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Abstract: We consider the null controllability problem from the
exterior for the one dimensional heat equation on the interval (−1, 1),
associated with the fractional Laplace operator (−∂2x)s, where 0 <
s < 1. We show that there is a control function, which is localized
in a nonempty open set O ⊂ (R \ (−1, 1)), that is, at the exterior of
the interval (−1, 1), such that the system is null controllable at any
time T > 0 if and only if 1

2 < s < 1.
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1. Introduction and main results

In the present paper we consider a nonlocal version of the boundary controlla-
bility problem for the heat equation in the one dimensional case. The standard
problem of finding a boundary control for the heat equation is a well-known
topic and has been studied by several authors. We refer, for example, to the
pioneering works of MacCamy, Mize and Seidman (1968, 1969), and the books
of Zuazua (2006) and Lions (1988), and the references therein, for a complete
analysis and review on this topic.
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We shall now describe our problem and state the main result. We consider
the fractional heat equation in the interval (−1, 1). That is,






∂tu+ (−∂2x)su = 0 in (−1, 1)× (0, T ),

u = gχO×(0,T ) in (R \ (−1, 1))× (0, T ),

u(·, 0) = u0 in (−1, 1).

(1.1)

In (1.1), u = u(x, t) is the state to be controlled, T > 0 and 0 < s < 1 are
real numbers, g = g(x, t) is the exterior control function, which is localized
in a nonempty open subset O of (R \ (−1, 1)), and (−∂2x)s denotes the frac-
tional Laplace operator, given formally for a smooth function u by the following
singular integral:

(−∂2x)su(x) := Cs P.V.

∫

R

u(x)− u(y)

|x− y|1+2s
dy, x ∈ R.

We refer to Section 2 for the precise definition. We would like to mention here
that it has been shown in Warma (2019) that a boundary control (the case where
the control g is localized in a nonempty subset of the boundary) does not make
sense for the fractional Laplace operator. By Warma (2019), for the fractional
Laplace operator, the classical boundary control problem must be replaced by
an exterior control problem. That is, the control function must be localized
outside the open set (−1, 1) as it is formulated in (1.1).

We shall show that for every u0 ∈ L2(−1, 1) and g ∈ L2((0, T );Hs(R \
(−1, 1))), the system (1.1) has a weak solution u ∈ L2((0, 1);L2(−1, 1)) (see
Section 3). In that case the set of reachable states is given by

R(u0, T ) =
{
u(·, T ) : g ∈ L2((0, T );Hs(R \ (−1, 1)))

}
.

We say that the system (1.1) is null controllable at time T > 0, if 0 ∈ R(u0, T ).
The system is said to be exactly controllable at T > 0, if R(u0, T ) = L2(−1, 1).
We say that the system (1.1) is controllable to the trajectories at T > 0, if
for any trajectory ũ, a solution of (1.1) with initial datum ũ0 ∈ L2(−1, 1) and
without control (g ≡ 0), and for every initial datum u0 ∈ L2(−1, 1), there exists
a control function g ∈ L2((−1, 1);Hs(R\(−1, 1))) such that the associated weak
solution u of (1.1) satisfies

u(·, T ) = ũ(·, T ), a.e. in (−1, 1).

The system is said to be approximately controllable at time T > 0, if R(u0, T )
is dense in L2(−1, 1). We refer to Section 2 for the definition of the function
spaces involved.

We would like to mention that like in the classical local case (s = 1), dis-
cussed in Zuazua (2006, Chapter 2), we have the following situation for the
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nonlocal case. We observe that solutions of (1.1) are of class C∞ far from
(R \ (−1, 1)) at time t = T . This shows that the elements of R(u0, T ) are C

∞

functions in (−1, 1). Thus, the exact controllability may not hold. For this
reason, we shall study the null controllability of the system. However, since the
system (1.1) is linear, the null controllability is equivalent to the controllability
to trajectories.

The following theorem is the main result of the paper:

Theorem 1 Let 0 < s < 1 and let O ⊂ (R \ (−1, 1)) be an arbitrary nonempty
open set. Then the following assertions hold.

1. If 1
2 < s < 1, then the system (1.1) is null controllable at any time T > 0.

2. If 0 < s ≤ 1
2 , then the system (1.1) is not null controllable at time T > 0.

We would like to mention that in the proof of Theorem 1, we shall heavily
exploit the fact that the eigenvalues {λn}n∈N of the realization of (−∂2x)s in
L2(−1, 1) with the zero Dirichlet exterior condition (see Section 2) satisfy the
following asymptotics (see, e.g., Kwasnicki, 2012):

λn =

(
nπ

2
− (2− 2s)π

8

)2s

+O

(
1

n

)
as n→ ∞. (1.2)

Recall that by Theorem 1(2.), the system (1) is not null controllable at time
T > 0, if 0 < s ≤ 1

2 . It has been recently shown in Warma (2019) that the
system is indeed approximately controllable at any time T > 0. The result,
obtained in Warma (2019) is more general since it includes the N -dimensional
case and the fractional diffusion equation, that is, the case where ∂tu is replaced
by the Caputo time fractional derivative D

α
t u of order 0 < α ≤ 1. Of course,

the case of α = 1 includes (1.1).

The null controllability from the interior (that is, the case where the control
function is localized in a nonempty subset ω of (−1, 1)) of the one-dimensional
fractional heat equation has been recently investigated in Biccari and Hernández-
Santamaria (2019), where the authors have shown that the system is null con-
trollable at any time T > 0 if and only if 1

2 < s < 1. The interior null controlla-
bility of the Schrödinger and wave equations has been studied in Biccari (2018).
The approximate controllability from the exterior of the super-diffusive system,
that is, the case where utt is replaced by the Caputo time fractional derivative
D

α
t u of order 1 < α < 2, has been very recently considered in Louis-Rose and

Warma (2020). The case of the (possible) strong damping fractional wave equa-
tion has been investigated in Warma and Zamorano (2020).

The fractional heat equation (1.1), defined over the entire real line, arises
from a probabilistic process in which a particle makes long jumps random
walks with a small probability, see, for instance, Bucur and Valdinoci (2016)
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or Valdinoci (2009). Besides, this type of process occurs in real life phenom-
ena quite often, see for example the biological observations in Viswanathan et
al. (1996) and the study, related to marine predators in Humphries et al. (2010).

Regarding the exterior control problem, in many real life applications con-
trol is placed outside (disjoint from) the observation domain Ω, where the PDE
is satisfied. Some examples of control problems where this situation may arise
are (but not limited to): acoustic testing, when the loudspeakers are placed
far from the aerospace structures (Larkin and Whalen, 1999); magnetotellurics
(MT), which is a technique to infer earth’s subsurface electrical conductivity
from surface measurements (Unsworth, 2005; Weiss, Waanders and Antil, 2019);
magnetic drug targeting (MDT), where drugs with ferromagnetic particles in
suspension are injected into the body and the external magnetic field is then
used to steer the drug to relevant areas, for example, solid tumors (Antil, No-
chetto and Venegas, 2018a,b; Lübbe et al., 1996); and electroencephalography
(EEG), which is used to record electrical activities in brain (Niedermayer and
da Silva, 2005; Williams, Karacan and Hursch, 1974), in case one accounts for
the neurons disjoint from the brain, one will obtain an external control problem.
Besides, we should mention that some preliminary results concerning numerical
analysis have been obtained in the recent work of Antil, Khatri and Warma
(2019).

The study of fractional order operators and nonlocal PDEs is nowadays a
topic of interest for the mathematicians as well as natural and engineering scien-
tist communities, due to the numerous applications that nonlocal PDEs provide.
A motivation for this growing interest stems from the large number of possible
applications in the modeling of several complex phenomena, for which a local
approach turns out to be inappropriate or limited. Indeed, there is an ample
spectrum of situations, in which a nonlocal equation gives a significantly better
description than a local PDE of the problem one wants to analyze. Among oth-
ers, we mention applications in turbulence, anomalous transport and diffusion,
elasticity, image processing, porous media flow, wave propagation in heteroge-
neous high contrast media (see, e.g., Antil and Bartels, 2017; Bogdan, Burdzy
and Chen, 2003; Valdinoci, 2009; Servadel and Valdinoci, 2014 and the refer-
ences therein). Also, it is well known that the fractional Laplace operator is the
generator of the so-called s-stable Lévy process, and it is often used in stochas-
tic models with applications, for instance, in mathematical finance (see, e.g.,
Antil, Khatri and Warma, 2019; Du et al., 2013). One of the main differences
between nonlocal models and classical PDEs is that the fulfillment of a nonlocal
equation at a point involves the values of the function far away from that point.
We refer to Bogdan, Burdzy and Chen (2003), Caffarelli, Roquejoffre and Sire
(2010) and Caffarelli and Silvestre (2007) and the references contained there for
more applications and information on this topic.

The rest of the paper is structured as follows. In Section 2 we introduce the
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function spaces needed to study our problem and we give some intermediate
known results that are needed in the proof of our main results. In Section 3
we show the well-posedness of the system (1.1) and its associated dual system
and we give an explicit representation of solutions in terms of series for both
problems. Finally, in Section 4 we give the proof of our main results.

2. Preliminary results

In this section we provide the notation used and recall some known results as
they are needed in the proof of our main results. We start with fractional order
Sobolev spaces.

For 0 < s < 1 and Ω ⊂ R being an arbitrary open set, we let

Hs(Ω) :=

{
u ∈ L2(Ω) :

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|1+2s

dxdy <∞
}
,

and we endow it with the norm defined by

‖u‖Hs(Ω) :=

(∫

Ω

|u(x)|2 dx+

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|1+2s

dxdy

) 1

2

.

We set

H̃s
0(Ω) :=

{
u ∈ Hs(R) : u = 0 a.e. in R \ Ω

}
.

We shall denote by H̃−s(Ω) the dual space of H̃s
0(Ω), that is, H̃−s(Ω) =

(H̃s
0 (Ω))

⋆.

For more information on fractional order Sobolev spaces, we refer to Di
Nezza, Palatucci and Valdinoci (2012), Warma (2015) and the references pro-
vided there.

Next, we give a rigorous definition of the fractional Laplace operator. To do
this, we need the following function space:

L1
s(R) :=

{
u : R → R measurable and

∫

R

|u(x)|
(1 + |x|)1+2s

dx <∞
}
.

For u ∈ L1
s(R) and ε > 0 we set

(−∂2x)sεu(x) := Cs

∫

{y∈R: |x−y|>ε}

u(x)− u(y)

|x− y|1+2s
dy, x ∈ R,

where Cs is a normalization constant, given by

Cs :=
s22sΓ

(
2s+1
2

)

π
1

2Γ(1− s)
. (2.1)
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The fractional Laplacian (−∂2x)s is defined for u ∈ L1
s(R) by the following sin-

gular integral:

(−∂2x)su(x) := Cs P.V.

∫

R

u(x)− u(y)

|x− y|1+2s
dy = lim

ε↓0
(−∂2x)sεu(x), x ∈ R, (2.2)

provided that the limit exists. We notice that if u ∈ L1
s(R), then v := (−∂2x)sεu

exists for every ε > 0, v being also continuous at the continuity points of u.
For more details on the fractional Laplace operator we refer to Caffarelli and
Silvestre (2007), Di Nezza, Palatucci and Valdinoci (2012), Gal and Warma
(2017), and Warma (2015) and the references contained there.

Next, we consider the realization of (−∂2x)s in L2(−1, 1) with the zero Dirich-
let exterior condition u = 0 in R\(−1, 1). More precisely, we consider the closed

and bilinear form F : H̃s
0(−1, 1)× H̃s

0(−1, 1) → R, given by

F(u, v) :=
Cs

2

∫

R

∫

R

(u(x)− u(y))(v(x) − v(y))

|x− y|1+2s
dxdy, u, v ∈ H̃s

0(−1, 1).

Let (−∂2x)sD be the selfadjoint operator on L2(−1, 1) associated with F in the
sense that





D((−∂2x)sD) ={
u ∈ H̃s

0(−1, 1), ∃ f ∈ L2(−1, 1), F(u, v) = (f, v)L2(−1,1) ∀ v ∈ H̃s
0(−1, 1)

}
,

(−∂2x)sDu = f.

It is easy to see that

D((−∂2x)sD) =
{
u ∈ H̃s

0(−1, 1) : (−∂2x)su ∈ L2(−1, 1)
}
,

(−∂2x)sDu = ((−∂2x)su)|(−1,1). (2.3)

Then, (−∂2x)sD is the realization of (−∂2x)s in L2(−1, 1) with the condition
u = 0 in R \ (−1, 1). It is well known (see, e.g., Claus and Warma, 2020) that
the operator −(−∂2x)sD generates a strongly continuous submarkovian semigroup

(e−t(−∂2

x
)s
D )t≥0 on L

2(−1, 1). It has been shown in Servadel and Valdinoci (2014)
that (−∂2x)sD has a compact resolvent and its eigenvalues form a non-decreasing
sequence of real numbers 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · satisfying limn→∞ λn =
∞. In addition, if 1

2 ≤ s < 1, then the eigenvalues are of finite multiplicity.
Let {ϕn}n∈N be the orthonormal basis of eigenfunctions, associated with the
eigenvalues {λn}n∈N. Then ϕn ∈ D((−∂2x)sD) for every n ∈ N, {ϕn}n∈N is total
in L2(−1, 1) and satisfies

{
(−∂2x)sϕn = λnϕn in (−1, 1),

ϕn = 0 in R \ (−1, 1).
(2.4)
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Next, for u ∈ Hs(R) we introduce the nonlocal normal derivative Ns given
by

Nsu(x) := Cs

∫ 1

−1

u(x)− u(y)

|x− y|1+2s
dy, x ∈ R \ (−1, 1), (2.5)

where Cs is the constant given in (2.1). We notice that since equality is to be
understood a.e., we have that (2.5) is the same as for a.e. x ∈ R \ (−1, 1). By
Ghosh, Salo and Uhlmann (2018, Lemma 3.2), for every u ∈ Hs(R), we have
that Nsu ∈ Hs

loc(R \ (−1, 1)). We would also like to mention that the operator
Ns has been called ”interaction operator” in Antil, Khatri and Warma (2019)
and Du et al. (2013). Several properties of Ns have been studied in Claus and
Warma (2020) and Dipierro, Ros-Oton and Valdinoci (2012).

The following unique continuation property, which shall play an important
role in the proof of Theorem 1 has been recently obtained in Warma (2019,
Theorem 16).

Lemma 1 Let λ > 0 be a real number and O ⊂ (R \ (−1, 1)) an arbitrary
nonempty open set. If ϕ ∈ D((−∂2x)sD) satisfies

(−∂2x)sDϕ = λϕ in (−1, 1) and Nsϕ = 0 in O,

then ϕ = 0 in R.

For more details on the Dirichlet problem associated with the fractional
Laplace operator we refer the interested reader to Biccari, Warma and Zuazua
(2017), Grubb (2015), Ros-Oton and Serra (2014a,b) and Warma (2019), and
the references provided there.

We conclude this section with the following integration by parts formula:

Lemma 2 Let u ∈ H̃s
0(−1, 1) be such that (−∂2x)su ∈ L2(−1, 1) and Nsu ∈

L2(R \ (−1, 1)). Then, for every v ∈ Hs(R), the following identity

Cs

2

∫

R

∫

R

(u(x) − u(y))(v(x) − v(y))

|x− y|1+2s
dxdy =

∫ 1

−1

v(x)(−∂2x)su(x) dx+

∫

R\(−1,1)

v(x)Nsu(x) dx, (2.6)

holds.

We refer to Dipierro, Ros-Oton and Valdinoci (2012, Lemma 3.3) (see also
Warma, 2019, Proposition 3.7) for the proof and more details.
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3. Well-posedness of the parabolic problem

This section is devoted to the well-posedness and the explicit representation in
terms of series for solutions to the system (1.1) and its associated dual system.

Throughout the remainder of the article, {ϕn}n∈N denotes the orthonormal
basis of eigenfunctions of the operator (−∂2x)sD associated with the eigenval-

ues {λn}n∈N, and (e−t(−∂2

x
)s
D )t≥0 denotes the strongly continuous semigroup on

L2(−1, 1), generated by the operator −(−∂2x)sD.

Furthermore, for a given measurable set E ⊆ R
N (N ≥ 1), we shall denote

by (·, ·)L2(E) the scalar product in L
2(E) and by D(E) we mean the space of all

continuously infinitely differentiable functions with compact support in E. For
given u ∈ L2(−1, 1) and n ∈ N, we shall let un := (u, ϕn)L2(−1,1). Finally, given
a Banach space X and its dual X⋆, we shall denote by 〈·, ·〉X⋆,X (simply 〈·, ·〉 if
there is no confusion) they duality pairing.

3.1. Representation of solutions to the system (1.1)

Let T > 0 be a fixed real number, u0 ∈ L2(−1, 1), g ∈ L2((0, T );Hs(R\(−1, 1))),
and consider the following two systems:






∂tv + (−∂2x)sv = 0 in (−1, 1)× (0, T ),

v = 0 in (R \ (−1, 1))× (0, T ),

v(·, 0) = u0 in (−1, 1),

(3.1)

and





∂tw + (−∂2x)sw = 0 in (−1, 1)× (0, T ),

w = g in (R \ (−1, 1))× (0, T ),

w(·, 0) = 0 in (−1, 1).

(3.2)

Notice that the system (3.1) can be rewritten as the following Cauchy prob-
lem:

{
∂tv + (−∂2x)sDv = 0 in (−1, 1)× (0, T ),

v(·, 0) = u0 in (−1, 1).

Hence, using semigroup theory and the spectral theorem for selfadjoint opera-
tors, one arrives at the following result.

Proposition 1 For every u0 ∈ L2(−1, 1), there is a unique function

v ∈ C([0, T ];L2(−1, 1)) ∩ L2((0, T ); H̃s
0(−1, 1) ∩H1((0, T ); H̃−s(−1, 1))

satisfying (3.1) and it is given for a.e. x ∈ (−1, 1) and every t ∈ [0, T ] by

v(x, t) = e−t(∂2

x
)s
Du0(x) =

∞∑

n=1

u0,ne
−λntϕn(x). (3.3)
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Next, we consider the system (3.2).

Definition 1 Let g ∈ L2((0, T );Hs(R\ (−1, 1))). By a weak solution of (3.2),
we mean a function w ∈ L2((0, T );Hs(R)) such that w = g a.e. in (R\(−1, 1))×
(0, T ) and the identity

∫ T

0

〈−∂tφ+ (−∂2x)sφ,w〉 dt =
∫ 1

−1

w(x, T )φ(x, T ) dx+

∫ T

0

∫

R\(−1,1)

gNsφ dxdt

holds, for every function φ ∈ C([0, T ]; L2(−1, 1)) ∩ L2((0, T ); H̃s
0(−1, 1)) ∩

H1((0, T ); H̃−s(−1, 1)) with Nsφ ∈ L2((0, T );L2(R \ (−1, 1))).

We have the following existence result, whose proof is inspired by the local
case contained in the monograph of Lasiecka and Triggiani (2000, pp. 180-185).

Proposition 2 For every g ∈ L2((0, T );Hs(R \ (−1, 1))), the system (3.2) has
a weak solution w ∈ L2((0, T );Hs(R)), given by

w(x, t) =

∞∑

n=1

(∫ t

0

(g(·, τ),Nsϕn)L2(R\(−1,1))e
−λn(t−τ)dτ

)
ϕn(x). (3.4)

Proof. Recall that the operator,

(−∂2x)sD : D((−∂2x)sD) → L2(−1, 1), u 7→ (−∂2x)sDu := (−∂2x)su in (−1, 1),

defined in (2.3), is a self-adjoint operator on L2(−1, 1). We denote by
(
D((−∂2x)sD)

)⋆
the dual space of D((−∂2x)sD) with respect to the pivot space L2(−1, 1), so that

D((−∂2x)sD) →֒ L2(−1, 1) →֒
(
D((−∂2x)sD)

)⋆
.

Let D be the nonlocal Dirichlet map given by

Dg = u⇐⇒ (−∂2x)su = 0 in (−1, 1) and u = g in R \ (−1, 1). (3.5)

It is well known (see, e.g., Antil, Khatri and Warma, 2019, or Warma, 2019)
that for every g ∈ Hs(R \ (−1, 1)), there is a unique function u ∈ Hs(R) satis-
fying (3.5).

Next, let the operator B be given by

B : Hs(R \ (−1, 1)) →
(
D((−∂2x)sD)

)⋆
, g 7→ Bg := −(−∂2x)sDDg. (3.6)

Firstly, we claim that for every u ∈ D((−∂2x)sD) and g ∈ Hs(R \ (−1, 1)) we
have

∫ 1

−1

uBg dx =

∫

R\(−1,1)

gNsu dx. (3.7)
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Indeed, let u ∈ D((−∂2x)sD) and g ∈ Hs(R\(−1, 1)). By applying the integration
by parts formula (2.6) and using (3.5)-(3.6), we get that

∫ 1

−1

uBg dx = −
∫ 1

−1

Dg(−∂2x)su =

−
∫ 1

−1

u(−∂2x)sDg dx+

∫

R\(−1,1)

DgNsu dx −
∫

R\(−1,1)

uNs(Dg) dx

=

∫

R\(−1,1)

DgNsu dx =

∫

R\(−1,1)

gNsu dx, (3.8)

where we have also used the facts that u = 0 in R\(−1, 1) (since u ∈ D((∂2x)
s
D) ⊂

H̃s
0(−1, 1)) and (Dg)|R\(−1,1) = g by (3.5). We have thus shown the claim (3.7).

Secondly, with the above setting, proceeding as in the local case (see Lasiecka
and Triggiani, 2000, pp. 180-185, and the references therein), using semigroup
theory, (3.1) and the spectral theorem for selfadjoint operators, we can deduce
that for every function g ∈ L2((0, T );Hs(R \ (−1, 1))) there exists a function
w ∈ L2((0, T );Hs(R)), which is a weak solution of (3.2) and is given by

w(x, t) =

∫ t

0

e−(t−τ)(−∂2

x
)s
D (Bg)(x, τ) dτ

=

∞∑

n=1

(∫ t

0

((Bg)(·, τ), ϕn)L2(−1,1)e
−λn(t−τ)dτ

)
ϕn(x)

=

∞∑

n=1

(∫ t

0

(g(·, τ),Nsϕn)L2(R\(−1,1))e
−λn(t−τ)dτ

)
ϕn(x).

We have thus shown (3.4) and the proof is finished.
We have the following result on existence and explicit representation in terms

of series of solutions to (1.1).

Theorem 2 Let T > 0. Then for every u0 ∈ L2(−1, 1) and g ∈ L2((0, T );Hs(R\
(−1, 1))), the system (1.1) has a weak solution u ∈ L2((0, T );L2(−1, 1)), given
by

u(x, t) =

∞∑

n=1

u0,ne
−λntϕn(x) +

∞∑

n=1

(∫ t

0

(g(·, τ),Nsϕn)L2(O)e
−λn(t−τ)dτ

)
ϕn(x).

(3.9)

Proof. Let u0 ∈ L2(−1, 1) and g ∈ L2((0, T );Hs(R \ (−1, 1))). Let v ∈
C([0, T ];L2(−1, 1)) be the weak solution of (3.1) and w ∈ L2((0, T );Hs(R)) the
weak solution of (3.2) with g replaced by gχO×(0,T ). Set u := u + v. Then,
it is clear that u ∈ L2((0, T );L2(−1, 1)) and is a weak solution of (1.1). The
representation (3.9) follows directly from (3.3) and (3.4). The proof is finished.

We conclude this section with the following remark.
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Remark 1 We make the following observations.
1. Theorem 2 is the fractional version of the classical local heat equation with

inhomogeneous boundary data, and it is the so-called boundary control
semigroup formula. We refer, for instance, to the book of Lasiecka and
Triggiani (2000) and the paper of Fattorini (1975) for more details on the
local case.

2. The representation (3.9) of solutions to the system (1.1) is contained in
Warma (2019) for the case where ∂t is replaced with the Caputo time-
fractional derivative D

α
t (0 < α ≤ 1), and for a smooth function g ∈

D((0, T ) × R \ (−1, 1)). In that case, since the function g is smooth,
one has that the solution u ∈ C([0, T ];L2(−1, 1)). This is not the case
here, since g ∈ L2((0, T );Hs(R \ (−1, 1))) and it is not smooth enough.
However, proceeding as in Lasiecka and Triggiani (2000, pp. 180-185)
and the references therein, the time regularity of the solution u can be
improved. Since this is not the goal of the present paper, and since such a
result and the representation (3.9) are not needed in the proof of our main
results, we will not go into respective details.

3.2. Representation of solutions to the associated dual system

Using the classical integration by parts formula, we obtain that the following
backward system,





−∂tψ + (−∂2x)sψ = 0 in (−1, 1)× (0, T ),

ψ = 0 in (R \ (−1, 1))× (0, T ),

ψ(·, T ) = ψ0 in (−1, 1),

(3.10)

can be viewed as the dual system associated with (1.1).

We have the following existence result:

Theorem 3 Let T > 0 be a real number and ψ0 ∈ L2(−1, 1). Then the system
(3.10) has a unique weak solution ψ ∈ C([0, T ];L2(−1, 1)) given for a.e. x ∈
(−1, 1) and every t ∈ [0, T ] by

ψ(x, t) =

∞∑

n=1

ψ0,ne
−λn(T−t)ϕn(x). (3.11)

In addition, the following assertions hold:
1. There is a constant C > 0 such that for all t ∈ [0, T ],

‖ψ(·, t)‖L2(−1,1) ≤ C‖ψ0‖L2(−1,1). (3.12)

2. For every t ∈ [0, T ) fixed, Nsψ(·, t) exists, belongs to L2(R \ (−1, 1)) and
is given by

Nsψ(x, t) =

∞∑

n=1

ψ0,ne
−λn(T−t)Nsϕn(x), (3.13)
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where we recall that ψ0,n := (ψ0, ϕn)L2(−1,1).

Proof. Using the spectral theorem for selfadjoint operators with compact
resolvent, we reduce the problem to the one of looking for a solution ψ of the
form

ψ(x, t) =

∞∑

n=1

(ψ(·, t), ϕn)L2(−1,1)ϕn(x).

Replacing this expression in (3.10) and letting ψn(t) := (ψ(·, t), ϕn)L2(−1,1), we
get that ψn(t) solves the following ordinary differential equation:

−ψ′
n(t) + λnψn(t) = 0, t ∈ (0, T ); and ψn(T ) = ψ0,n.

It is straightforward to show that ψ is given by (3.11). Noticing that ψ(x, t) =

e−(T−t)(−∂2

x
)s
Dψ0(x) (where we recall that (e

−t(−∂2

x
)s
D )t≥0 is a strongly continuous

semigroup on L2(−1, 1), generated by the operator −(∂2x)
s
D), and using semi-

group theory, leads us to the well known statement that ψ ∈ C([0, T ];L2(−1, 1)).
The estimate (3.12) and the identity (3.13) can also be easily justified. The proof
is finished.

We conclude this section with the following remark:

Remark 2 From the semigroup theory, it is well known that the solution ψ ∈
C([0, T ];L2(−1, 1)) of the backward system (3.10) enjoys the following regular-
ity:

ψ ∈ C([0, T ];L2(−1, 1)) ∩ L2((0, T ); H̃s
0(−1, 1)) ∩H1((0, T ); H̃−s(−1, 1)).

4. Proof of the main result

In this section we give the proof of the main result of this work, namely Theorem
1. In order to do this, we need first to establish some auxiliary results that will
be used in the proof.

Lemma 3 The system (1.1) is null controllable at time T > 0 if and only
if for every initial datum u0 ∈ L2(−1, 1) there exists a control function g ∈
L2((0, T ); H̃s

0(O)) such that the solution ψ of the dual system (3.10) satisfies

∫ 1

−1

u0(x)ψ(x, 0) dx =

∫ T

0

∫

O

g(x, t)Nsψ(x, t) dxdt, (4.1)

for every ψ0 ∈ L2(−1, 1).

Proof. Let u0 ∈ L2(−1, 1) and g ∈ L2((0, T ); H̃s
0(O)). We write the solution

u of (1.1) as u := v + w where v and w are the solutions of (3.1) and (3.2),
respectively. Let ψ be the solution of the dual problem (3.10). Taking ψ as a
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test function in Definition 1 of a weak solution to the system (3.2), using the
integration by parts formula (2.6), noticing that

−ψt + (−∂2x)sψ = 0 in (−1, 1)× (0, T ),

and that ψ = 0 in (R \ (−1, 1))× (0, T ), we obtain that

0 =

∫ T

0

〈vt(·, t) + (−∂2x)sv(·, t), ψ(·, t)〉 dt

+

∫ T

0

〈−ψt(·, t) + (−∂2x)sψ(·, t), w(·, t)〉 dt

=

∫ 1

−1

(
v(x, T )ψ(x, T )− v(x, 0)ψ(x, 0)

)
dx

+

∫ T

0

∫

R\(−1,1)

(
v(x, t)Nsψ(x, t) − ψ(x, t)Nsv(x, t)

)
dxdt

+

∫ 1

−1

w(x, T )ψ(x, T ) dx+

∫ T

0

∫

R\(−1,1)

w(x, t)Nsψ(x, t) dxdt

= −
∫ 1

−1

v(x, 0)ψ(x, 0) dx+

∫ 1

−1

(
v(x, T ) + w(x, T )

)
ψ(x, T ) dx

+

∫ T

0

∫

R\(−1,1)

(
v(x, t) + w(x, t)

)
Nsψ(x, t) dxdt. (4.2)

Since v(x, 0) = u(x, 0) = u0(x) for a.e. x ∈ (−1, 1), and u(x, t) = v(x, t)+w(x, t)
for a.e. (x, t) ∈ (−1, 1)× (0, T ], and u = gχO×(0,T ) in (R \ (−1, 1))× (0, T ), it
follows from (4.2) that

∫ 1

−1

u(x, 0)ψ(x, 0) dx−
∫ 1

−1

u(x, T )ψ(x, T ) dx =

∫ T

0

∫

O

g(x, t)Nsψ(x, t) dxdt.

(4.3)

Now, if (4.1) holds, then it follows from (4.3) that

∫ 1

−1

u(x, T )ψ(x, T ) dx = 0.

Thus, we can deduce that u(·, T ) = 0 in (−1, 1) and the system (1.1) is null
controllable.

Conversely, if the system (1.1) is null controllable, that is, if u(·, T ) = 0 in
(−1, 1), then (4.1) follows from (4.3) and the proof is finished.

Next, using classical duality arguments, we can establish the following cri-
terion for null controllability:
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Lemma 4 Let O ⊂ (R \ (−1, 1)) be an arbitrary nonempty open set. Then the
following assertions are equivalent:

1. The system (1.1) is null controllable at time T > 0 and there is a constant
C > 0 such that

‖g‖
L2((0,T );H̃s

0
(O)) ≤ C‖u0‖L2(−1,1). (4.4)

2. For every T > 0 and ψ0 ∈ L2(−1, 1), let ψ be the unique weak solution
of the dual system (3.10) with final datum ψ0. Then, there is a constant
C = C(T ) > 0 such that the following observability inequality holds:

‖ψ(·, 0)‖2L2(−1,1) ≤ C

∫ T

0

∫

O

|Nsψ(x, t)|2dxdt. (4.5)

Proof. (2.) ⇒ (1.): We start by proving that the observability inequality
(4.5) implies the null controllability. Indeed, consider the linear subspace H of

L2((0, T ); H̃−s(O)), given by

H :=
{
Nsψ

∣∣∣
O×(0,T )

: ψ solves the system (3.10) with ψ0 ∈ L2(−1, 1)
}
.

Next, we consider the linear functional F : H → R defined by

F (Nsψ) :=

∫ 1

−1

u0(x)ψ(x, 0)dx,

where u0 ∈ L2(−1, 1). It follows from the observability inequality (4.5) that F
is well defined and bounded on H. More precisely, there is a constant C > 0
such that

|F (Nsψ)| ≤ C‖u0‖L2(−1,1)‖Nsψ‖L2((0,T );H̃−s(O)).

It follows from the Hahn–Banach theorem that F can be extended to a bounded
linear functional F̃ : L2((0, T ); H̃−s(O)) → R, such that

|F̃ v| ≤ C‖u0‖L2(−1,1)‖v‖L2((0,T );H̃−s(O)), ∀v ∈ L2((0, T ); H̃−s(O)).

(4.6)

By the Riesz representation theorem, there is a g ∈ (L2((0, T ); H̃−s(O)))∗ =

L2((0, T ); H̃s
0(O)) such that

F̃ (η) =

∫ T

0

〈η(·, t), g(·, t)〉 dt, ∀ η ∈ L2((0, T ); H̃−s(O)).

Moreover, we have that

‖F̃‖ = ‖g‖
L2((0,T );H̃s

0
(O)).
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Thus, we can deduce from (4.6) that

‖g‖
L2((0,T );H̃s

0
(O)) ≤ C‖u0‖L2(−1,1).

Notice that Nsψ ∈ L2((0, T );L2(O)) ⊂ L2((0, T ); H̃−s(O)). Therefore, using
the definition of F we can deduce that

F (Nsψ) =

∫ 1

−1

u0(x)ψ(x, 0)dx =

∫ T

0

∫

O

g(x, t)Nsψ(x, t)dxdt,

for every ψ0 ∈ L2(−1, 1). We have shown that there exists a control function

g ∈ L2((0, T ); H̃s
0(O)) satisfying (4.4) and

∫ T

0

∫

O

g(x, t)Nsψ(x, t)dxdt =

∫ 1

−1

u0(x)ψ(x, 0)dx,

for every ψ0 ∈ L2(−1, 1). Thus, it follows from Lemma 3 that the system (1.1)
is null controllable.

(1.) ⇒ (2.): Now, we show that the null controllability implies the ob-
servability inequality (4.5). Recall that from Lemma 3 we have that for every

u0 ∈ L2(−1, 1) there exists a control g ∈ L2((0, T ); H̃s
0(O)) such that the unique

solution ψ of the dual system (3.10) satisfies

∫ 1

−1

u0(x)ψ(x, 0) dx =

∫ T

0

∫

O

g(x, t)Nsψ(x, t) dxdt,

for every ψ0 ∈ L2(−1, 1). Taking u0(x) = ψ(x, 0) in the preceding identity,
using (4.4) and Young’s inequality, we get that

∫ 1

−1

|ψ(x, 0)|2dx ≤ C

2ε
‖u0‖2L2(−1,1) +

ε

2

∫ T

0

∫

O

|Nsψ(x, t)|2dxdt,

for every ε > 0. Taking ε = C and since u0(x) = ψ(x, 0), we obtain (4.5). The
proof is finished.

Finally, for the proof of Theorem 1 we also need the following technical
result:

Lemma 5 Let {ϕk}k∈N be the orthogonal basis of normalized eigenfunctions of
the operator (−∂2x)sD, associated with the eigenvalues {λk}k∈N. Then, for every
nonempty open set O ⊂ (R \ (−1, 1)), there is a scalar η > 0 (independent of k)
such that for every k ∈ N, the function Nsϕk is uniformly bounded from below
by η in L2(O). Namely,

∃ η > 0 such that ‖Nsϕk‖L2(O) ≥ η, ∀ k ∈ N. (4.7)
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Proof. We prove the result in several steps.

Step 1: Firstly, since ϕk = 0 in R \ (−1, 1) for every k ∈ N, it follows from
the definition of the operators (−∂2x)s and Ns that for almost every x ∈ O ⊆
(R \ (−1, 1)), we have

(−∂2x)sϕk(x) = CsP.V.

∫

R

ϕk(x)− ϕk(y)

|x− y|1+2s
dy =

Cs

∫ 1

−1

ϕk(x) − ϕk(y)

|x− y|1+2s
dy = Nsϕk(x). (4.8)

We have shown that (Nsϕk)|O = ((−∂2x)sϕk)|O for every k ∈ N. We notice that

(4.8) holds not only for ϕk, but for all functions in H̃
s
0(−1, 1).

Secondly, let us introduce the auxiliary function q : R → [0,∞), defined by:

q(x) :=





0 x ∈
(
−∞,− 1

3

)
,

9

2

(
x+

1

3

)2

x ∈
(
− 1

3 , 0
)
,

1− 9

2

(
x− 1

3

)2

x ∈
(
0, 13

)
,

1 x ∈
(
1
3 ,+∞

)
.

(4.9)

For any α > 0, we define the function Fα : R → R as follows:

Fα(x) = F (αx) := sin

(
αx+

(1 − s)π

4

)
−G(αx),

where G is the Laplace transform of the function

γ(y) :=
√
4s sin(sπ)

2π

y2s

1 + y4s − 2y2s cos(sπ)
exp

(
1

π

∫ +∞

0

1

1 + r2
log

(
1− r2sy2s

1− r2y2

)
dr

)
.

Next, we define the sequence of real numbers

µk :=
kπ

2
− (1− s)π

4
, k ≥ 1.

It has been shown in Kwasnicki (2011, Example 6.1) that Fµk
is the solution of

the system

{
(−∂ 2

x )
sFµk

(x) = µkFµk
(x) x > 0,

Fµk
(x) = 0 x ≤ 0.
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In other words, {Fµk
}k≥1 are the eigenfunctions of (−∂2x)s on the interval (0,∞)

with the zero Dirichlet exterior condition, and {µk}k≥1 are the corresponding
eigenvalues. Let us now define

̺k(x) := q(−x)Fµk
(1 + x) + (−1)kFµk

(1− x), x ∈ R, k ≥ 1.

Notice that Fµk
(1 + x) = 0 for x ≤ −1 and Fµk

(1− x) = 0 for x ≥ 1. This fact,
together with the definition (4.9) of the function q imply that, for all k ≥ 1,
̺k(x) = 0 for x ∈ R \ (−1, 1). In addition, it follows from Kwasnicki (2012,
Lemma 1) that {̺k}k∈N ⊂ D((−∂2x)sD) and there is a constant C > 0 such that

∣∣(−∂ 2
x )

s̺k(x)− µ2s
k ̺k(x)

∣∣ ≤ C(1 − s)√
2s

µ−1
k , for all x ∈ (−1, 1), k ≥ 1.

Furthermore, by Kwasnicki (2012, Proposition 1), there is a constant C > 0
such that for every k ≥ 1, we have

‖̺k − ϕk‖L2(−1,1) ≤
{

C(1−s)
k

when 1
2 ≤ s < 1,

C(1−s)
k2s when 0 < s < 1

2 .
(4.10)

Step 2: Now, let O ⊂ R \ (−1, 1) be an arbitrary nonempty open set and
assume that for every η > 0 there exists k ∈ N such that

‖Nsϕk‖L2(O) < η. (4.11)

It follows from (4.11) that there is a subsequence {ϕkn
}n∈N such that

‖Nsϕkn
‖L2(O) <

1

n
, (4.12)

for n large enough. Since L2(O) →֒ H̃−s(O), it follows from (4.12) that there
is a constant C > 0 (independent of n) such that for n large enough, we have

‖Nsϕkn
‖
H̃−s(O) ≤

C

n
. (4.13)

Step 3: Using the triangle inequality, we get that there is a constant C > 0
such that

‖̺kn
− ϕkn

‖2
H̃s

0
(−1,1)

≤ C‖(−∂2x)s̺kn
− (−∂2x)sϕkn

‖2L2(−1,1)

≤ C
(
‖(−∂2x)s̺kn

− µ2s
kn
̺kn

‖2L2(−1,1) + ‖̺kn
(µ2s

kn
− λkn

)‖2L2(−1,1)

+‖λkn
̺kn

− (−∂2x)sϕkn
‖2L2(−1,1)

)
. (4.14)
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It follows from (4.14) and Step 1 that there is a constant Ckn
(s) > 0, which

converges to zero as n→ ∞, such that

‖̺kn
− ϕkn

‖2
H̃s

0
(−1,1)

≤ Ckn
(s).

Let the operator L be defined by

L : H̃s
0(−1, 1) → H̃−s(O), v 7→ Lv := ((−∂2x)sv)|O = (Nsv)|O,

where we recall that H̃−s(O) = (H̃s
0 (O))⋆. It has been shown in Ghosh et al.

(2018, Lemma 2.2) that the operator L is compact, injective with dense range.

Let B1 := B (̺kn
, Ckn

(s)) be the closed ball in H̃s
0(−1, 1) with center in ̺kn

and radius Ckn
(s). Since L is a compact operator, we have that the image of

B1, namely L(B1), is totally bounded in H̃−s(O). Therefore, for every ε > 0
there exists N ∈ N and {ψ1, . . . , ψN} ⊆ B1 such that

L(B1) ⊆
N⋃

j=1

B
H̃−s(O)(L(ψj), ε).

We observe that the eigenfunction ϕkn
belongs to B1. Thus, there exists j ∈

{1, . . . , N} such that

L(ϕkn
) ∈ B

H̃−s(O)(L(ψj), ε).

We have shown that for n large enough,

‖L(ϕkn
)− L(ψj)‖H̃−s(O) ≤ ε.

Since ψj ∈ B1, firstly we obtain that ϕkn
→ ψj , as n → ∞ in H̃s

0(−1, 1) and,
secondly we have that ψj is an element of the spectrum {(ϕk, λk)}k≥1. That is,

ψj is a solution of (2.4). Finally, as L(ϕkn
) converges to zero in H̃−s(O) (by

(4.13)), we can deduce that L(ψj) = Nsψj = (−∂2x)sψj = 0 a.e. in O. It follows
from the unique continuation property (Lemma 1) that ψj = 0 a.e. in R, which
is a contradiction. The proof of the lemma is finished.

Now we are ready to give the proof of our main result.

Proof of Theorem 1. Let u be the weak solution of (1.1) and ψ the weak
solution of the dual problem (3.10). Recall that by Lemma 3, the system (1.1) is
null controllable if and only if the identity (4.1) holds. Moreover, from Lemma
4, (4.1) is equivalent to the observability inequality (4.5) for the dual system,
that is, there exists a constant C > 0 such that

‖ψ(·, 0)‖2L2(−1,1) ≤ C

∫ T

0

∫

O

|Nsψ(x, t)|2 dxdt. (4.15)
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From Section 3.2, the solution ψ of (3.10) is given by

ψ(·, t) =
∞∑

n=1

ψ0,ne
−λn(T−t)ϕn(x),

and its nonlocal normal derivative Nsψ is given by

Nsψ(·, t) =
∞∑

n=1

ψ0,ne
−λn(T−t)Nsϕn(x).

Therefore, using the above representations of ψ and Nsψ, the orthonormality of
the eigenfunctions in L2(−1, 1), and making the change of variable T−t→ t, we
can deduce that the observability inequality (4.15) is equivalent to the following
inequality:

∞∑

n=1

|ψ0,n|2e−2λnT ≤ C

∫ T

0

∫

O

∣∣∣∣∣

∞∑

n=1

ψ0,ne
−λntNsϕn(x)

∣∣∣∣∣

2

dxdt. (4.16)

By means of the classical moment method (see, e.g., Fattorini and Russell, 1971,
Sections 2 and 3), inequalities of the form (4.16) are well known to be true if
and only if the eigenvalues {λn}n∈N and eigenfunctions {ϕn}n∈N satisfy the
following Müntz condition:

∞∑

n=1

1

λn
<∞, (4.17)

and

‖Nsϕn‖L2(O) ≥ η > 0, ∀ n ∈ N, (4.18)

where the constant η is independent of n.
Lemma 5 implies that (4.18) holds.
As we have mentioned in the introduction, the eigenvalues {λn}n≥1 satisfy

(1.2). That is,

λn =

(
nπ

2
− (2− 2s)π

8

)2s

+O

(
1

n

)
as n→ ∞. (4.19)

Therefore, we easily see from (4.19) that the condition (4.17) is satisfied if and
only if 1

2 < s < 1. Instead, if 0 < s ≤ 1
2 , then the series diverges, since it

will have the behavior of the harmonic series. In conclusion, the observability
inequality (4.15) holds true when 1

2 < s < 1, and it is false when 0 < s ≤ 1
2 .

The proof of the theorem is finished.
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Gürtler, R., Hohenberger, P., Haas, N., Sohr, R., Sander, B.,

Lemke, A.-J., Ohlendorf, D., Huhnt, W. and Huhn, D. (1996)
Clinical experiences with magnetic drug targeting: a phase I study with
4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Re-
search 56(20), 4686–4693.

MacCamy, R. C., Mizel, V. J. and Seidman T. I. (1968) Approximate
boundary controllability for the heat equation. J. Math. Anal. Appl. 23,



438 M. Warma and S. Zamorano

699–703.
MacCamy, R. C., Mizel, V. J. and Seidman, T. I. (1969) Approximate

boundary controllability of the heat equation. II. J. Math. Anal. Appl.
28, 482–492.

Niedermeyer, E. and da Silva, F. H. L. (2005) Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields. Lippincott
Williams & Wilkins.

Ros-Oton, X. and Serra, J. (2014) The Dirichlet problem for the fractional
Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9)101,
275–302.

Ros-Oton, X. and Serra, J. (2014) The extremal solution for the fractional
Laplacian. Calc. Var. Partial Differential Equations 50, 723–750.

Servadei, R. and Valdinoci, E. (2014) On the spectrum of two different
fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144, 831–855.

Unsworth, M. (2005) New developments in conventional hydrocarbon explo-
ration with electromagnetic methods. CSEG Recorder 30(4), 34–38.

Valdinoci, E. (2009) From the long jump random walk to the fractional
Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49, 33–44.

Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J.,

Prince, P. A. and Stanley, H. E. (1996) Lévy flight search patterns
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