
Control and Cybernetics
vol. 26 (1997) No. 3

C o o p e r a t i v e d i s t r i b u t e d s e a r c h : t h e a n t s ' w a y

by

M a r k Wodrich* a n d George Bilchev"""*

* Communication Research Group, University of Cape Town, South Africa,
E-mail: mwodric@eleceng.uct.ac.za

** AA&T, B T Laboratories, Ipswich IP5 7RE, UK
E-mail: george.bilchev@bt-sys.bt.co.uk

A b s t r a c t : This paper describes a novel evolutionary optimi-
sation algorithm based on an ant colony metaphor. The algorithm
utilises positive feedback to encourage local search in areas where im-
provement continues to be made, resulting in autocatalytic conver-
gence of search agents to promising regions. The algorith is tested on
several standard unconstrained and constrained optimisation prob-
lems, and the results are compared with those achieved by existing
evolutionary algorithms.

Keywords : evolutionary computation, stochastic optimisation,
hybrid genetic algorithms, ant colony optimisation

1 . I n t r o d u c t i o n

This paper investigates a form of evolutionary algorithm based on an ant colony
search metaphor. Originally developed for combinatorial optimization problems,
the ant colony metaphor has recently been applied to continuous function op-
timization. The algorithm utilises positive feedback to encourage local search
in areas where improvement continues to be made, resulting in autocatalytic
convergence of local search agents to promising regions.

Coupled with this local search capability, the algorithm utilizes genetic-
algorithm inspired operations to exchange information between high-fitness solu-
tions, resulting in effective global search of the problem space and improved con-
vergence to the global maximum. The continuous ant colony algorithm can thus
be seen as a form of hybrid genetic algorithm with local search. The novelty in
our approach is in the autocatalytic interaction among the many distributed lo-
cal search agents which controls the well known exploration/ exploitation trade-
off.

414 M. WODRICH and G. BILCHEV

Further, the algorithm utilises a simple yet powerful method for handling
constraints to achieve excellent performance on constrained problems, making
it a promising choice for problems where identifying the feasible region is the
major difficulty.

The paper is organized as follows. Section 2 outlines some previous research
results on the ant colony optimization method. Section 3 describes the algorithm
in detail. Section 4 presents experimental results for both constrained and
unconstrained problems as well as comparison with other known evolutionary
search algorithms. Conclusions are given in Section 5.

2. Previous research on ant colony optimization
The Ant Colony optimization algorithm for continuous functions is based in
part on the natural behaviour of ant colonies, and grew out of the work done
by Dorigo, Maniezzo and Colomi (1991; 1996), on combinatorial optimisation.
Before the continuous optimization algorithm is explained in detail, it is impor-
tant to examine the natural basis for the algorithms, and the way this has been
applied to combinatorial problems.

2.1. Ant colony behaviour

One of the problems studied by ethologists is to understand how almost blind
animals like ants could manage to establish the shortest route between their
nest and a food source. It was found that the most important medium of
communication among individuals regarding which path to follow consists of
pheromone trails. A moving ant lays pheromone (in varying quantities) on the
ground as it moves, thus marking its journey by a trail of this substance.

While an isolated ant moves essentially at random, an ant encountering a
previously laid trail can detect it, and is likely to follow it, thus reinforcing the
trail with its own pheromone. The collective behaviour that emerges is a form
of autocatalytic, or positive feedback, behaviour. The more ants that follow
a trail, the more attractive it becomes to other ants. Thus the probability of
an ant following a trail is proportional to the number of ants that previously
followed that trail.

How does this enable ants to find the shortest route around an obstacle?
Simulations can be created that simulate a landscape with "cyber-ants" moving
around it depositing pheromone, and vividly show the emergent behaviour that
causes ants to reinforce the shortest route available.

The SimulAnt program, Wodrich (1996), was written to demonstrate the
collective behaviour of ants foraging for food. In the simulation ants arc able to
sense pheromone deposited on the landscape by other ants, and their movement
is affected by the presence of strong pheromone trails. No "artificial intelligence"
is possessed by the individual ants, and the emergent behaviour is purely as a
result of the pheromone mechanism. Sample displays from the simulation are

Cooperative distributed search: the ants' way

"-Food

_{· ·;.
... ·:·•,:•;·,::·.;

. .. ,

415

Figure 1. Ants emerging from nest, spreading across landscape Initially no
pheromone trails exist to guide the ants towards food. They pour from the nest
in random directions, quickly covering the entire landscape.

given in figures one to three. Of course, the actual behaviour of ant colonies is far
more complex. The underlying principle of co-operation by positive feedback,
however, is seen to be a powerful mechanism. Since it allows ants to effectively
minimise the distance they travel, their behaviour offers inspiration for solving
optimisation problems where the shortest route must be calculated. In the next
section an ant-colony inspired algorithm for such problems is described.

2.2. Combinatorial optimisation

There is a class of optimisation problems that is ideally suited to be solved by
ant colony techniques. For example, the famous Travelling Salesman Problem
(TSP) is an extremely difficult problem at large scales (i.e., NP-hard), and
many different techniques have been developed to solve it. The TSP is defined
as follows: "Given a set of N cities with the distance between each pair of cities,
find the shortest tour that includes each city exactly once, and ends with the
city of origin." Each city can be represented by a number from 1 to N, and a
distance matrix d is created such that dij gives the distance from city i to city
j. A tour can then be represented by a vector of N numbers, and the distance
travelled is easily computed. A recent algorithm inspired by ant colonies, called
the Ant System, is described below.

2.2.1. The ant system algorithm

The Ant System (AS), Dorigo, Maniezzo and Colorni (1996), is described as
applied to the Travelling Salesman Problem. While some of the features of the
algorithm are tailored to the TSP, it has been shown that the same approach
can be applied to other combinatorial problems, Dorigo, Maniezzo and Colorni
(1996).

Given a set of N towns, the matrix d is created to contain the distance
between towns (as previously described). There are a constant number of m

416 M. WODRICH and G. BILCHEV

Figure 2. Pheromone trails from food and nest. Soon, ants find food and start
depositing pheromone as they try to return to the nest. Since no trails exists
to lead them back to the nest, they move essentially randomly. Eventually an
ant will find the nest by chance, and start depositing pheromone trails as it
re-emerges seeking food.

Figure 3. Shortest route to food. Quickly the ants converge to a single route -
the shortest path from nest to food.

Cooperative distributed search: the ants' way 417

ants dispersed among the cities, so that at discrete time t there are bi (t) ants
in town i. Initially ants may be dispersed randomly among the cities, or all in
the same city. (Performance is slightly improved if random dispersion is used).
Ants move to another city at the start of each time unit, and select which city
to move to based on the pheromone trail and distance between cities. Initially
the trail quantity is set to a small value for all routes (to cause ants to select
cities with equal probability).

Each ant is a simple agent that:
• Chooses a town to move to with a probability that is a function of the

distance and the amount of pheromone on the connecting route.
• Only makes legal tours (it can only visit each city once). To implement

this, each ant has its own tabu list, which stores the cities an ant has
already visited. An ant can then only move to a city if it is not in the list,
after which the city is added to the list.

• After completing a tour of the cities (every N time units, if there are N
cities), the ant's tabu list is cleared, and pheromone is laid on the routes
travelled during the tour.

If Ti.i (t) is the amount of pheromone trail at time t on the route linking cities
i and j, then the equation for updating the trail is given by:

where p E [O, 1] is a constant governing the rate of pheromone evaporation:

m

i6.Ti7' = " ' i 6 , _ 7k ,' i,1

k=l

where m is the number of ants, and

if ant k uses the route from city i to j in its tour
otherwise

where Q is a constant, and Lk is the tour length of the k-th ant.
Since the amount of trail added is inversely proportional to the distance

travelled by an ant, it is clear that shorter routes are more attractive. The
positive-feedback mechanism described previously will cause the ants to quickly
start following similar routes, until they all converge towards the shortest route
found. However, it is possible to give the ants some "intelligence" to further
accelerate the process, by enabling them to factor the distance between town
into their decision-making process.

The probability of an ant selecting a valid city (not in the tabu list) is given
by:

418 M. WODRICH and G. BILCHEV

1. Initialise pheromone trail on all routes.
2. Place ants at random locations and clear tabu lists.
3. For t = 1 to N select which city each ant moves to and add it to tabu list.
4. Compute length of each ant's tour and preserve the shortest tour found

so far.
5. Evaporate pheromone.
6. For ant = 1 to M add pheromone trail to routes used by ant.
7. Repeat from step 2 until maximum number of iterations or ants stagnate

Figure 4. The ant system algorithm for the TSP

A summary of the algorithm is presented in Figure 4. The algorithm is
remarkably simple, although there are slightly more complex variations (mainly
altering the way pheromone trail is added). For a more detailed discussion of
the Ant System and results obtained on several standard problems, the reader
is referred to Dorigo, Maniezzo and Colorni, (1991; 1996).

The above decribed algorithm cannot be directly applied to engineering de-
sign problems where there are both discrete and continuous variables. An al-
gorithm suitable for such problems, based on ant-colony behaviour and incor-
porating a similar selecting mechanism to the Ant System, has been developed
initially by Bilchev and Parmee (1995; 1996). The next section describes this
algorithm.

3. Algorithm description
The algorithm is based almost entirely on the algorithm described by Bilchev
and Parmee (1995; 1996). However, some modifications have been made that
improve performance. Aspects not fully covered in the previous papers are
described in detail, as they are vital to effective global function optimisation.
Since the algorithm was originally developed for fine local search after promising
regions have been identified using other techniques, the previous papers concen-
trated almost entirely on the local search process. The algorithm described
in this paper includes a global search mechanism, resulting in a stand-alone
optimisation algorithm.

While the Ant System performs well on combinatorial problems, it cannot be
directly applied to continuous optimisation problems. Combinatorial problems
always have a finite number of possible solutions (e.g., N factorial), while this is
not true for continuous problems. One cannot directly represent such problems
as connected graphs (cities linked by routes, etc.), and other representations are
needed.

What characterises the co-operation mechanism of the Ant System, is that
ants select where to go from a finite set of destinations, with the selection prob-
ability based on pheromone quantity. In order to implement this in continuous

Cooperative distributed search: the ants' way 419

problem space, it is necessary to create a finite number of destinations in the
problem space (called regions).

While each region acts as a destination for the local ants to explore, it can
also be seen as a trial solution to the optimisation problem. The encoding of re-
gion positions depends largely on the chosen local and global search techniques.
Since the techniques described in this paper use mathematical operations to
modify positions, it is more natural to use base 10 encoding; region positions
are encoded as vectors of real numbers.

These regions are initially distributed randomly in the problem space, and
evolve over time due to the actions of the search agents (ants), so that they
gradually become located in regions of high fitness. The regions are updated
as the result of two different search processes: local search and global search.
Since there are two search processes, the search agents (ants) must be divided
between them. The ratio of agents perfo rming local search (local agents) to
agents performing global search (global agents) can be varied, and the division
of agents is one of the parameters of the ACO algorithm. Generally it is efficient
to split the agents 20%-80% between local and global search.

As mentioned previously, global search is important for avoiding local max-
ima, and can be generally seen as a process that produces large fluctuations
in a trial solution. Given the ant-colony metaphor, and the presence of a finite
number of regions as described previously, some mechanism must be provided to
allow ants to search large areas surrounding the region centre. Termed "random
walk" and "trail diffusion" in the original papers, Bilchev and Parmee (1995;
1996), this process is implemented using aspects of Genetic Algorithms to allow
regions to exchange information.

It is important to realise that the actual local and global search methods
employed are not fixed by the algorithm It is possible to integrate any local or
global search method into the ACO algorithm, making it possible to increase
performance by using problem-specific methods. While more complex methods
are likely to increase performance of the algorithm, this is not guaranteed. This
paper focuses on a combination of deliberately simple search methods, to illus-
trate the power of the ant colony metaphor. The local search method described
is a variation of Stochastic Hill-climbing, while the global search technique bor-
rows extensively from Genetic Algorithms. While the GA-like method performs
well, it has no biological link to ant-colony behaviour. The link between the
algorithm and the ant-colony metaphor is therefore in the recruitment mecha-
nism.

3.1. Local search

The local search technique described is based on Stochastic Hill-climbing, but
utilises the pheromone trail leading to regions to influence the search process.
Each region is also given an age that stores the number of unsuccessful local
search attempts, used to scale the size of the region explored. The basic outline

420 M. WODRICH and G. BILCHEV

of the search process is as follows:
1. An ant selects a region with a probability proportional to the pheromone

value of the "route" to that region. (The ant is imagined to follow a path
from a virtual nest to the region's position.)

2. Once at the region, the ant moves a short distance and the fitness at this
point is calculated.

3. The direction the ant moves is either:
• The same as the direction climbed by the previous ant that selected

this region, if that ant found an improved fitness value.
• A random direction otherwise.

4. If the ant obtains a higher fitness value, the region is moved to the ant's
position, the ant deposits pheromone proportional to the improvement
made in the region's fitness, and the region's age is decremented.

5. Otherwise, the age of the region is incremented.
The probability of a region being selected by an ant is given by:

) Ti(t) Pi(t =
 () k Tk t

where i is the region index and Ti(k) is the pheromone trail on region i at time
t. Initially the trail value for all regions is initial.ised to a constant value To , so
that regions are selected with equal probability. This, value grows due to trail
addition in step 4 above, where trail is added in proportion to the increase in
fitness. The reverse process of evaporation causes attention to be diverted from
regions that fail to provide improved fitness. This is analogous to food-source
exhausting, where ants rapidly loose interest in a route to food once all the food
has been transported back to the nest. Unlike real ants, however, it is possible
for the ACO to mistakenly re-search a region, since there is no mechanism to
record previously exhausted regions. (This would be difficult to achieve in large
search spaces.) Thus, it is possible for a region to "migrate", through local
search, to a previously exhausted local maximurri.

The size of the step made by an ant depends on the age of the region, with the
size decreasing with increasing age. This enables ants to adapt the area of the
local search, improving convergence if a higher fitness is obtained successively
in the same direction.

The step size varies linearly between a Maximum Search Radius (for an age
of zero), and a Minimum Search Radius (for an age equal to the Maximum Age,
a constant parameter). These radii arc fractions of the available variable ranges
to search, enabling the local search to scale automatically for small or large
variable ranges.

3.2. Global search

As previously mentioned, the global search procedure consists of two GA-inspired
methods, random walk and trail diffusion.

Cooperative distributed search: the ants' way

- - - - - - - - - - - - - N r e g i o n s - - - - - - - - - - - ♦
fittest weakest

I
- - - - - - N - G p a r e n t s - - - - - - - - - - - G children _ _ .

Figure 5. Creation of new regions

421

The global search process creates G new regions (where G is the number of
global search agents). These new regions replace the weakest existing regions,
implying that the total number of regions must be greater than the number
of global search agents. The new regions are created by selecting information
from the remaining (fitter) regions, using GA operations such as crossover and
mutation. (See Figure 5). The new regions can be seen as "children" of the
remaining "parent" regions.

Random walk can be seen as the creation of new regions by ants exploring
the entire problem space. As a real-world analogy this may be seen as foraging
members of the ant colony that attempt to discover new food sources. Once a
possible food source has been discovered, these ants must attract the remaining
ants by depositing a pheromone trail. Within the ACO framework, the new
region must be given a pheromone value to attract local agents. The region can
then be verified as a "food source" through the local search process.

While there are many possible implementations of the random walk process,
the one chosen employs both stochastic steps in region positions and genetically
motivated "inheritance" of position information. The process consist of:

1. Creating a new region based on information f1 .,Ill parent regions (analo-
gous to crossover in Genetic Algorithms).

2. Adding a random step to the "child" region (analogous to mutation in
Genetic Algorithms), with a probability equal to a defined Mutation Prob-
ability.

To control the selection of parents for the new region, a Crossover Probability
is used. Initially a single parent is chosen, and the first element of the child's
position vector is set to the corresponding clement in the parent. For each
subsequent element, a new parent may be selected with a probability equal to
the above Crossover Probability (CP). Thus, if the CP is equal to 1.0, each
element in the child's position has a different parent. For a CP of 0.0, each
element has the same parent (and the child is thus identical. to the parent). The
need for a tunable CP is born out by empirical results as will be demonstrated
in Section 4.

In addition to knowing when to select a parent, a method of selection is also
needed. In the ACO, all parents have equal probability of being selected.

The "mutation" process is responsible for ensuring that the entire search
space is covered by the random walk process, by adding a random step to

422 M. WODRICH and G. BILCHEV

the child's position. Since the need for global search decreases as the search
process continues, it is desirable to scale the step size during the run of the
search process. This enables the algorithm to focus the search in ever decreasing
regions around known optima. This, in turn, increases the probability of locating
maxima, since the density of the search increases during the run of the algorithm.
Each element of the child's position vector has a fixed probability (Mutation
Probability) of being mutated by this operation, otherwise it is left unaltered.

The scaling of the global search is achieved by non-linearising the mutation
step size. At the start of the search process, the entire problem space is equally
likely to be searched. As the search progresses, the probability of large steps
decreases sharply. The step size is obtained from the following equation:

where r is a random number from [O, 1], R is the maximum step size, T is the
search iteration [O, 1], and b is a positive parameter controlling the degree of
non-linearity. The step is applied to each element of the position vector, with
the polarity of the step equally likely to be positive or negative. The value R
is then the maximum step size that will allow the element to remain within its
defined range. (The value 7.1 with the range [O, 10] will have an R of 2.9 [+step]
and 7.1 [-step].) The value of T is obtained by dividing the current iteration
number by the maximum number of iterations. Thus at the start of the search
process T will be 0, and it will increase linearly to 1 at the end of the search
process.

Once the "child" region has been created by following these two steps, the
fitness value is evaluated. It is then necessary to set the pheromone trail value
to encourage local search of the new region. Since the trail value for a region is
a function of the local search performance, it is difficult to reliably set the trail
value for a newly created region with no local search having been performed
on it. If the assigned trail value is too low relative to the other regions, it is
unlikely the new region will be chosen for local search. However, if the assigned
trail value is too large, the region will unfairly attract local agents from other,
possibly more promising regions.

A heuristic rule is that the assigned trail value should be between the lowest
and highest trail value of the parent regions. Using the average trail value of
the parents means that the probability of the new region being selected for local
search is equal to the average probability of a parent being selected. In this
way, the new region is likely to be selected, but is not likely to unfairly attract
local agents.

The second global search method employed, Trail Diffusion; is similar in
many respects to arithmetic crossover in Genetic Algorithms. The position of
a child region produced by trail diffusion is obtained from the weighted average
of a number of parent regions. Whereas in the random walk process, one parent
is selected at a time, trail diffusion selects a pair of parents. The Crossover ·

Cooperative distributed search: the ants' way 423

1. Initialisation:
2. R = number of regions, L = number of local agents, G = number of global

agents
3. Iterations = 0
4. Position regions at random locations, evaluate fitness, and set trail to zero.
5. Iterations = Iterations + 1
6. Send ants:
7. Send G Global agents, which do not deposit pheromone, and update global

maximum.
8. Send L Local agents, which may deposit pheromone, and update global

maximum.
9. Evaporate trail for all regions.

10. Repeat from Step 5, until maximum number of iterations.
11. Display global maximum.

Figure 6. The ACO algorithm

Probability (CP) is again used to indicate when a new pair of parents is to be
selected, and parents are again selected with equal probability.

There are three possible values for each element of the child's position vector:
1. The corresponding- element from parent 1.
2. The corresponding element from parent 2.
3. A weighted average of the above two:

xi(child) = (a .) · xi(parent1) + (1 - a.)· xi(parent2)
where a. is a uniform random number from [O, 1]

The probability of option 3 above being used is equal to the Mutation Prob-
ability, with options 1 and 2 equally probable otherwise (i.e., if the Mutation
Probability is 0.5, the probability of options 1 and 2 being selected is 0.25 each).
The fitness of the new region is calculated, and the trail value set to the average
trail of the parent regions (as for random walk).

3.3. Pheromone evaporation

An important aspect of the ACO algorithm is the pheromone communication
algorithm. To implement a process similar to food-source exhausting in real
ants, it is necessary to decrease the amount of pheromone globally, so that
without the addition of trail, a region will no longer be selected by ants. (This
feature is a form of "forgetting", which is used in many algorithms to improve
diversity and avoid premature convergence).

The evaporation process is described by the equation Ti(t + 1) = p • Ti(t),
where p is the Evaporation Rate, and Ti(t) is the trail associated with region i
at time t.

To summarise, an outline of the algorithm is given in Fig. 6.

4 2 4 M. WODRICH and G. BILCHEV

3.4. Constrained optimisation

The algorithm described above has no features that enable it to effectively han-
dle constrained optimisation problems. However, with very few modifications,
it is possible to adapt the algorithm to effectively handle constraints.

The primary feature incorporated into the algorithm is the concept of con-
straint violation. Given a set of constraints applying to a problem, every trial
solution can be tested to determine whether it lies within the feasible region.
The constraint violation is a measure of how far outside the feasible region a
solution lies, and is calculated as the sum of the violations of each constraint. If
the problem contains equality constraints, the feasible region may have infinitely
small area. The constraint handling mechanism described below is unable to
handle this case. One can either eliminate a variable (if the equality is an
analytic equation), or change it into an inequality constraint:

Gi(x) = 0 becomes IGi(x)I s E, where Eis the desired accuracy.

For example, given the constraints: x + y S 10 and x • y 2: 1 (for a 2-
dimensional problem), the solution (1, 2) has a constraint violation of 0. The
solution (11, 0) would have a constraint violation of 2.

During the local search process ants search for local improvements in fitness.
The improvement in fitness acts like a food source that is exploited by the
ants. With the constraint handling mechanism, a point is only accepted as a
"food source" if its constraint violation is below an acceptable threshold. The
acceptable constraint violation changes over time, decreasing linearly from an
initial value to the desired final constraint tolerance. This causes ants to be
drawn back into the feasible region as the search progTesses, but allows limited
exploration within the non-feasible region.

The final adjustment needed to the ACO algorithm is a method of ranking
regions in order or fitness, so that newly created regions replace the weakest
existing regions. (See Figure 5). For unconstrained problems regions are ranked
based on the objective function value only. Constrained problems make use of
the constraint violation to further discriminate between regions.

A region R l is considered fitter than another region R2 iff:
• The two constraint violations are equal (or below the acceptable thresh-

old), and the objective function value of R l is greater than that of R2,
or

• The constraint violation of R l is less than that of R2.

3.5. Discrete ACO (DACO)

The above algorithm is naturally applicable to many real-world problems. How-
ever, comparisons between base 10 encoded, and base 2 encoded (discrete) al-
gorithms, are unfair. To enable fair comparison of the ACO algorithm with
exisiting algorithms such as Population-Based Incremental Learning (PBIL),

Cooperative distributed search: the ants' way 425

Baluja (1994), and binary-coded GAs, a discrete version of the ACO algorithm
is needed.

Instead of re-formatting the algorithm to operate with bit-string represen-
tations of a solution, it is far simpler to adapt the real-coded algorithm. The
approach taken is as follows: All position vector elements arc forced to have
discrete integer values (0.0, 1.0, 2.0, etc.) The algorithm using discrete values
only is called Discrete ACO (DACO), whereas the original ACO algorithm using
real-coding is called Continuous ACO (CACO).

The DACO algorithm differs in three respects from the CACO algorithm:
l . The initial regions must be created with discrete values.
2. The local search process must only take integer steps.
3. The global search processes must maintain the discrete nature of the el-

ements by altering the random walk (mutation) operation and the trail
diffusion (arithmetic crossover) operation, to produce discrete valued chil-
dren.

Alteration 1 is easily achieved by using a discrete random number generator
(or by rounding off random floating-point numbers).

Alteration 2 is achieved by slightly changing the local search process. The
region age is no longer needed to scale the local step size; the step size is al-
ways l . The polarity of the step for each variable is defined by a vector where
the sign of the elements indicates whether the corresponding variable is to be
incremented or decremented. Thus the position vector (1, 2, 3) and the climb
direction [+ 1, - 1 , -1] produce a new position vector (2, 1, 2). As in the original
ACO, a climb direction is preserved for future local agents to use if it leads to
increased fitness. Unsuccessful climb attempts cause the direction vector to be
randomised.

Alteration 3 involves two changes: The random walk process must produce
discrete values, so the non-linearity of the search scaling must be expressed in
a form that produces discrete steps in variables. The equation for the step size
is now:

6.(T, R) = I R . (l - r (l - T)b
) l

where r is a random number from [O, 1], R is the maximum step size, and bis a
parameter controlling the degree of non-linearity (as before). The function Ix l
returns the smallest integer greater or equal to x (it is called "ceil", for ceiling,
in most computer maths libraries).

The trail diffusion process must be altered so that the arithmetic crossover
process returns a discrete value:

xi(child) = I a · xi(parenti) + (1 - a) · :r,i(parent2)l

where a is a uniform random number from [O, 1]
These simple modifications allow the algorithm to operate in discrete prob-

lem spaces, and makes comparison with other discrete-coded algorithms possi-
ble. For example, to test the DACO on a function and compare the results with

I

426 M. WODRICH and G. BILCHEV

those obtained with a GA using 9 bits per variable, with each variable having
the range -2.56 ::; Xi < 2.56:

1. The discrete range of each variable is set to [0, 511] since there are 512
discrete values represented by 9 bits.

2. The continuous range of each variable is set to [-2.56, 2.56), enabling
the DACO to automatically convert from discrete to real numbers. The
objective function code does not necessarily need to be altered when one
switches from CACO to DACO, since the discrete to real conversion can
be done transparently before the function 1.s evaluated.

The DACO does not rely on a particular coding scheme (Binary or Gray),
since the algorithm does not operate on individual bits or groups of bits. Since
the only operator used is addition, the underlying representation of the value is
not important. To implement the algorithm one can use either integer (Binary-
coded bit string) or floating-point data types.

Since some engineering problems contain mixed types of variables (some
continuous, some discrete), the integration of DACO with CACO could prove
extremely useful. This would allow fine exploration of continuous variables
while still producing valid discrete values where needed. For example, finding
an optimal microwave filter design would involve choosing f rom the available
set of component values, with the length of transmission line sections being
continuously variable.

4. Experimental results
This section describes the various test functions used to evaluate the perfo r-
mance of the ACO algorithm. All functions arc maximisation problems. (Where
necessary, the original minimisation problems arc transformed to maximisation
problems by negation.) Comparisons are made between the final results ob-
tained using the ACO and various other algorithms (depending on the results
available in the literature).

The ACO algorithm is tested using (at most) the same number of objective
function evaluations. Where discrete coding has been used by other algorithms,
the DACO algorithm is used with the same precision, to enable fair comparison.
To illustrate the difference in performance between DACO and CACO for these
problems, the results obtained using CACO arc also given.

Plots of the ACO algorithm's performance on most of the test functions are
given in the Appendix.

For all test functions the value given for DACO and CACO is the average
maximum value found, averaged over 10 independent runs. The same ACO
parameters are used for all test functions (unless otherwise specified):

• 100 Ants, comprising 20 local agents and 80 global agents. Of the global
agents, 70 perform the "random walk" operation and the remaining 10
perform "trail diffusion" .

• 200 Regions.

Cooperative distributed search: the ants' way 427

Method Average Maximum
DACO 3905.93

Hill-Climbing 3905.93
PBIL 3905.93
GA 3905.93

CACO 3905.93

Table 1. Results for De Jong F2

• The number of iterations is chosen so that the number of function evalua-
tions is less than or equal to the evaluations needed by the other algorithms
compared.

• Evaporation R a t e = 0.9
• Mutation Probability= 0.5
• Crossover Probability= 1
• Initial trail value = 1
• Non-linearity of random walk: b = 10
• Maximum region age = 20
Given A ants, R regions, and I iterations, the number of function evaluations

is equal to R +A· I. The regions are evaluated once at the start of the run, and
new regions arc evaluated by the global agents at each iteration.

4.1. Unconstrained problems

4.1.1. De Jong

De Jong (1975), test functions are commonly used to test GA's. Both are nor-
mally minimisation problems, and have been converted to maximisation prob-
lems Baluja (1994). The standard accuracy used by GAs and the Population-
Based Incremental Learning (PBIL) is 12 bits, and thus the discrete range used
by the DACO algorithm is [0, 4095] for each problem.

4.1.2. De Jong F2 (2D)

The function is:

(3905.93) - 1 0 0 (x 2 - y) 2
- (1 - x 2

), -2.048: : ; x,y::; 2.048

B y inspection the global maximum of 3905.93 is seen to occur at (x, y) =
(1, 1). The results obtained, with 6000 evaluations for each method, are shown
below.

428 M. WODRICH and G. BILCHEV

Method Average Maximum
DACO 55.0
PBIL 55.0

GA 53.5
CACO 55.0

Table 2. Results for De Jong F3

4.1.3. D e J o n g F 3 (5D)

The function is:
5

f (x) = 25.0 - L L x d , -5 .12 ::; xi ::; 5.12
i = l

where L x J is the smallest integer less than or equal to x.
The function has a maximum value of 55.0 for all -5 .12 ::; Xi < 5.0. Due to

the "flooring" of the variables, the function is characterised by flat areas linked
by abrupt steps.

The results obtained, with 6000 evaluations for each method, are shown
below:

4.1.4. Gr iewangk (10D)

The problem was originally a minimisation problem, and was converted to a
maximisation problem in Baluja (1994). Restricted to 2 dimensions the surface
is seen to be highly multimodal, with many like-sized peaks near the origin.
Results given in Baluja (1994) indicate that PBIL and GAs have great difficulty
in finding the maximum value of 10 located at the origin.

The function is:

f(x) =
(

2 ()) , - 5 1 2 ::; X 1 , . . . , X10 ::; 512
0 1 '-'10 x. nlO x· l· + D i = l 405ii - i = l COS ✓,i' +

1

The global maximum of 10 occurs at the origin.
Again, an accuracy of 12 bits is used for comparing the performance of DACO

to the results published by Baluja using GA and PBIL. The results obtained
are:

4 .1.5. Homaifar

These two problems are used in Fogel (1995). Fogel uses evolutionary progTam-
ming, and compares his results with Homaifar's results using a GA. Originally

Cooperative distributed search: the ants' way 429

Method Evaluations Average Maximum
DACO 50,000 10.0

Hill-Climbing 200,000 10.0*
PBIL 200,000 5.49

GA 200,000 3.52
CACO 50,000 10.0

(* Baluja reports obtaining 10.6223, which cannot be correct since the global
maximum is 10.0)

Table 3. Results for Griewangk

the problems were minimisation problems, and have been converted to maximi-
sation problems for use by the ACO by negating the original objective functions.

Although the problems are constrained optimisation problems, they are
transformed into unconstrained problems using a penalty function to penalise
non-feasible solutions. To enable comparison with the other methods, the ACO
uses the same technique. However, since the objective functions changed to
maximisation problems, the penalty term is subtracted from the objective func-
tion value (instead of being added).

Details of the penalty functions are not included here for brevity, and can be
found in Fogel's paper. Since the method used by Fogel, Evolutionary Program-
ming (EP), relies on real-coded solutions, the CACO algorithm is applied to this
pair of test function, and the results compared with those obtained using EP.
The GA results given in Fogel's papers are included for comparison, although
the coding method used (bit-string or real) and accuracy were not specified.
For further comparison, the DACO algorithm is applied as well, using 12-bit
accuracy.

Function 1 (2D) The objective function is

f(.-r1, x 2) = - ((x1 - 2) 2 - (x2 - 1) 2)

Subject to the constraints:

.-rr 2 X1 - 2X 2 + 1 = 0, - 4 - X2 + 1 2". 0

with the variable ranges being:

-1 .82 X1 0.82, -0.41 X2 0.92

The number of ants used by the DACO is 40, to correspond to the popula-
tion size used by the Evolutionary Programming (EP) algorithm. The results
obtained are:

430 M. WODR.ICH and G. BILCHEV

Method Evaluations Average Maximum
CACO 4,000 -1.3773

E P 4,000 -1.3789
GA 40,000 -1.4339

DACO 4,000 -1.4609

(The E P and GA results were converted from minima to maxima by negation,
since the objective function was negated for use by the ACO algorithm).

Table 4. Results for Homaifar F l

Method Evaluations Average Maximum
CACO 4,000 31019.049

E P 4,000 31006.267
GA 40,000 30175.804

DACO 4,000 30963.941

(The E P and GA results were converted from minima to maxima by negation,
since the objective function was negated for use by the ACO algorithm).

Table 5. Results for Homaifar F2

Function 2 (5D) The objective function is:

f(x1, . . . , x5) = 5.3578547x + 0.8356891x1X5 + 37.293239x1 - 40792.141

subject to the constraints:

0 S 85.334407 + 0.0056858x2x3 + 0.00026x1x4 - 0.0022053x3X5 S 92

90 S 80.51249 + 0.0071317x2,1:5 + 0.0029955.1:1.1:2 + 0.0021813x S 100

20 S 9.300961 + 0.0047026x3X5 + 0.0012547x1x3 + 0.0019085x3x4 S 25

with the variable ranges:

78 S X1 S 102, 33 S X2 S 45, 27 S X3, . . . , X5 S 45

The number of ants used by the DACO is again 40, to correspond to the
population size used by the Evolutionary Programming (EP) algorithm. The
results obtained are:

Cooperative distributed search: the ants' way 431

Method Average Maximum (xlO0)
DACO(CP= 0.0) 6.84

PBIL (Gray code) 2.62
DACO(CP= 0.5) 2.45

PBIL (Binary code) 2.12
SGA (Binary code) 1.96

DACO(CP= l .0) 1.77
Hill-Climbing 1.21

CACO (CP= 0.0) 5.44
CACO (CP= l .0) 1.26

Table 6. Results for Baluja F I

4.1.6. Baluja {lOOD)

These three problems are to be found in Baluja (1995). All the problems use
bit-string encoding with 9-bit precision. The DACO algorithm is used for com-
parison with a discrete range of [0, 511].

For all three functions the variable ranges are -2 .56 ::; xi ::; 2.56, i =

1, . . . , 100. A small constant C = l e - 5 is added to the denominator of the
functions to avoid division-by-zero.

Function 1

Y1 = x 1, Yi = xi + Yi- l , i = 2, . . . ,100

ti(x) = I I C + IY1 I + I:i IYil

1

The global maximum of 100,000 occurs at the origin.
There is a high degree of inter-dependence between elements of a trial solu-

tion (small changes in early portions of the trial solution have a cascade effect on
subsequent values of Yi)- For this reason, the crossover operation is unlikely to
create regions of high fitness: trial solution elements cannot be mixed between
different regions. Thus, better results are obtained using a Crossover Probabil-
ity (CP) of 0.0, as opposed to the default of 1.0. Results using both values of
CP are given below.

The results obtained, with 200,000 evaluations for each method, are shown
in Table 6.

Function 2

Y1 = X1, Yi = Xi + sin(Yi-1), i = 2, . . . , 100

432 M. WODRICH and G. BILCHEV

Method Average Maximum (xlO0)
DACO(CP=0.0) 12.79
DACO(CP=0.5) 8.80
DACO (CP=l.0) 8.28
PBIL (Gray code) 5.61

GA-Scale (Gray code) 4.63
PBIL (Binary code) 4.40

Hill-Climbing (Gray code) 4.38
CACO (CP=0.0) 8.77
CACO (CP=l.0) 5.52

Table 7. Results for Baluja F2

h(x) =
j 100 j C + IY1I + L i = 1 IYil

1

Again, the global maximum of 100,000 occurs at the origin.
As in function 1, there is a high degree of inter-dependence between elements

of a trial solution. Again, the results obtained using a CP of 0.0 and 1.0 are
shown.

The results obtained, with 200,000 evaluations for each method are shown
in Table 7.

Function 3
1

h(x) = 100 .
C + L i = l j0.024(i + 1) - Xii

The continuous global maximum of 100,000 occurs at Xi = 0.024(i + 1)
Using 9-bit accuracy, the global maximum is 416.64
Since there is no inter-dependence in this function (the summation term for

a particular is independent of the value of other x/s) , the default Crossover
Probability of 1.0 is used.

The results obtained, with 200,000 evaluations for each method, are shown
in Table 8.

4.1. 7. Artificial neural network weight optimisation

Recently evolutionary algorithms have been applied to evolving weights of artifi-
cial neural networks (ANNs) Hart (1994), Michalewicz (1995). The test function
involves finding the optimal weight values for the 46 trainable weights in a simple
parity network described in Baluja (1995).

Cooperative distributed search: the ants' way 433

Method Average Maximum (xlO0)
Hill-Climbing (Gray code) 416.64

PBIL (Gray code) 366.77
DACO 253.80

GA-Scale (Gray code) 210.37
PBIL (Binary code) 16.43

GA-Scale (Binary code) 12.30
Hill-Climbing (Binary code) 8.10

CACO 54231

Table 8. Results for Baluja F3

Output Unit

Hidden Units

(other units as for first) Bias Unit

Input Units 0 0 0 0
Figure 7. ANN Topology

The object of the ANN is to calculate the parity of 7 input bits. The bits
are either 0 (represented by -0.5) or 1 (represented by +0.5). If the parity was
1, the target output of the ANN is +0.5, and for a parity of 0 the target is -0.5.
The objective function is the sum of squares error for the 128 training patterns.
Since this is a minimisation problem, it is transformed into a maximisation
problem for use by the ACO algorithm by negating it.

The network contains a bias unit whose input is permanently set to 1.0. The
bias unit is connected to the 5 hidden units and single output unit. Each input
unit is connected to the 5 hidden units, and each hidden unit is connected to
the output unit. The network topology is shown in Figure 5 (only the first input
unit's connections are shown).

The values of the weights are restricted to the range [-10, 10]. 8 bits are
used to represent each weight in Baluja (1995), and the DACO is applied using
the same discrete representation (ie. [0, 255]). All hidden and output units use
a sigmoid activation function (tanh(activation)/2), with no scaling of the input
activation.

The results obtained, with 200,000 evaluations for each method, are shown

434 M. WODR.ICH and G. BILCHEV

Method Average Maximum
DACO -7.84

PBIL (Gray code) -8.2
SGA (Gray code) -11.6

Hill-Climbing (Gray code) -13.7
CACO -8.89

Table 9. Results for ANN parity network

in Table 9. The results for the other methods have been negated since the
objective function was negated for the DACO.

4.2. Constra ined problems

The ant colony search model for constrained optimisation is first tested on the
five test cases proposed by Michalewicz (1995b). During these experiments
the constraint violation is calculated as Eucleadian distance from the accepted
feasible region.
t e s t case # 1 : . F(X) = 5.1:1 + 5x2 + 5x3 + 5x4 - 5 I : ;=1 x;, - I : i ! 5 Xi

subject to:
2x1 + 2x2 + X10 + x11 : ; 10,
2x1 + 2x3 + x10 + x12 : ; 10,
2x2 + 2x3 + X11 + X12 : ; 10,
-8X1 + XlQ : ; 0,
-8X2 + X11 : ; 0,
-8X3 + X12 : ; 0,
-2X6 - X7 + X11:; 0,
-2X4 - X5 + X1Q : ; 0,
0 : ; Xi : : ; 1, i = 1, . . . , 9, 13,
0 : ; Xi : : ; 100, i = 10, 11, 12.
The problem has 9 linear constraints; the cost function is quadratic with
global minimum at X = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), where F(X) =
-15 .

t e s t case # 2 : F(X) = x1 + x2 + X3
subject to:
1 - 0.0025(x4 + X5) ::::: 0,
1 - 0.0025(x5 + X7 - x4) ;:::: 0,
1 - 0.Ol(xs - x5) ;:::: 0,
x 1x 6 - 833.33252x4 - 100x1 + 83333.333 ;:::: 0,
X2X7 - 1250000 - X3X5 + 2500.1:5 ::::: 0,
1 0 0 : ; X1 : ; 10000,
1000 : ; X i : : ; 10000, i = 2, 3,

Cooperative distributed search: the ants1 way 435

10 :::; Xi :::; 1000, i = 4, . . . , 8.
The problem has 3 linear and 3 non-linear constraints; the cost function
is linear and has its global minimum at X = (579.3167, 1359.943, 5110.071,
182.0174, 295.5985, 217.9799, 286.4162, 395.5979) where F(X) = 7049.330923.

test case # 3 : F(X) = (x1 - 10) 2 + 5(x2 - 12) 2 + xi + 3(x4 - 11) 2 + lOx +
7x + x * - 4x6x7 -10x6 - 8x1
subject to:
127 - 2Xi - 3X - X3 - 4X - 5X5 0,
282 - 7x1 - 3x2 - 10x5 - X4 + X5 0,
192 - 23x1 - x§ - 6x + 8x1 0,
-4xr - X§ + 3x1x2 - 2x5 - 5,r,6 + l lx7 0,
-lQ.0:::; Xi:::; 10.0,i = 1, . . . , 7.
The problem has 4 non-linear constraints; the cost function is non-linear
and has its global minimum at X = (2.330499, 1.951372, -0.4775414,
4.365726, -0.6244870, 1.038131, 1.594227) where F(X) = 680.6300573.

test case # 4 : F(X) = e"' 1 x 2 x a x 4 x s

subject to:
Xi + X§ + X5 + X + X = 10,
X2X3 - 5X4X5 = 0,
xr + x = -1 ,
-2.3:::; Xi:::; 2.3,i = 1,2,
-3.2:::; Xi:::; 3.2,i = 3,4,5.
The problem has 3 non-linear constraints; the cost function has its global
minimum at X = (-1. 717143, 1.595709, 1.827247, -0 . 7636413, -0 . 7636450)
where F(X) = 0.0539498478.

test case # 5 :

F(X) = Xi + x + X1X2 - 14x1 - l6x2 + (x3 - 10) 2 + 4(x4 - 5) 2

+(x5 - 3) 2 + 2(x6 - 1) 2 + 5x + 7(xs - 11) 2

+2(x9 - 10) 2 + (x10 - 7) 2 + 45

subject to:
105 - 4x1 - 5x2 + 3x1 - 9xs 0,
- l0x1 + 8x2 + 17x1 - 2xs 0,
8x1 - 2x2 - 5xg + 2x10 + 12 0,
-3(x1 - 2) 2 - 4(x2 - 3) 2 - 2x5 + 7x4 + 120 0,
-5xr - 8x2 - (x3 - 6) 2 + 2x4 + 40 0,
-Xi - 2(x2 - 2) 2 + 2X1X2 - 14X5 + 6X6 0,
-0.5(x1 - 8) 2 - 2(.r,2 - 4) 2 - 3.r, + X6 + 30 0,
3x1 - 6x2 - 12(xg - 8) 2 + 7x10 0,
-10.0:::; Xi :S; 10.0,i = 1, . . . , 10.
The problem has 3 linear and 5 non-linear constraints; the cost function
has its minimum at X = (2.171996, 2.363883, 8. 773926, 5.095984, 0.9906548,
1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where F(X) = 24.3062091.

436 M. WODRICH and G. BILCHEV

runs test 1 test 2 test 3 test 4 test 5
opt. -15.00 7049 680.6 0.054 24.30
l. -14.39 7293 680.8 0.053 26.53
2. -14.46 7624 680.8 0.054 25.83
3. -14.76 7486 680.9 0.055 25.81
4. -14.45 7674 680.8 0.066 26.04
5. -13.93 8009 680.8 0.056 26.12
6. -14.59 7343 681 0.055 25.78
7. -14.46 7774 681 0.057 26.78
8. -14.53 7650 680.8 0.055 25.72
9. -14.33 8082 680.9 0.054 26.29

10. -14.64 7704 681 0.056 25.72
aver. -14.45 7663 680.9 0.056 26.06

Table 10. Results of running the Ant Colony model on the five test cases
proposed in Michalewicz (1995b). The assumed constraint violation accuracy is
0.01 for each constraint.

The ant colony search model outperforms six of the existing state-of-the-
art evolutionary constrained handling techniques described in Michalewicz
(1995b). Results arc summarised in Table 10.

Compared to other evolutionary methods for constrained optimisation the
ant colony model shows excellent performance and quality of solution especially
for the problems with non-linear constraints. A remarkable feature of the ant
colony model is that the standard deviation of the solutions (averaged over 10
independent runs) is considerably less that the standard deviation produced by
other evolutionary methods for constrained optimisation Michalewicz (1995b).

4.2.1. Keane's Bump (20D, 50D)

Keane (1994) bump problem is defined for any number of dimensions N, al-
though N = 20 and N = 50 arc commonly used instances. This problem is of
particular interest to engineers since it resembles many engineering optimisation
problems: it is highly multimodal, has high dimensionality (N = 50), and the
global maximum is found against the constraint boundary.

The function is:

Cooperative distributed search: the ants' way

Method Evaluations Average Maximum
DACO 30,000 0.826

GA 150,000 0.779
PBIL 150,000 0.755

EP 150,000 0.673
ES 150,000 0.578
SA 150,000 0.395

CACO 30,000 0.823

Table 11. Results for Keane's Bump 50D

Subject to the constraints:
n n l5n II Xi > 0.75, L X i < 2

i=l i=l

where n is the number of dimensions.

437

While the global maximum is not immediately obvious, the best achieved
value using ACO is 0.834916.

In order to facilitate comparison with results obtained using GA and PEIL
with 12-bit precision, the DACO algorithm is used for comparison with a discrete
range of [O, 4095].

For the Bump problem in 50 dimensions, the results obtained are shown in
Table 11.

4.2.2. Summary of results for test functions

This section summarises and discusses the results obtained for the test functions
given in the previous section.

Table 12 shows the ACO ranking for each test function, and which version of
the ACO algorithm (DACO or CACO) performed best. For test functions where
the other methods used for comparison used discrete coding, only the DACO
result is used for ranking since the CACO result cannot fairly be compared.

4.3. Discussion o f results

As is seen from Table 12, the ACO algorithm performs very well for all functions,
except Baluja's Function 3. While for this function, the ACO algorithm does not
perform as well as PEIL and Multiple-Restart Hill-climbing, it still outperforms
the Genetic Algorithm. Although not taken into account for ranking of the
algorithms, the Continuous ACO performs extremely well for this function. (See
the Appendix).

438 M. WODRICH and G. BILCHEV

Test Function ACO Ranking Best ACO Version
De Jong F2 1 DACO
De Jong F3 1 DACO

Keane's Bump 50D 1 DACO
Griewangk 1 DACO

Homaifar Function 1 1 CACO
Homaifar Function 2 1 CACO

Baluja F l 1 DACO
Baluja F2 1 DACO
Baluja F3 3 CACO

ANN Weight Optimisation 1 DACO

Table 12. Summary of test results

The reason for this improved performance is most likely to be due to the
increased resolution of the CACO, and not due to more effective search of the
problem space. Baluja has indicated that with increased accuracy, the Hill-
Climbing algorithm obtains higher values than those found using CACO [per-
sonal correspondence]. The use of Gray coding leads to improved performance
of the other algorithms, whereas the DACO uses a discrete representation that
does not rely on the bit coding, and hence cannot benefit.

For the remaining two of Baluja's test problems, the discrete ACO outper-
forms the other algorithms, and performs better than the continuous ACO.
While initial portions of the search for DACO and ACO arc reasonably similar,
the DACO exhibits the ability to find improved fitness values up to the end of
the search process. The CACO's progress, however, stagnates and is unable to
improve the fitness value for the last half of the search. Since the Crossover
Probability used was 0.0, the final stages of the search consist almost entirely
of local search. While the discrete local search process improves the fitness, the
continuous local search process is unable to. This indicates that the continuous
local search algorithm is of little benefit for these functions, and may be of little
use in the continuous search process.

The crossover process is detrimental to the performance of the ACO for
Baluja's Function 1 and Function 2, as explained in the. previous paragraph.
The selection of a suitable Crossover Probability is made difficult since in most
cases the objective function is not known mathematically, but is the result of
a simulation or experiment. As a compromise, if the level of coupling in an
objective function is unknown and cannot be determined, a value of 0.5 is a
good compromise. Using CP=0.5 for Baluja's Function 1 and 2, gives an average
fitness of 2.4536 and 8.7965 respectively (with xlO0 scaling). Thus, performance
is on a par or better than existing algorithms, even using the non-optimal setting

Cooperative distributed search: the ants' way 439

from CP.
In summary, the results indicate that the ACO algorithm is a powerful op-

timisation tool. A useful optimisation algorithm should not only be powerful,
but simple to use. It should not require fine-tuning of parameter values, since
this is usually a time-consuming task.

5. Conclusions
The results obtained for the empirical comparison indicate that the ACO algo-
rithm is as good, if not better, than methods such as GA, PEIL, Hill-climbing
and Evolutionary Programming for the problems tested. As the range of prob-
lems is broad, with different types of problems being well represented, the ACO's
performance on these problems suggests it will perform well in general.

The excellent performance of the algorithm for most problems using the
default parameter values suggests that little parameter-tweaking is necessary in
general. For problems that exhibit a large degree of inter-dependence between
variables in the solution vector, a low Crossover Probability is optimal, although
the algorithm using the default value outperforms standard Genetic Algorithms
on such problems.

The ability to apply the algorithm using real or discrete coding is advan-
tageous, since some problems are more naturally represented and more easily
solved using real coding. However, since many problems in engineering design
contain discrete variables, a version of the ACO allowing mixed real and discrete
variables may be highly useful.

In summary, the ant colony metaphor is a powerful optimisation paradigm,
providing an effective framework for the communication between two methods
in a hybrid optimisation algorithm. The ACO algorithm is similar to hybrid
genetic algorithms with local search, and the extensive use of GA-like operations
makes the naming of the algorithm debatable. It could more correctly be called
an Ant-Genetic-Algorithm to illustrate the various methods employed during
the optimisation process.

The ant colony metaphor is a powerful paradigm for creating hybrid optimi-
sation techniques, since the application of local search agents is well covered. In
traditional hybrid methods (like Genetic Algorithms with Local Search, GA-LS),
the criterion for applying local search is less well-defined. The ACO algorithm is
also powerful in that it allows local agents to co-operate with other, while at the
same time communicating information to the global agents. Other methods typ-
ically lack such co-operation between local agents. The food-source exhausting
analogy is useful in focusing local search in areas where improvement is most
likely, which efficiently distributes the local search agents through the search
space.

The algorithm has some disadvantages, specifically the large number of con-
trol parameters. Some parameter values arc problem-specific, making the algo-
rithm less attractive for use when compared to simpler methods such as PEIL.

440 M. W0DRICH and G. BILCHEV

However, in most cases, the default parameter values allow the algorithm to
perform well in general.

Further avenues of research include studying other hybrid combinations
within the ACO framework, for example, using PBIL instead of GA-like meth-
ods for global search, utilising a more powerful local search algorithm, such as
Sequential Quadratic Programming, and the application of the ACO algorithm
to real-world engineering design problems.

References
BALD.JA, S. (1994) Pop'll,lation-Based Incremental Learning: A Method for In-

tegrating Genetic Search Based Fv,nction Optimization and Competitive
Learning. Internal paper, CMTT-CS-94-163, School of Computer Science,
Carnegie Mellon University.

BALD.JA, S. (1995) An Empirical Comparison of Seven Iterative and Evol'll,tion-
ary F'll,nction Optimization Hev,ristcis. Internal paper, CMU-CS-95-193,
School of Computer Science, Carnegie Mellon University.

BILCHEV, G. and PARMEE, I. (1995) The ant colony metaphor for searching
continuous design spaces. In: Fogarty, T., ed., Lecfore Notes in Compv,ter
Science, 993, Springer Verlag, 25-39.

BILCHEV, G. and PARMEE, I. (1996) Constrained optimization with and ant
colony search model. Prncs. of the ACEDC, Plymouth, UK, 145-151.

CoLORNI, A., DoRIGO, M. and MANIEZZO, V. (1991) Distributed optimiza-
tion by ant colonies. Prncs. o f the Em'Opean Conference on Artificial Life
(ECAL), Paris.

DE JONG, K. (1975) An Analysis of the Behavior of a Class of Genetic Adap-
tive Systems, PhD thesis, University of Michigan, Ann Arbor.

DoRIGO, M., MANIEZZO, V. and CoLORNI, A. (1996) The ai1t system: opti-
misation by a colony of cooperating agents. I E E E Transaction on System,
Man and Cybernetics, B, 26, 1, 1-13

FOGEL, D. (1995) A comparison of evolutionary programming and genetic
algorithms on selected constrained optimization problems. Sim'll,lat?:on,
64, 4, 397-404.

HART, W. (1994) Adaptive Global Optimization with Local Search. PhD thesis,
University of California, San Diego.

KEANE, A. (1994) Experiences with Optimisers in Structural Design. Procs.
of the ACEDC, Plymouth, 14-27.

MICHALEWICZ, Z. (1995A) Genetic Algorithms + Data Strncfores = Evolv,-
tionary Programs. 3rd Edition, Springer-Verlag.

MICHALEWICZ, Z. (1995B) A Sv,rvey of Contraint Handling Techniqv,es in Evo-
l11,tionary Computation Methods. 4th Anual Conference on Evolutionary
Programming, San Diego.

WODRICH, M. (1996) Ant colony optimisation : An empirical investigation
into an ant colony metaphor for continuous function optimisation. Un-

Cooperative distributed search: the ants' way

dergraduate Thesis, University of Cape Town.

Appendix: Plots of ACO Search Progress

3905.94 - - - - - - - - - - - - - - - � - - - - - - �

3905,92

3905.9

3905.88

3905.86

3905.84

3905.82

3905.8

3905.78

3905.76

3905.74

· · · - · · - · - - - - - - - -

D A C O -
CACO

3905.72 � - - � - - - � - - - � - - - � - - � � - - �
1000 2000 3000

Evaluations
4000 5000 6000

Figure 8. De Jong F2 (Average Fitness over 10 runs)

56 - �

55

54

53

51

50

49

48

47

D A C O -
CACO

46 ' - �
1000 2000 3000

Evaluations
4000 5000 6000

Figure 9. De Jong F3 (Average Fitness over 10 runs)

441

442 M. WODRICH and G. BILCHEV

0.9 , - - - - - - - - - - - - - - - - - - - - - -

0.8

0.7

0.6

0.5

0.4

0.3

0.2

.. ..

D A C O -
CACO

0.1 - - - - - - - - - - - - - - - - - - -
5000 10000 15000

Evaluations
20000 25000 30000

Figure 10. Keane's Bump 50D (Average Fitness over 10 runs)

12 . - - - - - - - - - - - - - - - - - - - -

10

8

6

4

2

DACO -
CACO

0'--==--- - -- - -- -- - -- ---'
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Evaluations

Figure 11. Gricwangk (Average Fitness over 10 runs)

Cooperative distributed search: the ants' way

- -······· ········ ··-···················

-1.6 .--·
-1.8

-2

-2.2

-2.4

-2.6 � - - � - - � - - � - - � - - � - - - � - - � - �
0 500 1000 1500 2000

Evaluations
2500 3000 3500 4000

443

Figure 12. Homaifar Function 1 (Average Fitness over 10 runs using CACO)

31200 , - - - - � - - - - - - - - - - - � - - � - - � - - - ,

31000

30800

30600

30400

30200

30000

C A C O -
DACO ···--

29800 ' - - - - � - - � - - � - - � - - � - - � - - � - - - '
0 500 1000 1500 2000

Evaluations
2500 3000 3500 4000

Figure 13. Homaifar Function 2 (Average Fitness over 10 runs using CACO)

444

0.06

0.05

0.04

0.03

0.02

0.01

,
I ,

I , , ,

········--- - -

M. WODRICH and G. BILCHEV

D A C O (0) -
CACO(0) - - ·
DACO(1)
CACO(1)-·-

·-----·····--·--/ ' .,,, --------· -=---------------------------------
. _-;f:";-,• , •::..·:_, _____ •

O'--- -- - -- - -- - ---- --...J
0 20 40 60 80 100 120 140

Evaluations (thousand)
160 180 200

Figure 14. Baluja F l , comparing GP of O and 1 (Average Fitness over 10 runs)

0.14 - - - - - - - - - - - - - - -

0.12

0.1

0.08

0.06

0.04

0.02

, -

, /
I , , . . • • ,' ,. .. --··

---··
I • _ _ ,... _ _ _ _ ,....

,!. --·"'· ____ _,,----·-------·
 r,· , . - - - - - · - · DACO (0) -

.. -;,> , . , · CACO (0) - - ·

: . .-::;:.:,·;;;:;.-:.; -;:::-----
g gg m :::

o - - - - - - - - - - - - - - - -
0 20 40 60 80 100 120

Evaluations (thousand)
140 160 180 200

Figure 15. Baluja F2, comparing GP of O and 1 (Average Fitness over 10 runs)

Cooperative distributed search: the ants' way

1000 - - - - -

100

10

0.1

0.01

_,.

D A C O -
CACO

0.001 ' - - - - - - - - - - - - - - - - - - - '
0 20 40 60 80 100 120 140 160 180 200

Evaluations (thousand)

Figure 16. Baluja F3 (Average Fitness over 10 runs)

-5 - - - - - - - - - - - - - - - - - - - - - - - -

-10

-15

-20

-25

-30

-35

-40

_ . . ,-•

-···

D A C O -
CACO

- 4 5 - - - - - - - - - - - - - - -
20 40 60 80 100 120 140 160 180 200

Evaluations (thousand)

Figure 17. ANN Weight Optimisation (Average Fitness over 10 runs)

445

