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Abstract: The paper is devoted to a survey of work done in
fuzzy clustering, mainly during the first decade of the 21st century,
and that with emphasis on various approaches to the problem, as well
as various formulations of the very problem. That is why not only the
classical formulations are treated, but several other problems, related
to (the use of) clustering, like feature selection, inference systems,
three-way clustering, and, on the other hand, such formulations of
clustering as the possibilistic one or the one involving intuitionistic
fuzzy sets. These are treated as the background for presentation of
some specific ideas of the main author, concerning definite heuristic
algorithms for effective solving of some of these problems.
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1. Introduction

Very soon after the inception of the fuzzy set theory at the end of the 1960s, due
to Lotfi Zadeh (Zadeh, 1965), it turned out that the notions involved might be of
practical, as well as methodological use in the area of clustering and associated
tasks of data analysis. Thus, starting with Ruspini, approaches to clustering,
based on application of the precepts of fuzzy set theory, have been develop-
ing very quickly (see, e.g., Ruspini, 1973). This was primarily due to James
Bezdek, who worked on the development of this domain for several decades, and
elaborated a complete set of approaches, which are still the basis of fuzzy-set-
theory-founded clustering algorithms. This set of approaches referred explicitly
to the k-means paradigm, introduced not so much earlier in its crisp form by
MacQueen (even though prefigured much earlier, in the middle of the 1950s, by
the Polish mathematician Hugo Steinhaus).
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The k-means type of fuzzy clustering proved to be so effective and efficient
that it led to a host of more elaborate methodologies, among which, for instance,
fuzzy-cluster-wise-modelling developed as an important branch in the domain.

In this short report we deal, however, primarily with some specialized fuzzy-
set-based clustering methods, with specialization being understood here in two
meanings: (1) the purpose of analysis is not just to produce partitions, composed
of clusters (subsets), but, say, to identify classification rules or other structures,
which may be demonstrated to have an affinity with appropriately defined clus-
ters, or to group / analyse variables from the point of view of representation of
the sample or population at hand; and (2) the methods applied do not belong to
the current mainstream of fuzzy-set-based clustering methods, still essentially
originating from the k-means motivated work of James Bezdek.

We shall be dealing in this short report, meant as an introduction to a much
wider domain, separately with different kinds of data analysis related tasks and
the methods of clustering that may be of use for these particular tasks.

2. Analysing the feature space with fuzzy clustering ap-

proaches

2.1. Introductory remarks

The reduction of dimensionality of the feature space analyzed is a very impor-
tant problem in data analysis. Feature selection is meant here as the dimen-
sionality reduction of the feature space of data that has initially contained a
high number of features (high dimensionality of the initial data space). The
purpose of the feature selection process is to choose a minimal number (subset)
of the original set of features which still contain information that is essential
for the discovering of relevant substructure(s) in the data, while reducing also
the computational complexity, implied by using a high number of features in
the source problem formulation. Feature selection has been a fertile field of re-
search, and has been under intensive development since the 1970s, the resulting
methods and algorithms mostly proving to be effective and efficient in remov-
ing irrelevant and/or redundant features, increasing the efficiency of learning
(in the case of, say, machine learning-related problems), improving the learning
performance, characterized by, for instance, predictive accuracy, and enhancing
the comprehensibility of results obtained. (It is important to note that such
methods may simplify and, indeed, make feasible, the applications of fuzzy sets
in, for instance, control, see, e.g., Kacprzyk, 1997.) Thus, many different fea-
ture selection methods have been proposed, see, for example, Blum and Langley
(1997), Kohavi and John (1997), Ghazavi and Liao (2008), or Dramiński et al.
(2011).

Fuzzy clustering methods can well be applied to solve the problem of fea-
ture selection, and indeed, they are. So, in particular, a combination of feature
selection with feature weights and semi-supervised fuzzy clustering in machine
learning was proposed by Kong and Wang (2009). On the other hand, a fuzzy
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feature selection method based on clustering was proposed by Chitsaz, Taheri,
and Katebi (2008). In the corresponding FACA-algorithm, each feature is as-
signed to different fuzzy clusters with different grades of membership. This
comes from the basic underlying idea, standard for fuzzy clustering approaches,
that each feature may belong not only to just one cluster, and it is much better
to consider an association of each feature with other features in every cluster
accounted for. Thus, precise relations between features are available during the
selection of the most relevant features, as based on the co-membership in the
obtained feature clusters.

An extension of the FACA-algorithm was then proposed in Chitsaz, Taheri,
Katebi and Jahromi (2009), these authors having introduced four different tech-
niques for implementing the stage of feature selection. In particular, for instance,
by applying the chi-square test, their approach considers the dependence of each
feature on class labels in the process of feature selection.

2.2. A heuristic approach to possibilistic clustering

The objective function based fuzzy clustering algorithms (predominantly, nat-
urally, k-means-like) are the most widely employed methods in fuzzy clustering
(see, for instance, Bezdek, Keller, Krishnapuram and Pal, 2005). There are also
some heuristic clustering algorithms, which are based on the definition of the
very concept of a cluster, and the purpose of these algorithms is to find clusters
according to how they have been defined. Such algorithms are called direct
classification (or clustering) algorithms (consult, e.g., Mandel, 1988).

An outline for a new heuristic method of fuzzy clustering was presented by
Viattchenin (2004), who has considered a basic version of a direct clustering al-
gorithm, while a version of such an algorithm, called the D-AFC(c)-algorithm,
was then presented in Viattchenin (2007). The D-AFC(c)-algorithm can be con-
sidered as a direct possibilistic clustering algorithm, as this was demonstrated
in Viattchenin (2007a). The D-AFC(c)-algorithm has been shown there to be a
basis for the family of other heuristic possibilistic clustering algorithms.

The direct heuristic possibilistic clustering algorithms, originating from the
basic idea, forwarded in Viattchenin (2004), can be divided into two types:
relational and prototype-based. In particular, the family of direct relational
heuristic possibilistic clustering algorithms includes:

• The D-AFC(c)-algorithm, which is based on the construction of an allot-
ment (i.e. assignment of objects) among an a priori given number c of
partially separate fuzzy clusters, see Viattchenin (2004);

• The D-AFC-PS(c)-algorithm, which is based on the construction of an
allotment among an a priori given number c of partially separate fuzzy
clusters in the presence of labeled objects, see Viattchenin (2007a);

• The D-PAFC-algorithm, which is based on the construction of an allot-
ment among an unknown number of at least c fully separate fuzzy clusters,
see Viattchenin (2009) for this version.

It should be noted that the D-PAFC-algorithm can be applied to solve the
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problem of informative feature selection. The corresponding method was also
proposed in Viattchenin (2009).

On the other hand, the family of direct prototype-based heuristic possibilistic
clustering algorithms, proposed by Viattchenin (2007b), includes:

• The D-AFC-TC-algorithm, which is based on the construction of an al-
lotment among an unknown number c of fully separate fuzzy clusters;

• The D-PAFC-TC-algorithm, which is based on the construction of the so-
called principal allotment among an unknown minimal number of at least
c fully separate fuzzy clusters;

• The D-AFC-TC(α)-algorithm, which is based on the construction of an
allotment among an unknown number c of fully separate fuzzy clusters
with respect to a minimal value α of the tolerance threshold.

The unique allotment among an unknown number ? of fuzzy clusters can be
selected from the set of obtained allotments depending on the adopted tolerance
threshold.

3. Fuzzy inference systems

3.1. An introduction

Fuzzy inference systems are presumably the best known and most popular appli-
cations of fuzzy logic and fuzzy sets theory. They can be employed to perform
classification tasks, process simulation and diagnosis, online decision support
and process control, just to name a few areas. So, the problem of generation of
fuzzy classification rules (to be called fuzzy rules here, for brevity) is one of the
most relevant problems in the development of fuzzy inference systems.

There are a number of approaches to learning fuzzy rules from data, they are,
for instance, based on various techniques of evolutionary or neural computing,
mostly aiming at the optimization of parameters of fuzzy rules. On the other
hand, fuzzy clustering seems to be a very appealing and useful method for
learning fuzzy rules since there is a close and canonical connection between
fuzzy clusters and fuzzy rules. The idea of deriving fuzzy classification rules
from data can be formulated as follows: the training data set is divided into
homogeneous groups and a fuzzy rule is associated with (characterizes) each
group.

Fuzzy clustering procedures are exactly pursuing this strategy: a fuzzy clus-
ter is represented by a cluster center and the membership degree of a datum with
respect to the cluster is decreasing with an increasing distance to the cluster
center. So, each fuzzy rule of a fuzzy inference system can be characterized by
a typical point and a membership function that is decreasing with an increasing
distance to the typical point.

Let us consider some methods for extracting fuzzy rules from the data using
fuzzy clustering algorithms. Some basic definitions should first be given.

Suppose that the training set contains n data pairs. Each pair is made up of
an m1-dimensional input vector and a c-dimensional output vector. We assume
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that the number of rules in the rule base of the fuzzy inference system is c. A
Mamdani type (Mamdani and Assilian, 1975) rule l within the fuzzy inference
system is written as follows:

If x̂1 is B1
l and . . . and x̂

m1 is Bm1

l then y1 is C
l
1 and . . . and yc is C

l
c, (1)

where Bt1l , t1 ∈ {1, . . . ,m1} and Cll , l ∈ {1, . . . , c} are fuzzy sets that define,
respectively, the input and output space partitioning.

A fuzzy inference system, which is described by a set of fuzzy rules of the
form (1) is a multiple input, multiple output (MIMO) system. Note that any
fuzzy rule of the form (1) can be represented by c rules of the multiple input
single output (MISO) type:

If x̂1 is B1
l and . . . and x̂

m1 is Bm1

l then y1 is C
l
1

. . .
If x̂1 is B1

l and . . . and x̂
m1 is Bm1

l then yc is C
l
c

. (2)

Let Bt1l be characterized by its membership function γBt1
l

(x̂t1 ). These mem-

bership function can be of triangular, Gaussian, trapezoidal, or of any other
suitable shape. Here, for the purpose of this report, we consider the trapezoidal
and triangular membership functions, which are of a particular relevance for the
real-life applications.

3.2. Classification rules obtained from fuzzy clustering

Fuzzy classification rules can be obtained directly from fuzzy clustering results.
In general, a fuzzy clustering algorithm aims at minimizing the objective func-
tion, following the pattern proposed by James Bezdek (Bezdek, 1981):

Q(P, T̄) =

c
∑

l=1

n
∑

i=1

υγlid(xi, τ̄
l), (3)

subject to the constraints

n
∑

i=1

υli > 1, ∀i ∈ {1, . . . , n}, (4)

and

c
∑

l=1

υli = 1, ∀l ∈ {1, . . . , c}, (5)

where X = {x1, . . . , xn} ⊆ ℜm1 is the analyzed data set, c is the number of fuzzy
clusters Al, l = 1, . . . , c, in the fuzzy c-partition P , υli ∈ [0, 1] is the membership
degree of object xi with respect to the fuzzy cluster Al, τ̄ l ⊆ ℜm1 is a prototype
for a fuzzy cluster Al, d(xi, τ̄

l) is the distance between the prototype τ̄ l and
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the object xi, and, finally, the parameter γ > 1 is an index of fuzziness. It is
the selection of the concrete value of γ that determines whether the clusters
in the partition tend to be more crisp or fuzzy. (As the notion of distance is
omnipresent in these considerations, although they do not in any way depend
upon any particular distance measure definition, let us only indicate the source
for a variety of such definitions, namely Walesiak, 2002.)

The membership degrees can be calculated as following

υli =
1

c
∑

a=1

(

d(xi,τ̄ l)
d(xi,τ̄a)

)1/(γ−1)
, (6)

and the prototypes can be obtained from the formula

τ̄ l =

n
∑

i=1

υγli · xi

n
∑

i=1

υγli

. (7)

3.3. The possibilistic approach

The expressions (6) and (7) constitute, clearly, the necessary conditions for (3)
to have a local minimum. However, condition (5) is, in general terms, hard to
satisfy, mainly for reasons, related to numerical practicability, but also presents
a constraint that is not always straightforwardly interpretable (is it certain that
an object, or an observation, has to be precisely “distributed” among clusters,
so that the sum of assignments is equal 1?). So, a possibilistic approach to
clustering was proposed by Krishnapuram and Keller (1993). In particular,
according to this possibilistic clustering approach, the objective function (3) is
replaced by

Q(Υ, T̄) =
c

∑

l=1

n
∑

i=1

(

µψlid(xi, τ̄
l) + ηl(1 − µli)

ψ
)

, (8)

subject to a much more relaxed constraint, which, in fact corresponds to a
possibilistic partition

c
∑

l=1

µli > 1, ∀l ∈ {1, . . . , c}, (9)

where c is the number of fuzzy clusters Al, l = 1, . . . , c, in the possibilistic
partition Υ, µli ∈ [0, 1] is the set of values of possibilistic memberships of an i-th
object, which are referred to here as typicality degrees, τ̄ l ⊆ ℜm1 is a prototype
for the fuzzy cluster Al, d(xi, τ̄

l) is the distance between the prototype τ̄ l and
the object xi, and the parameter ψ > 1 has the interpretation analogous to that
of the index of fuzziness.
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The degrees of typicality can be calculated as follows

µli =
1

1 +
(

d(xi, τ̄ l)
/

ηl
) 1/(ψ−1)

, (10)

and the parameters ηl, l = 1, . . . , c, are derived by

ηl =
K
n
∑

i=1

υψli

n
∑

i=1

υψlid(xi, τ̄
l), (11)

where K = 1.
The principal idea of extracting fuzzy classification rules based on fuzzy

clustering is as follows (see Höppner, Klawonn, Kruse and Runkler, 1999): each
fuzzy cluster is assumed to be assigned to one class for classification and the
membership degrees of the data to the clusters determine the degrees to which
they can be classified as members of the corresponding classes. Thereby, with a
fuzzy cluster that is assigned to a certain class, we can associate a linguistic rule,
as this is often done with expressions, in which fuzzy components are used. The
fuzzy cluster is projected into each single dimension leading to a fuzzy set being
defined on the real line. From the mathematical point of view, the membership
degree of the value x̂t1 with respect to the t1-th projection γBt1

l

(x̂t1 ) of the fuzzy

cluster Al, l ∈ {1, . . . , c} is the supremum over the membership degrees of all
vectors with x̂t1 as t1-th component to the fuzzy cluster, i.e.

γ
B

t1
l

(x̂t1) = sup

{

1

/

c
∑

a=1

(

d(xi, τ̄
l)/d(xi, τ̄

a)
)1/(γ−1)

|xi

}

(12)

where

xi = (x̂1i , . . . , x̂
t1−1
i , x̂t1i , x̂

t1+1
i , . . . , x̂m1

i ) ∈ ℜm1 ,

or

γBt1
l

(x̂t1) = sup
{

1 / 1 +
(

d(xi, τ̄
l)/ηl

)1/(γ−1)
|xi

}

(13)

where

xi = (x̂1i , . . . , x̂
t1−1
i , x̂t1i , x̂

t1+1
i , . . . , x̂m1

i ) ∈ ℜm1 ,

with the latter expression being valid for the possibilistic case. An approxima-
tion of the fuzzy set by projecting only the data set and computing the convex
hull of this projected fuzzy set, or approximating it by a trapezoidal or triangu-
lar membership function, is used for the rules obtained, conform to the reported
proposal from Höppner, Klawonn, Kruse and Runkler (1999).

As mentioned already before, the objective function based fuzzy clustering
algorithms are the most widespread methods in fuzzy clustering. Regarding
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those – the vast majority – based on the k-means principle, it must be ad-
mitted that they are highly effective and flexible, as well. However, they may
be sensitive to the selection of an initial partition, and the fuzzy rules sought
may depend on the selection of the concrete fuzzy clustering method employed.
In particular, the well-known and effective algorithms, the GG (Gath-Geva)
algorithm and the GK (Gustafsson-Kessel) algorithm of fuzzy clustering are
recommended in Höppner, Klawonn, Kruse and Runkler (1999) for generation
of fuzzy rules. This is quite natural, since the algorithms mentioned are oriented
at identification of (fuzzy) cluster-wise models, and, in a general perspective,
rules can be certainly interpreted as models. All the algorithms of possibilistic
clustering are also the objective functions based algorithms.

On the other hand, there is the already mentioned heuristic approach to
possibilistic clustering, which does not refer to an explicit objective function,
outlined by Viattchenin (2004), and then further developed in following publi-
cations. Moreover, a method for an automatic generation of fuzzy inference sys-
tems using heuristic possibilistic clustering was outlined in Viattchenin (2010a).
This method was thereafter extended for the case of the interval-valued data in
Viattchenin (2010b).

4. Types of clustering structures and three-way data

4.1. Some introductory remarks

Most of the fuzzy clustering techniques are actually designed for handling crisp
data, in a way augmented with their class membership degrees. However, the
data can be (or, in fact, very often simply are) uncertain themselves. The initial
data to be processed by clustering algorithms may be characterized by different
types of uncertainty. For example, a brief review of uncertain data clustering
methods is given in Viattchenin (2009). An interval uncertainty of the initial
data can be considered to be the basic type of uncertainty in clustering.

The interval valued data can be considered as a particular case of the three-
way data, in the sense of Sato and Sato (1994). The clustering problem for
the case of the three-way data can be formulated as follows (see Sato and
Sato, 1994, and Viattchenin, 2009). Let X = {x1, ..., xn} be a set of ob-
jects, where objects are indexed by i, i = 1, . . . , n; each object xi being de-
scribed by m1 attributes, indexed by t1, t1 = 1, . . . ,m1, so that an object xi
can be represented by a vector xi = (x1i , . . . , x

t1
i , . . . , x

m1

i ); each attribute x̂t1 ,
t1 = 1, . . . ,m1, can be characterized by m2 values of binary attributes, so that

x̂t1i = (x̂
t1(1)
i , . . . , x̂

t1(t2)
i , . . . , x̂

t1(m2)
i ). For these notations, the three-way data

can be represented as follows:

X̂n×m1×m2 = [x̂
t1(t2)
i ], i = 1, . . . , n, t1 = 1, . . . ,m1, t2 = 1, . . . ,m2. (14)

In other words, the three-way data are the data, which are observed by the values
of m1 attributes with respect to n objects for m2 situations. The purpose of
the clustering is to classify the set X = {x1, ..., xn} into c fuzzy clusters and the
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number of clusters c can be unknown, because it can depend on the concrete
analyzed situation.

The initial data matrix (14) can be represented as a set of m2 matrices
X̂t2
n×m1

= [x̂t1i ], i = 1, . . . , n, t1 = 1, . . . ,m1, corresponding to the “situations”,
and a “plausible” number c of fuzzy clusters can be different for each matrix
X̂t2
n×m1

= [x̂t1i ], t2 ∈ {1, . . . ,m2}. The structure of clustering of the data set
depends clearly on the type of the initial data.

Three types of the here pertinent clustering structures were distinguished
in the paper of Viattchenin (2011). First, if the number of clusters c is con-
stant for each matrix X̂t2

n×m1
= [x̂t1i ], t2 ∈ {1, . . . ,m2}, and the coordinates of

prototypes {τ̄1, . . . , τ̄?} of the clusters {A1, . . . , A?} are constant, then the clus-
tering structure is called stable. Second, if the current number of clusters c is
constant for each matrix X̂t2

n×m1
= [x̂t1i ], t2 ∈ {1, . . . ,m2}, and the coordinates

of prototypes of the clusters are not constant, then the clustering structure is
called quasi-stable. Third, if the number of clusters c is different for the matrices
X̂t2
n×m1

= [x̂t1i ], t2 = 1, . . . ,m2, then the clustering structure is called unstable.

Identification of the most plausible (“optimal”) fuzzy clusters in the clus-
tering structure sought for the uncertain data set X can be considered as a
final goal of classification and the construction of the set of values of the most
possible number of fuzzy clusters with their corresponding possibility degrees is
an important step in this direction. The method of discovering a unique clus-
tering structure, which corresponds to the most natural allocation of objects
among fuzzy clusters for the uncertain data set was proposed by Viattchenin
(2011). Following this, the idea of a novel approach to extracting fuzzy rules
from the three-way data was presented by the same author. In this short in-
troductory report we only concentrate on the basic essentials of the approach
and the background methodological prerequisites. This outline is therefore now
presented.

4.2. A novel approach to extracting fuzzy rules from the three-way

data

Here we first discuss some basic concepts of the heuristic approach to possibilis-
tic clustering. Then, we shall go over to the remarks on the preprocessing of
the three-way data. Following this, we shall present a technique of extracting
fuzzy rules from the three-way data.

4.2.1. Basic concepts of the heuristic method of possibilistic clustering

Heuristic algorithms of fuzzy clustering, such as considered, in particular, in
Viattchenin (2004), are characterized by a low level of complexity and a high
level of essential clarity. Some heuristic clustering algorithms are based on the
definition of the concept of a cluster and the aim of these algorithms is to detect
cluster that conform to a given definition. According to Mandel (1988), such
algorithms can be called algorithms of direct classification or direct clustering
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algorithms.
As mentioned, an outline for a new heuristic method of fuzzy clustering was

presented by Viattchenin (2004), where a basic version of a direct clustering
algorithm was described A version of the algorithm that is called the D-AFC(c)-
algorithm was given in Viattchenin (2007a). The D-AFC(c)-algorithm can be
considered to constitute the direct algorithm of possibilistic clustering. This
fact was demonstrated in Viattchenin (2007b). The D-AFC(c)-algorithm is
the basis of an entire family of heuristic algorithms of possibilistic clustering.
The heuristic approach to possibilistic clustering was further developed in other
publications.

The direct heuristic algorithms of possibilistic clustering can be divided into
two types: relational versus prototype-based. In particular, the family of direct
relational heuristic algorithms of possibilistic clustering includes the variants
that have been characterized in the present paper in Section 2.2., so that we
shall not repeat this here.

On the other hand, the family of direct prototype-based clustering proce-
dures, proposed in Viattchenin (2007b) includes:

• The D-AFC-TC-algorithm working via the construction of an allotment
among an unknown number c of fully separate fuzzy clusters;

• The D-PAFC-TC-algorithm working via the construction of a principal
allotment among an unknown minimal number of at least c fully separate
fuzzy clusters;

• The D-AFC-TC(α)-algorithm working via the construction of an allotment
among an unknown number c of fully separate fuzzy clusters with respect
to the minimal value α of a tolerance threshold.

Let us remind now some basic concepts of the heuristic method of possibilistic
clustering in question. Thus, it is the concept of a fuzzy tolerance that is the
basis for the concept of a fuzzy α-cluster. That is why the definition of a fuzzy
tolerance must be considered in the first place.

Let X = {x1, ..., xn} be an initial set of elements and T : X ×X → [0, 1] be
some binary fuzzy relation on X with µT (xi, xj) ∈ [0, 1], ∀xi, xj ∈ X , being its
membership function. A fuzzy tolerance is a fuzzy binary intransitive relation
that is symmetric

µT (xi, xj) = µT (xj , xi), ∀xi, xj ∈ X, (15)

and reflexive

µT (xi, xi) = 1, ∀xi ∈ X. (16)

The notions of powerful fuzzy tolerance, feeble fuzzy tolerance and strict feeble
fuzzy tolerance were considered in Viattchenin (2004) as well. In this context,
the classical fuzzy tolerance in the sense of (15)–(16) has been referred to as the
usual fuzzy tolerance in Viattchenin (2004). However, the essence of the method
considered here does not depend on any particular kind of fuzzy tolerance, and
is described for any fuzzy tolerance T .
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Let α be an α-level value of the fuzzy tolerance T , α ∈ (0, 1]. Columns or
rows of the fuzzy tolerance matrix are fuzzy sets {A1, ..., An} on X . Let Al,
l ∈ {1, . . . , n}, be a fuzzy set on X with µAl(xi) ∈ [0, 1], ∀xi ∈ X , being its
membership function.

The α-level fuzzy set Al(α) = { (xi, µAl(xi))|µAl(xi) ≥ α, xi ∈ X} is a fuzzy

α-cluster. So, Al(α) ⊆ Al, α ∈ (0, 1], Al ∈ {A1, . . . , An}, and µAl(xi) is the

membership degree of the element xi ∈ X for some fuzzy α-cluster Al(α), α ∈

(0, 1], l ∈ {1, . . . , n}. This membership degree will be denoted µli for brevity
in further considerations. A value of α is the tolerance threshold of fuzzy α-
cluster elements. The membership degree of an element xi ∈ X for some fuzzy
α-cluster Al(α), α ∈ (0, 1], l ∈ {1, . . . , n}, can be defined as

µli =

{

µAl(xi), xi ∈ Alα
0, otherwise

, (17)

where the α-level of a fuzzy set Al ,Alα = {xi ∈ X |µAl(xi) ≥ α}, α ∈ (0, 1], is
the support of the fuzzy α-cluster Al(α).

The value of the membership function of each element of the fuzzy α-cluster
is the degree of similarity of the object to some typical object of the fuzzy
α-cluster. Moreover, the membership degree defines a possibility distribution
function for some fuzzy α-cluster Al(α), α ∈ (0, 1], and this possibility distribu-

tion function is here denoted πl(xi).
Let {A1

(α), ..., A
n
(α)} be the set of fuzzy α-clusters for some α. The point

τ le ∈ Alα, for which

τ le = arg max
xi

µli, ∀xi ∈ Alα (18)

is called a typical point of the fuzzy α-cluster Al(α), α ∈ (0, 1], l ∈ [1, n]. Obvi-
ously, a fuzzy α-cluster can have several typical points. That is why the symbol
e is introduced to denote the index of a typical point.

Let Rαz (X) = {Al(α)|l = 1, c, 2 ≤ c ≤ n} be a set of fuzzy α-clusters for some
value of the tolerance threshold α, which are generated by a fuzzy tolerance T
from the initial set of elements X = {x1, ..., xn}. If the condition

c
∑

l=1

µli > 0, ∀xi ∈ X (19)

is met for all Al(α), l = 1, c, c ≤ n, then this set is an allotment of elements

of the set X = {x1, ..., xn} among fuzzy α-clusters {Al(α), l = 1, c, 2 ≤ c ≤ n}
for some value of the tolerance threshold α. It should be noted that several
allotments Rαz (X) can exist for some tolerance threshold α. The number of
allotments Rαz (X) depend on the initial data structure. That is why the symbol
z is introduced to denote the index of an allotment.

An allotment RαI (X) = {Al(α)|l = 1, n, α ∈ (0, 1]} of the set of objects
among n fuzzy α-clusters for some threshold α is an initial allotment of the
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set X = {x1, ..., xn}. In other words, if the initial data are represented by a
matrix of some fuzzy T , then rows or columns of the matrix are fuzzy sets
Al ⊆ X , l = 1, ..., n, and α-level fuzzy sets Al(α), l = 1, ..., n, α ∈ (0, 1], are
fuzzy α-clusters. These fuzzy α-clusters constitute an initial allotment for some
tolerance threshold and they can be considered as clustering components.

If some allotment Rαz (X) = {Al(α)|l = 1, ..., n, c ≤ n} is considered ap-
propriate for the problem considered, then this allotment is called an adequate
allotment. In particular, if the conditions

c
∑

l=1

card(Alα) ≥ card(X),

∀Al(α) ∈ Rαz (X), α ∈ (0, 1], card(Rαz (X)) = c, (20)

and

card(Alα ∩Amα ) ≤ w, ∀Al(α), A
m
(α), l 6= m, α ∈ (0, 1], (21)

are satisfied for all the fuzzy α-clusters Al(α), l = 1, ..., n, of some allotment

Rαz (X) = {Al(α)|l = 1, ..., n, c ≤ n}, then this allotment is the allotment among

particular separate fuzzy α-clusters and w ∈ {0, . . . , n} is the maximum number
of elements in the intersection area of different fuzzy α-clusters. If w = 0 in
the conditions (4.2) and (21), then this allotment is the allotment among fully
separate fuzzy α-clusters.

An adequate allotment Rαz (X) for some value of the tolerance threshold
α ∈ (0, 1] is a family of fuzzy α-clusters, which are elements of the initial allot-
ment RαI (X) for the value of α, and the family of fuzzy α-clusters satisfies the
conditions (4.2) and (21). The problem consists in the selection of a unique ad-
equate allotment R∗(X) from the set B of adequate allotments, B = {Rαz (X)},
which is the class of possible solutions of the specific classification problem and
B = {Rαz (X)} depends on the parameters of the classification problem. In
particular, the number c of fuzzy α-clusters is a parameter of the D-AFC(c)-
algorithm.

The selection of the unique adequate allotment among a fixed number c of
fuzzy α-clusters from the set B = {Rαz (X)} of adequate allotments c is to be
made on the basis of an evaluation of allotments. The criterion

F (Rαz (X), α) =

c
∑

l=1

1

nl

nl
∑

i=1

µli − α · c, (22)

where c is the number of fuzzy α-clusters in the allotment Rαz (X) and nl =
card(Alα), Al(α) ∈ Rαz (X), is the number of elements in the support of the fuzzy

α-cluster Al(α), can be used for evaluation of allotments.

The maximum value of the criterion (22) corresponds to the best allotment of
objects among c fuzzy α-clusters. So, the classification problem can be formally
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characterized as the determination of a solution R∗(X) satisfying

R∗(X) = arg max
Rα

z

(X) ∈ BF (Rαz (X), α), (23)

where B = {Rαz (X)} is the set of adequate allotments corresponding to the
formulation of a specific classification problem considered.

Thus, the problem of cluster analysis can be defined as the problem of dis-
covering an allotment R∗(X), resulting from the classification process, and the
detection of a fixed number c of fuzzy α-clusters can be considered as the goal
of classification. A description of the corresponding D-AFC(c)-algorithm is pre-
sented in the papers by Viattchenin (2004, 2007a, 2009, 2010b). These papers
present also the examples of application, mainly on the well known data sets,
such as the Iris data (see Anderson, 1935), or the data from Sato and Sato
(1994).

The most “plausible” number c of fuzzy α-clusters in the allotment R∗(X)
sought can be considered as an index for the cluster validity problem for the
D-AFC(c)-algorithm. Different validity measures for the D-AFC(c)-algorithm
were proposed in Viattchenin (2010b). In particular, the measure of separation
and compactness of the allotment can be defined in the following way:

VMSC(R∗(X); c) =

∑

Al
(α)

∈R∗(X)

D(Al(α))

c
+
c

n

∑

xj∈Θ

µlj − α, (24)

where Θ is a set of elements xj , j ∈ {1, . . . , n}, in all of the intersection areas
of different fuzzy α-clusters, and the density of a fuzzy α-cluster, D(Al(α)), is

defined in Viattchenin (2010b) as follows:

D(Al(α)) =
1

nl

∑

xi∈Al
α

µli, (25)

where nl = card(Alα), Al(α) ∈ R∗(X) and the membership degree µli is defined

by the formula (17). The measure of separation and compactness of an allot-
ment, VMSC(R∗(X); c), increases when c is closer to n. That is why the optimum
value of c is obtained by minimizing VMSC(R∗(X); c) over c = cmin, . . . , cmax,
where 2 ≤ cmin and cmax < n. So, the choice of the measure (24) can be inter-
preted as the search for an optimal number c of fuzzy α-clusters in the allotment
R∗(X) sought.

5. Concluding remarks

This short paper presented, against the background of the state of art in fuzzy
clustering, with special emphasis on possibilistic version of this direction of
research, and in the context of some specialized tasks (rule extraction, three-way
data classification, etc.), the place and role of the work, primarily done by Dmitri
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A. Viattchenin, on the heuristic methods of clustering. These methods, which
start from very basic precepts, concerning what the fuzzy / possibilistic partition
(allotment) is – and therefore what is the meaning of the clusters, forming
this partition – can be effectively used for solving the tasks here mentioned.
A separate issue is constituted by the numerical questions, accompanying the
realization of the respective algorithms, and this ought to be considered in detail
in future studies, conducted by the associates of Dmitri Viattchenin.
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and Komorowski J. (2011) The Monte Carlo feature selection and in-
terdependency discovery is unbiased. Control and Cybernetics, 40 (2),
199-211.

Ghazavi S. N. and Liao T. W. (2008) Medical data mining by fuzzy mod-
eling with selected features. Artificial Intelligence in Medicine, 43 (3),
195-206.
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