. SLIMANE

4.2.4. Non deceptive functions

A function is non deceptive if all competitions of any order N lead to the
optimum s*. In those competitions, all schemata that win contain s*. The
Onemax function is a standard example of a non deceptive function. Let us
consider Onemax for l = 3:

f(000) = 0, f (001) = 1, f (010) = 1, f (011) = 2

f(lO0) = 1, f(101) = 2, f (l l 0) = 2, f (l l l) = 3
One can check that any competition is won by a schema that contains the
optimum s* = 111. For instance, the following inequalities involving first order
competitions hold:

f (l * *) > f (0 * *)

f(*1*) > f(*0*)

f (* * l) > f (* * 0)

Any schema that contains s* = 111 wins the competition it is involved in. In
the same way, the following inequalities hold for the second order:

f(11*) > f(00*), !(01*), f(lO*)

f (l * 1) > f(0 * 0), f (0 * 1), f (l * 0)

f (* l l) > f(*00), f(*Ol), f(*lO)

Finally, the order 3 competition is won by the optimum:

f (l l l) > f(000), f (001), . . . f (100), f(lOl)

4.2.5. Fully deceptive functions

A function is fully deceptive of order N whenever there exists a competition CN
of order N where all competitions relevant to CN of order less than N lead to a
deceptive attractor H-, which is different from the winning schema H* of cN.
It is possible to show that this deceptive attractor is the binary complement
of H*, and that it is not necessarily a local optimum in the Hamming space
(Whitley, 1991).

Let us detail a fully deceptive function of order 3 described in Whitley and
Starkweather (1990). So let us suppose that l = 3 and that the global maximum
of the function is s* = 111. This implies that the deceptive attractor is s - = 000.
All competitions of order 1 must be won by the schemata which contain 000.
The following inequalities must hold:

Schemata and deception in binary genetic algorithms: a tutorial

f(*0*) > f (* h)

f (* * 0) > f (* * l)

361

In the same way, all competitions of order 2 must be won by the schemata which
contain s - , which implies:

f(00*) > f (0 h) , f(lO*), f (l h)

f(0 * 0) > f(0 * 1), f (l * 0), f (l * 1)

f(*00) > f(*01), f (* l0) , f (* l l)

Finally, only the third order competition is won by s*:

f (l l l) > f(000), f(001), . . . f(lO0), f(lOl)
An example of such a function is:

f (000) = 28, f (001) = 26, !(010) = 22, f (011) = 0

f (100) = 14, f (101) = 0, f (110) = 0, f (111) = 30

4.2.6. The CGA and deception

As mentioned in the introduction of this section, many low order schemata are
present in the first generation of individuals. The CGA solves competitions
between schemata because it selects more often individuals with high fitness. If
a competition is misleading, the CGA will get away from the optimum.

One would naturally be tempted to say that non deceptive functions are
the GA-easy functions and that the fully deceptive functions are the GA-hard
functions. However, this definition would be partially false, as explained in
Grefenstette (1992). For instance, a "needle in a haystack" function with only
one point with a fitness higher than O would be GA-easy: any schema containing
s* would win the competition it is involved in because the other schema would
have a fitness of 0. This function, while being non deceptive, is hard to optimize
for any robust search method including the CGA. Another example of non
deceptive functions which gives troubles to the CGA are the royal road functions
(Mitchell et al., 1991; Forrest and Mitchell, 1992; Mitchell and Holland, 1993).
The current studies of deception fail to catch the dynamic properties of the CGA
as they only consider static fitness, for instance, instead of dynamic fitness.

Experimental results on fully deceptive functions show that the CGA or other
genetic algorithms usually do not find the optimum (Das and Whitley, 1991; see
Grefenstette, 1992, for an exception). Experiments with non deceptive functions
generally show that the CGA is able to find the optimum (Wilson, 1991). So
deception has certainly got something to do with the CGA.

Several authors have proposed specific solutions for dealing with non decep-
tive and fully deceptive functions (Grefenstette, 1992; Louis and Rawlins, 1992).
These solutions involve generally the use also of the complement of the strings,
as will be explained in the following in the section on global search techniques.

362 G. VENTURINI, S. ROCHET, M. SLIMANE

4.3. Measures of function difficulty

The difficulty of functions can also be characterized by several measures that
can be computed on a sample of strings.

4.3.1. Epistasis measures

An epistasis measure is useful to determine the correlations that may exist
between binary genes (Davidor, 1991; Manela and Campbell, 1992; Reeves and
Wright, 1995) or real-coded genes (Rochet et al., 1996). If no such correlations
exist, then the influence of each bit value on the fitness function is independent
of the values of the other bits. With this kind of measures, it is possible to
define classes of functions which can be easy or hard for the CGA. Let us give
an example of how a simple measure of epistasis can be computed with l = 3.

The aim of this measure is thus to tell how independent the bits are in a
representation with respect to the fitness function f. For instance, if you can
compute f(000) with knowledge of only f (0 * *), f(*0*) and f (* * 0), then the
epistasis for these three bits will be low. In that case, you can determine f(s)
only by computing the interest of each bit of s independently from each other.
This estimated value of f(s), denoted by A(s), is equal to (for s = 000):

A(000) = (f(0 * *) - f (* * *)) + (f(*0*) - f (* * *))+

(!(* * 0) - f (* * *)) + f (* * *)

For instance, f (0 * *) - f (* * *) measures the interest of strings starting with
0 relative to all strings. If we consider the Onemax function for l = 3, then
f (0 * *) = f (*0*) = f (* * 0) = 1 and f (* * *) = 1.5. Thus, A(000) equals:

(1 - 1.5) + (1 - 1.5) + (1 - 1.5) + 1.5 = 0
In this case, the value o f f (000) is correctly predicted, and the epistasis of the
string 000, measured by f(000) - A(000), equals 0.

One may compute for every strings from 000 to 111 the value of A(s). Then
an epistasis measure can be defined by computing the variance of the variable
(f (s) -A(s)) for every strings. For Onemax on three bits, this measure equals 0.
For the fully deceptive function of order 3 shown in Table 1 the epistasis measure
equals 0.92.

In these two examples, we have implicitly assumed that the static fitness
of schemata was used. The epistasis measure can be computed also only on
the basis of the strings which are present in the population, i.e. with dynamic
fitness of schemata. Davidor provides useful insight about the effect of sampling
errors, which can change greatly the observed epistasis.

Functions with 0 static epistasis measure are non deceptive functions, and
are always computed as linear weighted sum of the bits. Functions with high
epistasis are generally deceptive, but counterexamples can be found where a

Schemata and deception in binary genetic algorithms: a tutorial 363

s J(s) A(s)
000 0.2 1.45
001 1.4 1.525
010 1.6 1.525
011 2.9 1.6
100 3 1.275
101 1 1.35
110 0.8 1.35
111 0.6 1.425

Table l .

highly epistatic function is easy for the CGA (Manela and Campbell, 1992). If
one increases the order of schemata which are used to compute the epistasis,
then the epistasis may decrease, and this is the case for the function described
in Manela and Campbell (1992) where a second order epistasis measure equals
0 (Rochet, 1996). This measure used second order schemata to compute A(s).

4.3.2. Fitness/distance correlation

The fitness/distance correlation measures the correlation that may exist between
the fitness value of a string s and its Hamming distance to the optimum s* or
the closest optimum when this function is multimodal (Jones and Forrest, 1995).
This correlation is computed with a sample of points in S but requires that the
global optima of f be known: one must collect n strings s 1, . . . , Sn and evaluate
their fitness f (s1) , . . . , f (sn) as well as their distance to the closest global
optimum d1, . . . , dn . Then, the fitness/distance correlation is the correlation of
the couple (f (s i), di). When this correlation is close to -1, then the closer you get
to one global optimums* the higher the fitness is. This is the case, for instance,
of the Onemax function. This moans that f is easy to optimize by a GA, and
most certainly easy for other methods, too. When this correlation is close to 1,
the fitness function f is misleading, which is the case of fully deceptive functions,
for instance. When this correlation is close to 0, no indication is really given
about f ' s difficulty: f can be a "needle in a haystack" function, or a function
with many high peaks located all over the search space.

4.3.3. Variance of schemata

Another way to obtain information about the expected behavior of the CGA is
to consider the variance of fitness of schemata (Radcliffe, 1992). The schema
theorem underlines the importance of building block recombination. Schemata
with more than average dynamic evaluation, short length and small order are

364 G. VENTURINI, S. ROCHET, M. SLIMANE

given an increasing number of copies in the subsequent generations. Depending
on the binary strings of a schema that are present in a population, this schema
will receive a growing or a decreasing number of strings. However, if the fitness
values of strings that belong to a schema are very different from each other, i.e.
have a high variance, then the CGA will consider this schema as a good or a
bad one depending on the strings that are present in the current population.
On the other hand, if the fitness values of strings that belong to this schema
are close to each other, i.e. have low variance, then whichever strings are in the
current population, the schema will be correctly evaluated.

As a consequence, studying the fitness variance in each schema can give an
indication on the CGA behavior. In Radcliffe and Surry (1994) this tool is used
to compare the performance of many encoding schemes on ordered chromosomes
for the travelling salesman problem, with very good predictive results that allow
to choose the right encoding for the problem to be solved.

4.4. Relations to other search methods

The definitions of easy and hard functions introduced in the previous sections
can be related to each other. In addition, several authors have compared those
definitions to other search methods like global search or hill climbing. It is
interesting to notice, for instance, that non deceptive functions can be hard for
other methods, or that fully deceptive functions can be easy for some other
methods.

4.4.1. Global search

Non deceptive functions can be optimized by a simple and straightforward
method introduced in Das and Whitley (1991). Since non deceptive functions
are such that the optimum always wins the competition it is involved in, then
this optimum can be reliably found by looking only at the first order schemata,
which is a much simpler method than the CGA. This method is a global search
algorithm which uses the following principle:

1. Generate a set S 1 of strings in {O, 1 } 1 ,

2. Evaluate each string of S 1 ,

3. Compute the fitness of all the first order schemata,
4. Generate the output st by solving the competitions of order 1:

• the first bit of st equals 1 if f(l * . . . *) > f(0 * . . . *) ,else 0,
• the second bit of st equals 1 if /(*1 * . . . *) > f(*0 * . . . *) ,else 0,
• and so on until the last bit,

More precisely, a statistical test, e.g. the T-test, can be used to determine
whether more points should be generated or not. If the competitions are solved
independently, then this algorithm can only deal with non deceptive functions.
It may solve the partially deceptive functions in the following way: solve first

Schemata and deception in binary genetic algorithms: a tutorial 365

the first order competition with the greatest fitness ratio to determine one bit
of s1, and apply the same algorithm recursively to the remaining bits to be
instanciated.

This global search can be simply extended to solve also fully deceptive func-
tions (Venturini, 1995). The extended algorithm outputs the best of the two
strings sj' and sj', where sj' denotes the binary complement of s1. Fully deceptive
functions are such that competitions of low order arc won by schemata which
contain the binary complement of the optimum. For such a function, solving the
first order competitions leads to s*. This simple extension of the global search
can deal efficiently with non deceptive or fully deceptive functions.

One should not conclude from the above that such algorithms are useful in
practice. The set of functions that they can solved efficiently is reduced, and is
certainly different from the set of real world problems. Functions can be found
which drive these algorithms directly to the worst string of S. However, it is
clear that non deceptive or fully deceptive functions are not difficult problems
for global search methods.

4.4.2. Hill climbing

We consider a simple hill climbing algorithm which can be stated as follows:
1. Choose randomly a starting point s,
2. Generate the points s1, . . . , si in the neighbourhood of s by changing one

bit of s,
3. Let Si, i E [1, l], be the best point in the neighbourhood of s,
4. If f (s ;) > f (s) then s +- si and go to 2, else Stop.

This simple algorithm uses a Hamming distance to determine the neighbourhood
of s. For instance with l = 3, the neighbours of 000 are 001, 010 and 100. In
steps 3 and 4, the algorithm usually chooses the steepest ascent. We consider
that a function f is easy for such a hill climber when it can get to the optimum
whatever the starting point is. Otherwise, f is hard for hill climbing.

Wilson has shown that non deceptive functions arc not necessarily easy for
hill climbers (Wilson, 1991) by giving a non deceptive function which contains
local optima in the Hamming space. This function can be generalized to any
dimension l = 3k.

Whitley has shown that fully deceptive functions necessarily contain a local
optimum in the Hamming space (Whitley, 1991). These functions are thus hard
for hill climbers.

One should not conclude from this that hill climbers should not be used in
cooperation with evolutionary techniques (Mulhenbein, 1992). B y "hill climbing
hard", one usually means that there may exist at least one local optimum in
the Hamming space. However there may exist another path that leads to the
optimum without getting trapped in a local optimum.

366 G. VENTURINI, S. ROCHET, M. SLIMANE

f(s)

- r e : , . . s

000 011 100 111

Figure 5. A fully deceptive function of order 3 which is gradient-easy.

4.4.3. Gradient search

Let us consider that the binary space is used to encode a parameter x. A
gradient search could thus be used to optimize f. Here is an example of a
unimodal, and thus easy for gradient search, but fully deceptive function for
l = 3 (Venturini, 1995). The function's values are the following:

f (000) = 0.2, f (001) = 1.4, f (010) = 1.6, f (011) = 2.9

f (100) = 3, !(101) = 1, f (110) = 0.8, !(111) = 0.6

The optimum of this function is s* = 100, and the deceptive attractor is thus
s - = 011. This function is represented in Fig. 5 and it is obviously unimodal
and easy for a gradient search.

4.5. Other work on GA-easy and GA-hard functions

Several other works have not been presented here. Among them, let us cite first
the earlier work on deception which concerned the Walsh transform (Bethke,
1980; Goldberg, 1989b; 1989c; Bridges and Goldberg, 1991) or hyperplane trans-
form (Holland, 1989).

Muhlenbein has computed for simple evolutionary algorithms the expected
time to convergence to the optimum for three different functions (Muhlenbein,
1992). It is also possible to characterize the CGA behavior for several functions
using entropy measures (Davidor and Ben-Kiki, 1992).

The study of royal road functions is also interesting as showing that a non
deceptive function can be difficult to optimize because of the hitch-hiking phe-
nomenon (Mitchell et al., 1991; Forrest and Mitchell, 1992; Mitchell and Hol-
land, 1993). In these functions, chromosomes that contain good building blocks

Schemata and deception in binary genetic algorithms: a tutorial 367

are reproduced with the bad schemata they may contain too. This phenomenon,
called hitch-hiking, prevents the CGA from converging even if the fitness func-
tion seems easy at a first sight. Deception can also be analyzed for a given class
of functions, like trap functions (Deb and Goldberg, 1992). For this class of
functions, the proportion of fully deceptive, non deceptive or partially deceptive
functions can be computed.

Messy GAs have also been designed to solve some of the problems inherent to
the CGA and deception (Goldberg et al., 1991; Goldberg et al., 1993; Kargupta,
1995). One should also cite the works on the correlation of operators and on
virtual GAs (Manderick et al., 1991; Grefenstette, 1995), which also characterize
the difficulty of a function with respect to the genetic operators.

Finally, the CGA is not initially an optimization algorithm, and this explains
some of its limitation from the optimization point of view (De Jong, 1992). As
can be seen, it would be hazardous to fix definitely the definition of GA-easy and
GA-hard functions, because additional understanding of the CGA is necessary.

5. Conclusion

In this paper, we have reviewed several important aspects of the theory of the
simple GA. Many different mathematical tools are involved and many aspects of
the CGA are concerned. They all contribute to the understanding of the CGA.
The reader may have now a better idea of the important gap that exists between
the easiness of description of the CGA and the difficulty of its analysis. We have
only dealt here with the CGA, but several other evolutionary algorithms have
been analyzecl theoretically (Spears et al., 1993).

However, the current theory of the CGA provides promising, though still
partial answers to the fundamental questions stated in the introduction to this
paper. Therefore, theoretical analysis of the CGA may look like a puzzle with
different pieces that do not fit well altogether yet. This theory is not yet unified,
and this is clue to the difficulty of the analysis. There are still many things to
discover.

So perhaps the most fundamental question for the reader is about the use-
fulness of this theory in practical applications? The difficulty of the GA analysis
is such that the theory is mainly dealing with the understanding, explanation
or characterization of the GA behavior rather than with providing guidelines
for empirical work. This will probably come later on, when the first aspects of
the GA theory will have progressed.

From this point of view, it is possible to sketch what makes theoretical
studies useful for practice. Thus, such studies should be:

• realistic: this involves probably dynamic versus static fitness, since dy-
namic fitness is the relevant fitness in a GA run. It should also involve all
aspects of the GA, and not simply the operators alone, or the selection
scheme alone, etc.

368 G. VENTURINI, S. ROCHET, M. SLIMANE

• realizable: this involves probably a sample of points rather than the whole
search space. It involves also reasonable computational costs for modeling
the GA.

• relevant: it should help practitioners to get the most from GAs for solving
their current problems.

References
ACKLEY, D.H. (1987) A connectionist machine for genetic hillclimbing. Boston,

MA, Kluwer Academic.
ANKENBRANDT, C. (1991) An extension to the theory of convergence and a

proof of the time complexity of genetic algorithms. Proceedings of the
first Workshop on Foundations of Genetic Algorithms, G.J.E. Rawlins,
ed., Morgan Kaufmann, 53-58.

ANTONISSE, J . (1989) A new interpretation of schema notation that overturns
the binary encoding constraint. Proceedings of the third International
Conference on Genetic Algorithms, J.D. Schaffer, ed., Morgan Kaufmann,
86-91.

BAKER, J . and GREFENSTETTE, J . (1989) How genetic algorithms work: a
critical look at implicit parallelism. Proceedings of the third International
Conference on Genetic Algorithms, J.D. Schaffer, ed., Morgan Kaufmann,
20-27.

BETHKE, A. (1980) Genetic algorithms as function optimizers. PhD Disser-
tation, Computer and Communication Sciences, University of Michigan,
Ann Arbor.

BERTONI, A. and DORIGO, M. (1993) Implicit parallelism in genetic algo-
rithms. Artificial Intelligence, 61, 2, 307-314.

BRIDGES, C.L. and GOLDBERG, D.E. (1991) The non uniform Walsh-schema
transform. Proceedings of the first Workshop on Foundations of Genetic
Algorithms, G.J.E. Rawlins, ed., Morgan Kaufmann, 13-22.

CERF, R . (1995) An Asymptotic Theory of Genetic Algorithms. Proceedings
of Artificial Evolution 95, Alliot J.-M., Lutton E., Ronald E., Schoenauer
M. and Snyers D., eds., Lecture Notes in Computer Science 1063, Springer
Verlag, 37-53.

COBB, H.G. and GREFENSTETTE, J . J . (1993) Genetic algorithms for track-
ing changing environments. Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, S. Forrest, ed., Morgan Kaufmann, 523-530.

DAS, R . and WHITLEY, D. (1991) The only challenging problems are decep-
tive: global search by solving order-1 hyperplane, Proceedings of the Fourth
International Conference on Genetic Algorithms, R.K. Belew and L.B.
Booker, eds., Morgan Kaufmann, 166-173.

DAVIDOR, Y . (1991) Epistasis variance: a viewpoint on GA-hardness. Proceed-
ings of the .first Workshop on Foundations of Genetic Algorithms, G.J.E.
Rawlins, ed., Morgan Kaufmann, 23-35.

Schemata and deception in binary genetic algorithms: a tutorial 369

DAVID0R, Y. and BEN-KIKI, 0 . (1992) The interplay among the genetic algo-
rithm operators: information theory tools used in a holistic way. Proceed-
ing8 of the Second Conference on Parallel Problem Solving from NatV,re,
R. Manner and B. Manderick, eds., Elsevier, 75-84.

DAVIS, T.E. and PRINCIPE, J.C. (1991) A Simulated Annealing like Con-
vergence Theory for the Simple Genetic Algorithm. Proceedings of the
fo11,rth International Conference on Genetic Algorithms. R. K Belew,
L.B. Booker, ed., Morgan Kaufmann, 174-181.

DE JONG, K. (1975) A n analysis of the behavior of a class of genetic adaptive
systems. Doctoral Dissertation, University of Michigan.

DE JONG, K. (1988) Learning with genetic algorithms: an overview. Machine
Learning, 3, 121-138.

DE JONG, K. (1992) Are genetic algorithms function optimizers? Proceedings
of the Second Conference on Parallel Problem Solving from Nafore, R.
Maenner and B. Manderick, eds., Elsevier, 3-13.

DE JONG, K., SPEARS, W.M. and GORDON, D.F. (1994) Using Markov
chains to analyze GAFOs. Proceeding8 of the third Workshop on F01mda-
tions of Genetic Algorithms.

DEB, K. and GOLDBERG, D.E. (1992) Analyzing deception trap functions.
Prnceedings of the second Workshop on Fov,ndations of Genetic Algo-
rithms, D. Whitley, ed., Morgan Kaufmann, 93-108.

EIBEN, A.E., AARTS, E.H.L. and VAN HEE, K.M. (1991) Global convergen-
ce of a genetic algorithm: a Markov Chain analysis. In: H.P. Schwefel
and R. Manner, eds., Parallel Problem Solving from Nafore, L N C S 496,
Springer Vcrlag, 4-12.

ESHELMAN, L . J . and SCHAFFER, J.D. (1992) Real-coded genetic algorithms
and interval schemata. Proceedings of the second Workshop on Fov,nda-
tions of Genetic Algorithms, D. Whitley, ed., Morgan Kaufmann, 187-202.

FORREST, S. and MITCHELL, M. (1992) Relative building block fitness and
the building block hypothesis. Proceedings of the second Workshop on
Fo11,ndations of Genetic Algorithms, D. Whitley, ed., Morgan Kaufmann,
109-126.

Fox, B.R. and McMAHON, M.B. (1991) Genetic operators for sequencing
problems. Proceedings of the .first Workshop on FoV,ndations of Genetic
Algorithms, G.J.E. Rawlins, ed., Morgan Kaufmann, 284-300.

FREIDLIN, M.I. and WENTZELL, A.D. (1984) Random perforbations of dy-
namical systems. Springer-Verlag, New York.

GOLDBERG, D.E. (1987) Simple genetic algorithms and the minimal deceptive
problem. Genetic Algorithms and Sim'U,lated Annealing, L. Davis, ed.,
Morgan Kaufmann, 74-88.

GOLDBERG, D.E. and RICHARDSON, J . (1987) Genetic algorithms with shar-
ing for multimodal function optimization. Proceedings of the Second Inter-
national Conference on Genetic Algorithms, J.J. Grefenstette, ed., LEA
Pub, 41-49.

370 G. VENTURINI, S. ROCHET, M. SLIMANE

GOLDBERG, D.E. and SEGREST, P . (1987) Finite Markov Chain Analysis of
Genetic Algorithms. Proceedings of the second International Conference
on Genetic Algorithms, J . J . Grefenstette, ed., LEA Pub.

GOLDBERG, D.E. (1989A) Genetic Algorithms in Search, Optimization and
Machine Learning: Addison Wesley.

GOLDBERG, D.E. (1989B) Genetic algorithms and Walsh functions: part I, a
gentle introduction. Complex systems, 3, 129-152.

GOLDBERG, D.E. (1989c) Genetic algorithms and Walsh functions: part II,
deception and its analysis. Complex systems, 3, 153-171.

GOLDBERG, D.E. , DEB, K . and KORB, B . (1991) Don't worry, be messy. Pro-
ceedings of the Fourth International Conference on Genetic Algorithms,
R.K. Belew and L.B. Booker, eds., Morgan Kaufmann, 24-30.

GOLDBERG, D.E. , DEB, K . , KARGUPTA, H. and HARIK, G. (1993) Rapid,
Accurate Optimization of Difficult Problems Using Fast Messy Genetic
Algorithms. Proceedings of the 5th International Conference on Genetic
Algorithms. Stephanie Forrest, ed., Morgan Kaufmann, 56-64.

GREFENSTETTE, J . J . (1991) Conditions for implicit parallelism. Proceedings
of the first Workshop on Foundations of Genetic Algorithms, G.J.E. Rawl-
ins, ed., Morgan Kaufmann, 252-261.

GREFENSTETTE, J . J . (1992) Deception considered harmful. Proceedings of the
second workshop on Foundations of Genetic Algorithms, 1992, D. Whitley
(Ed), Morgan Kaufmann, 75-91.

GREFENSTETTE, J . J . (1995) Virtv.al genetic algorithms: .first resv,lts. Nayy
Center for Applied Research in Artificial Intelligence, Technical Report
AIC-95-013.

HART, W . E . and BELEW, R .K . (1991) Optimizing an arbitrary function is
hard for the genetic algorithm. Proceedings of the Fourth International
Conference on Genetic Algorithms, R.K. Belew and L.B. Booker, eds.,
Morgan Kaufmann, 190-195.

HOLLAND, J .H. (1975) Adaptation in natv,ral and artificial systems. Ann Ar-
bor: University of Michigan Press.

HOLLAND, J .H. (1989) Searching nonlinear functions for high values. Applied
Mathematics and Computation, 32, 255-274.

HOLLAND, J .H. (1992) Adaptation in natv,ral and art ficial systems: an in-
trodv.ctory analysis with applications to biology, control, and artificial in-
telligence, MIT Press.

HORN, J . (1993) Finite Markov Chain Analysis of Genetic Algorithms with
Niching. Proceedings of the 5th International Conference on Genetic Al-
gorithms. Stephanie Forrest, ed., Morgan Kaufmann, 110-117.

JELASITY, M. and DOMBI, J . (1995) GAs, a Concept on Modeling Species in
Genetic Algorithms. Proceedings of Artificial Evolution 95, Alliot J.-M.,
Lutton E., Ronald E., Schoenauer M. and Snyers D., eds., Lecture Notes
in Computer Science 1063, Springer Verlag, 69-85.

JONES, T . and FORREST, S. (1995) Fitness distance correlation as a measure

Schemata and deception in binary genetic algorithms: a tutorial 371

of problem difficulty for genetic algorithms. Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms, L.J. Eshelman, ed., Morgan
Kaufmann, 184-192.

KARGUPTA, H. (1995) Search, Polynomial complexity and the Fast Messy Ge-
netic Algorithm. PhD thesis, Dept of Computer Science, Univ. of Illinois
at Urbana Champaign.

LIEPINS, G.E. and VOSE, M.D. (1991) Deceptiveness and genetic algorithm
dynamics. Proceedings of the first Workshop on Foundations of Genetic
Algorithms, G.J.E. Rawlins, ed., 36-50.

Lours, J . L . and RAWLINS, J . E . (1992) Syntactic analysis of convergence in
genetic algorithm. Proceedings of the second workshop on Foundations of
Genetic Algorithms, D. Whitley, ed., Morgan Kaufmann, 141-151.

MAHFOUD, S.W. (1993) Finite Markov chain models of an alternative selection
strategy for the genetic algorithm. Complex Systems, 7, 2, April 1993,
155-170.

MAHFOUD, S.W. (1995) A comparison of parallel and sequential niching meth-
ods. Proceedings of the Sixth International Conference on Genetic Algo-
rithms, L.J. Eshelman, ed., Morgan Kaufmann, 136-143.

MANDERICK, B. , DE WEGER, M. and SPIESSENS, P . (1991) The genetic al-
gorithm and the structure of the fitness landscape. Proceedings of the
Fo11,rth International Conference on Genetic Algorithms, R.K. Belew and
L.B. Booker, eds., Morgan Kaufmann, 143-150.

MANELA, M. and CAMPBELL, J . A . (1992) Harmonic analysis, epistasis and
genetic algorithms. Proceedings of the Second Conference on Parallel
Problem Solving from Nafore, R. Manner and B. Manderick, eds., Elsevier,
57-64.

MITCHELL, M., FORREST, S. and HOLLAND, J .H. (1991) The royal road for
genetic algorithms: fitness landscapes and GA performance. Proceedings
of the .first European Conference on Artificial Life, F.J . Varela and P.
Bourgine, eds., MIT Press/Bradford Books, 245-254.

MITCHELL, M. and HOLLAND, H. (1993) When will a genetic algorithm out-
perform hill climbing? Proceedings of the Fifth International Conference
on Genetic Algorithms, S. Forrest, ed., Morgan Kaufmann, 647-647.

MUHLENBEIN, H. (1990) Evolution in time and space - The parallel genetic
algorithm. Proceedings of the .first Workshop on Foundations of Genetic
Algorithms, G.J.E. Rawlins, ed., Morgan Kaufmann, 316-337.

Qr, X . and PALMIERI, F . (1994A) Theoretical analysis of evolutionary algo-
rithms with an infinite population size in continuous space part I: basic
properties of selectiop and mutation. I E E E Transactions on Ne11,ral Net-
works, 5, 1, January 1994, 102-119.

Qr, X . and PALMIERI, F . (1994B) Theoretical analysis of evolutionary algo-
rithms with an infinite population size in continuous space part II: anal-
ysis of the diversification role of crossover. I E E E Transactions on Neural
Networks, 5, 1, January 1994, 120-128.

372 G. VENTURINI, S. R.OCHET, M. SLIMANE

RADCLIFFE, N.J. (1991) Equivalenceclassanalysisofgeneticalgorithms. Com-
plex Systems, 5, 2, 183-205.

RADCLIFFE, N. J . (1992) Genetic set recombination. Proceedings of the second
Workshop on FoV,ndations of Genetic Algorithms, D. Whitley, ed., Morgan
Kaufmann, 203-219.

RADCLIFFE, N.J. and SUR.RY, P.D. (1994) Fitness variance of formae and
performance prediction. Proceedings of the third Workshop on Fov,nda-
tions of Genetic Algorithms.

RADCLIFFE, N.J. and SURRY, P.D. (1995) Fundamental Limitations on Search
Algorithms: Evolutionary Computating in perspective. In: Comptder
Science Today: Recent Trends and Developements, J . van Leeuwen, ed.,
LNCS 1000, Springer Verlag, 275-291.

REEVES, C.R. and WRIGHT, C.C. (1995) Epistasis in genetic algorithms: an
experimental design perspective. Proceedings of the Sixth International
Conference on Genetic Algorithms, L.J. Eshelman, ed., Morgan Kauf-
mann, 217-224.

RoCHET, S. (1996) Epistasis in genetic algorithms revisited. To appear in
Information Sciences.

RoCHET, S., SLIMANE, M. and VENTURINI, G. (1996) Epistasis for real en-
coding in genetic algorithms. IEEE ANZIIS'96, V. L. Narasimhan and L.
C. Jain, eds., Australia, 268-271.

RUDOLPH, G. (1994) Convergence analysis of canonical genetic algorithms.
IEEE Transactions on Neural Networks, 5, 1, 96-101.

SCHAFFER, J.D., ESHELMAN, L . J . and OFFUTT, D. (1991) Spurious correla-
tion and premature convergence in genetic algorithms. Proceedings of the
first Workshop on Fo11,ndations of Genetic Algorithms, G.J.E. Rawlins,
ed., Morgan Kaufmann, 102-112.

SPEARS, W.M., DE JONG, K.A., BAECK, T., FOGEL, D.B. and DE GARIS,
H. (1993) An overview of evolutionary computation. Proceedings of the
E11,ropean Conference on Machine Learning, P. Brazdil, ed., Lecture notes
in artificial intelligence 667, Springer-Verlag, 442-459.

SPIESSENS, P. and MAND ERICK, B. (1991) A massively parallel genetic algo-
rithm implementation and first analysis. Proceedings of the Fov,rth Inter-
national Conference on Genetic Algorithms, R.K. Belew and L.B. Booker,
eels., Morgan Kaufmann, 279-286.

SRINIVAS, M. and PATNAIK, L.M. (1993) Binomially Distributed Population
for Modelling Genetic Algorithms. Proceedings of the 5th International
Conference on Genetic Algorithms, S. Forrest, ed., Morgan Kaufmann,
San Mateo, CA, 138-143.

Suzu.n, J . (1993) A Markov Chain Analysis on a Genetic Algorithm. Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, S.
Forrest, ed., Morgan Kaufmann, 146-153.

SYSWERDA, G. (1989) Uniform crossover in genetic algorithms. Proceedings of
the third International Conference on Genetic Algorithms, J.D. Schaffer,

Schemata and deception in binary genetic algorithms: a tutorial 373

ed., Morgan Kaufmann, 2-10.
VENTURINI, G. (1995) Towards a genetic theory of easy and hard functions.

Proceedings of Art ficial Evol11,tion 95, Alliot J.-M., Lutton E., Ronald E.,
Schoenauer M. and Snyers D. eds., Lecture Notes in Computer Science
1063, Springer Verlag, 54-66.

WHITLEY, D. (1989) The genitor algorithm and selective pressure: why rank-
based allocation of reproductive trials is best. Proceedings of the third
International Conference on Genetic Algorithms, J.D. Schaffer, ed., Mor-
gan Kaufmann, 116-124.

WHITLEY, D. and STARKWEATHER, T . (1990) Genitor II: a distributed ge-
netic algorithm, J. Expt. Theor. Artif. Intell., 2, 189-214.

WHITLEY, D. (1991) Fundamental principles of deception in genetic search.
Proceedings o f the .first Workshop on Fo11,ndations of Genetic Algorithms,
G.J.E. Rawlins, ed., Morgan Kaufmann, 221-241.

WILSON, S.W. (1991) GA-easy does not imply steepest-ascent optimizable.
Proceedings of the Fo11,rth International Conference on Genetic Algorithms,
R . K Belew and L.B. Booker, eds., Morgan Kaufmann, 85-89.

WOLPERT, D.H. and MACREADY, W.G. (1995) No free lv,nch theorems for
search. Technical report SFI-TR-95-02-010, The Santa Fe Institute, 1995,

WRIGHT, D, (1991) Genetic algorithms for real parameter optimization, Pro-
ceedings of the ,ti:rst Workshop on Foundations of Genetic Algorithms,
G.J.E. Rawlins, ed., Morgan Kaufmann, 205-218.

CALL FOR PAPERS & ANNOUNCEMENT

THE ELEVENTH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND

EXPERT SYSTEMS (I E A / AIE-98)

Submission Deadline: November 7, 1997

Conference Location and Date: Hotel Intur Orange Benicassim, Castel-
lon, Spain, June 1-4, 1998.
Sponsored by the International Society of Applit:d Intelligence and orga-
nized in cooperation with major international organizations, including
ACM/SIGART; AAAI; INNS; IEE; ECCAI; CSCSI; JSAI; Southwest
Texas State University; the Universitat Jaume-I de Castellon; and the
Universidad Nacional de Education a Distancia, Madrid.
Submit five copies of long papers written in English (up to 10 single-
spaced pages) by November 7, 1997, to Dr Angel P. del Pobil, Pro-
gram Co-Chair, IEA/ AIE-98 Conference, Department of Informat-
ics, Jaume-I University, Campus de Penyeta Roja, E-12071 Castellon,
Spain. Fax (+34) 64 345.848; E-mail: iea98©titan. i n f . u j i . es ; www:
h t t p : / / t i t a n . i n f . u j i . e s / I E A 9 8 /

