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A b s t r a c t :  Applying a general theorem developed by Ba§ar 
(1981), providing a set of sufficient conditions for a triple of strate-
gies to be in hierarchical equilibrium, to games in normal (strategic) 
form, we study three-player Stackelberg games for linear quadratic 
discrete-time descriptor systems with three levels of hierarchy in 
decision making. We derive explicitly sufficient conditions for the 
existence of the memoryless hierarchical equilibrium strategies for 
the player ( called Pi) at the top of the hierarchy, and for the player 
( called A )  at the second level of the hierarchy. Since the resulting 
hierarchical equilibrium strategies do not depend on the memory 
information, P i  's original optimal team cost remains the tight ( at-
tainable) lower bound for P i  's cost function no matter whether the 
players at the lower levels of hierarchy act or not at the last two ( or 
one) stages. Moreover, the resulting strategies have the advantages 
of simpler structure and higher credibility. A numerical example is 
solved to illustrate the validity of the results. 
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1. Introduction
Memory strategy concept is fundamental to the study of Stackelberg dynamic 
game problems with multi-levels of hierarchy in state space systems (Ba§ar and 
Olsder, 1982). Within the context of linear-quadratic dynamic games defined 
in discrete time, two kinds of the closed-loop Stackelberg strategies have been 
obtained in (Ba§ar and Helbuz, 1979; Tolwinski, 1981). Since the essential 
structure of those strategies contains the memory information on state vector, 
different team optimal control problems have been introduced depending on 
whether the follower acts at the last stage of the game or not. For the latter case, 



82 HUA XU, KOICHI MIZUKAMI and MICHIHIKO KOBARA 

the tight lower bound for the leader's Stackelberg cost in the dynamic game will 
be determined completely by the related leader's team optimal control problem. 
Otherwise, the original game must be changed to a new game with transformed 
cost functions for the leader and the follower in order that the method developed 
for the case when the follower does not act at the last stage can be applied to 
solve the problem. Moreover, the closed-loop Stackelberg strategy obtained in 
Ba§ar and Helbuz (1979) is the linear or affine one-step memory strategy which, 
as indicated by Tolwinski (1981), is rather ill-suited for the possible nonoptimal 
behavior of the pla y ers at some stages of the game. In other words, if the follower 
plays nonoptimally at one stage, then the role of the leader's strategy in the 
remaining stages is to penalize the follower for his non optimal behavior. The 
leader's strategy is in no sense optimal when considered in the remaining stages. 
On the other hand, the closed-loop Stackelberg strategy proposed by Tolwinski 
(1981) is the nonlinear memory strategy which has the property of penalizing the 
follower's one stage nonoptimal behavior only at the next stage. The results of 
Ba§ar and Helbuz (1979) is further extended to the three-pla y er dynamic game 
with three levels of hierarchy in decision making Ba§ar (1981), in which the 
so-called hierarchical equilibrium solution concept is defined. Conceptually, the 
method of Tolwinski (1981) can also be extended to the three-level Stackelberg 
games. However, such an extension seems not be an easy work because of the 
complicated structure of the proposed strategies. 

With the properties stated above in mind, we now consider the Stackelberg 
game for discrete-time descriptor systems. In a recent paper (Xu and Mizukami, 
1995), the team-optimal closed-loop Stackelberg game for two-player descriptor 
systems has been studied. An important feature has been found that the closed-
loop memoryless information on descriptor vector is sufficient for the leader to 
construct the team-optimal closed-loop Stackelberg strategy for a large class 
of discrete-time descriptor systems. Moreover, since the resulting strategy for 
the leader dose not involve the memory information on descriptor vector, it 
is not necessary to assume that the follower does not act at the last stage of 
the game. In this paper, we extend the results of Xu and Mizukami (1995) to 
the three-pla y er Stackelberg games for linear quadratic discrete-time descriptor 
systems with three levels of hierarchy in decision making. Applying a general 
theorem developed by Ba§ar (1981), which provides a set of sufficient conditions 
for a triple of strategies to be in hierarchical equilibrium to games in normal 
(strategic) form, we derive explicitly the memoryless hierarchical equilibrium 
strategies for the pla y er ( called A )  at the top of the hierarchy, and for the 
pla y er ( called P2) at the second level of the hierarchy. Since the resulting hier-
archical equilibrium strategies do not depend on the memory information, A 's 
original optimal team cost remains the tight (attainable) lower bound for A 's 
cost function no matter whether the pla y ers at the lower levels of hierarchy 
act or not at the last two ( or one) stages. Moreover, the resulting strategies 
have the advantages of the simpler structure and the higher credibility. More 
precisely, the hierarchical equilibrium strategies are realized in linear feedback 
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form. And, any nonoptimal behavior ( at one stage) of the players at the lower 
levels of hierarchy is penalized only at that stage. In consequence, the original 
hierarchical equilibrium strategies still constitute the hierarchical equilibrium 
strategies for the remaining game starting at the next stage. 

The paper is organized as follows. In Section 2, the three-player Stackelberg 
games for linear quadratic discrete-time descriptor systems with three levels of 
hierarchy in decision making are formulated. A related team optimal solutions 
for P 1 's cost function are given. Section 3 is devoted to the derivations of the 
sufficient conditions such that the memoryless hierarchical equilibrium strategies 
for P 1 and P2 exist. A numerical example is included in Section 4 to illustrate the 
results of the paper. The advantages of the memoryless hierarchical equilibrium 
strategies over the memory strategies are also discussed in the same section. 
Section 5 contains some conclusions. 

2. Problem formulation
Consider a linear discrete-time descriptor system 

Axk + Buk + Cvk + Dwk, Xk=O = xo, 
(k = 0 1 2 · · · N - 1) ' ' ' ' 

(1) 

where Xk E R n is the descriptor vector, Uk E R m , Vk E R £ and wk E Rq are the 
control vectors of player 1 (Pi), player 2 (P2) and player 3 ( P3) , respectively. E 
is a square matrix of rank r :Sn.  The pencil ( s E  -A) is assumed to be regular 
(i.e., l ( s E - A ) I  "!-0). Each player is assumed to have a quadratic cost function,
respectively, 

= 

1 T T 1 
2x N E QN E xN 

N - 1  +½ L { x [ Q 1 xk + u [ R u u k  + v [ R 12 Vk + w [ R 13 Wk} ,
k=O 

1 T T 2 
2xN E QN E xN 

N - 1  +½ L { x [ Q2 xk + u [ R 2 1uk + v [ R 2 2 Vk + w [ R 23 wk} ,
k=O 

1 T T 3 
2x N E QN E x N 

(2a) 

(2b) 

N - 1  +½ L { x [ Q3 xk + u f  R 3 1Uk + v f  R 3 2 Vk + w f  R 3 3 W k } , (2c) 
k=O 

where R;,j > 0, i, J = 1, 2, 3, i :S j, and all other weighting matrices being
nonnegative definite. We assume that each player has access to memoryless 
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information on Xk and can utilize it in constructing his strategy. The typical 
strategies for player i, i=l,2,3, at stage k, k = 0, 1, · · •, N - 1, are denoted by
,'f E r1, 1'  E r  and 1'  E r t  respectively; their open-loop realizations are
Uk E Uk ' Vk E vk and Wk E w k ' respectively. The strategy spaces rt of player i, 
i=l,2,3, are restricted in the class of linear feedback strategies of Xk . Uk , Vk and 
Wk are the decision spaces of P1, P2 and P3 , respectively. Moreover, we denote
the entire collection {,'b, r'L · · ·, 1':hr-1} as r'i E r i for all the game. Finally, we 
denote the value of J i ,  i=l,2,3, given by (2) for a triple of strategies (1'1 , , ,2 , 1'3 ) 
by J i  (,'1 , 1'2 ' 1'3 ) . 

Within the framework of the dynamic game described above, it is further 
stipulated that (a) pla y er 1 (A) announces his strategy ahead of time and 
enforce it on the other two players, and (b) player 2, in view of the announced 
strategy of pla y er 1, announces his strategy to pla y er 3, then ( c) pla y er 3 decides 
his optimal strategy after knowing the announced strategies of player 1 and 
pla y er 2. The game ordered in this wa y  is called a three-level hierarchical 
dynamic game. 

Before introducing the hierarchical equilibrium solution concept for three-
player dynamic games with three levels of hierarchy, let us first define the ad-
missible strategy concepts for P1 and P2, respectively. Define two strategy sets. 

and 

R2 (1'1 ) := {( . ;2 ,e)  E r2 X r3 :
J 2 (1'1 , .;2 , e ) ::::; J2(1'1 , 1'2 , 1'3 ), \7'(1'2 , 1'3 ) E r 2 

X r 3 } (3) 

R 3 (, '1 , , '2 ) := {e E r 3 : J3(,'1 , , '2 , e ) ::::; J 3 (, '1 , , '2 , , '3 ), \f,y3 E r3
} . (4) 

Since the open-loop solution of the linear-quadratic optimal control problem 
for discrete-time descriptor systems is not necessarily unique, the open-loop 
realization of the above responding strategies ma y  not be unique too. 

DEFINITION 1 R 2 (1'1 ) (similarly, R 3 (, '1 , , '2 )) is called the realization singleton 
i f  the strategy pair (strategy) in R 2 (1'1 ) (R3 (1'1 , , '2 )) admits a unique open-loop 
realization pair ( open-loop realization). 

DEFINITION 2 A strategy ,,1 E r; c r1 is called an admissible strategy of Pi i f
R2 ( , '1 ) is the realization singleton. r; is called the admissible strategy space of
A -

DEFINITION 3 For an admissible strategy , '1 E r;, a strategy , '2 E r; C r2 is
called an admissible strategy of P2 if  R 3 (1'1 , , '2 ) is the realization singleton. r; 
is called the admissible strategy space of P2.

We will show in the sequel whether a strategy is admissible, or not, can be 
determined by analyzing the regularity of appropriate matrices. Moreover, we 
stipulate that r  is composed of those strategies 1'3 E r3 such that the triplet
(1'1 , , ,2 , 1'3 ), where, ,,1 E r ;  and ,,2 E r ; ,  leads to a unique solution of the 
descriptor system (1). 
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DEFINITION 4 For the dynamic game posed above, an admissible strategy 1' 1* E
r  constitutes a hierarchical equilibrium strategy for  P i  i f

(5) 

where 

R 2 (1'1 ) : = {  E r  :  sup h(,-y1, ,1' 3 ) 
')'3 ER3 (')' 1 ,e) 

< sup J 2 (1'1 , 1'2 , 1'3 ), \f1'2 E r  }  (6) 
')' 3 ER3(-y 1 ,7 2 ) 

and 

R 3 (1'1 , 1'2 ) : = {  E r  :  J 3 (1'1 , 1'2 ,  )   h (1 '1 , 1'2 , 1'3 ) , 'i1'3 Er }- (7) 

Any strategy 1'2 * E R 2 (1'1*) is a corresponding equilibrium strategy f o r  P 2 , and 
any 1'3 * E R 3 (1' 1* , 1'2 *) is an equilibrium strategy for  P3 corresponding to the 
strategy pair (1'1* , 1'2 *). 

The foregoing definition of the hierarchical equilibrium strategies also takes 
into account possible nonunique responses of the pla y ers at the lower levels of 
the hierarchy. An important feature of descriptor systems is that the sets R 2 ( 1'1 ) 
and R 3 (1'1 , 1'2 ) are not singletons even if the admissible strategies are restricted 
in the class of the linear feedback strategies. 

The hierarchical equilibrium strategies concept was initially introduced in a 
general framework of games in normal (strategic) form. Corresponding to the 
general definition of the hierarchical equilibrium strategies, Ba§ar (1981) has 
developed a theorem which provided a set of sufficient conditions for a triple of 
strategies to be in hierarchical equilibrium. In order to introduce that theorem, 
we need some preliminary notations. 

For each 1'1 E r , define the subsets S 1 ( 1'1 ) c r ;  x r   and S 2 ( 1'1 ) c r ;  x r
by 

Si (1'1 ) : = { ( e, e) E r  X r  : J i  (1'1 , e, e) 
= min min Ji(1'1 , 1'2 , 1'3 )} , i = 1, 2, 

7 2 Er   7 3 Er   

and introduce a subset 52 ( 1'1 ) C S2 ( 1'1 ) by 

8 2 (1'1 ) := {(1'2 , 1'3 ) E S 2 (1'1 ) : 1'3 E R 3 (1'1 , 1'2 )} .

THEOREM 1 Let there exist a 1'1* E r  such that:
(i) 82 (1' 1*) is nonempty and for  every pair ( e ,  e )  E 8 2 (1'1*)

sup J2(1'1*, e , 1'3 ) = h(1 '1* , e , e ).
7 3 ER3 (')' 1 * ,e2 ) 

(8) 

(9) 

(10) 
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(ii) 82(', 1 *) c S 1 (,y1 *), and, 
(iii) for every ( e , e )  E S1(', 1 *), 

arg min J1 Cl, e, e) = ·l*. (11) 
11 Er   

Then, --y1 * is a hierarchical equilibrium strategy for Pi ,  and given any pair 
(1'2* , --y3*) E 8 2 (--y1 *), --y2* is a corresponding equilibrium strategy for P2 , and 
--y3* is an equilibrium strategy for P3 corresponding to the pair (--y1 *, --y2*) , 

Since the general framework of Theorem 1 pertains to games in normal 
(strategic) form, it can be applied to some specific hierarchical dynamic game 
problems. In the following, we will apply Theorem 1 to the dynamic game for 
multilevel discrete-time descriptor systems. Towards this end, we first provide 
team-optimal solution to the related team-optimal control problem 

(12) 

,/, subject to the descriptor system (1). 
Without loss of generality, we make use of some transformations on the 

system matrices throughout the paper. It is well-known that there always exist 
two nonsingular matrices M and H such that 

MEH = [ Ir O ] r = rank E. 0 0 

Using (13), we have 

and 

[ z! ] - 1  

zl = H Xk, 

M A H  = [ A n  A12 ] , M B  = [ B 1 
] ' A 2 1 A 22 B 2 

M C  = [ g  ] , M D  = [    ] ,

Furthermore, let us define 

S n = B1R1} B f +  C 1 R 1 } C f  + D 1 R ; }  D f ,

S 1 2 = B1R'i} B [  + C1R1}C[  + D1R'1} D ! ,

(13) 

(14) 

(15) 

(16) 

(17a) 

(17b) 
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(17c) 

T _ [ A u  - S u ] T, _ [ A12 -S12 ] 1 - Ql A L  2 - Ql Af1 11 12 

T3 = [ A21 -S[i
] [ A22 -S22 

]QlT - A f 2 T4 = -Qff - A f 2  
' 

- 12 

(18) 

and calculate 

[ Ao - S o
] = T1 - T2T4-1T3 ,

Qo Ao (19) 

[ M u  M12 ] = -T4-1T3 .M21 M22 
(20) 

In above, T4 is invertible if and only if the matrices [A22, B2, 02, D2] and 
[Af2, en are of full row rank respectively, where Q§2 = C'{C2. Suppose that
Yk = C2x k is the output of the system (1). Then, the existence ofT4-1 also means 
causal controllability and observability of the descriptor system (1), which guar-
antees the existence of the unique solution to the team-optimal control problem 
(12). 

It is worth to note that the matrix (19) is a Hamiltonian matrix. A discrete 
matrix Riccati equation 

(21) 

can be obtained from the Hamiltonian matrix (19). 

LEMMA 1 Suppose that T4 is invertible and the discrete matrix Riccati equation 
(21) admits a unique nonnegative definite solution P1,. Then,
(i) the team-optimal control problem (12) admits uncountably many team op-

timal strategies in linear feedback form, with the family of the strategies 
given by 

l t  R - l B T K l  'Yk = - 11 kXk,  
2t R - 1 c T K 2  'Yk = - 12 kXk,  
3t R-1DTK3 'Yk = - 13 kXk, 

for O::; k::; N - 1, where, 

and 

1 T [ Li 0 
Kk = M L2 _ F 1 z 2 F1 

k k k k 

2 _ T [ Li 0 
Kk - M L2 _ F2 z 2  F2 

k k k k 

K3 _ MT [ Li O ] H - 1
k - L% - Ft Zt Ft 

(22a) 
(22b) 
(22c) 

(23a) 

(23b) 

(23c) 

(24a) 
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L% = M2 1 + M 22L t ,
L t =  P f + 1[I + Sa P f + l ]- l A 0•

(24b) 
(24c) 

F { ,  F J  and F f  are arbitrary three ( n - r) x (n - r) matrices making 
A 22 - B2K;}  B'J Fl;, - C 2R 1} C !  F J  - D 2H1l D'J F f  invertible. 

The open-loop realizations of 'Yf t, 'Ykt and 'Yit are unique respectively, given 
by 

t R - 1 [BTLl BTL2] 1t 
Uk = - 11 1 k + 2 k z k  , 

t R - 1 [ c r L1 c r L 2l 1t 
v k  = - 12 1 k + 2 k z k  , 

t R- l [DTLl  DTL2] 1t 
w k  = - 13 1 k + 2 k z k  , 

where, z!t is the unique solution of 
1 z l  1 1 1 

Z k + l  = k z k ,  zk=O = Zo,

zi = [ I +  Sa P f + 1J- 1A o,
and Zkt satisfies the algebraic equation 

Z2t 
_ z 2 z l t  

k - k k · 

(25a) 
(25b) 
(25c) 

(26) 
(27) 

(28) 

Proof. For the proof of Lemma 1, the reader is referred to the proof of 
Theorem 3 in Appendix A, where, instead of the three-pla yer team optimal 
control problem, we have provided a standard technique to solve the general 
single-pla yer optimal regulator problem. Lemma 1 is obtained in a similar way. ■ 
3 .  D e r i v a t i o n s  o f  m e m o r y l e s s  e q u i l i b r i u m  s t r a t e g i e s  f o r  P i  

a n d  A 
In contrast to the unique team solution in linear feedback form for state space 
systems, we have obtained the sets of the linear feedback team strategies for 
each pla yer from (22a,b,c) respectively. We denote them by r it c r , i = 1, 2, 3, 
respectively, where, the superscript 't' represents the terms related to the team 
optimal control problem (12). 

The following result is obvious and little different from Proposition 2 in 
Ba§ar (1981). 

PROPOSITION 1 J f  ,y1 is restricted to I' 1t , then S 1 ('Y1) = I'2t ('Y1) X I'3t ('Y1) C 
r 2t x r 3t . 

The set S 1 ( ,y1) defined in (8) depends on the strategy ,y1 since each strategy 
set rtt, 0 :s; k :s; N - 1, i=l,2,3, is parameterized by the matrix Ft respectively. 
Whether the matrix A 22 - B2K;} B'J Fl;,-C2R1/ C'J F J - D 2H1l D'J F f  in Lemma 
1 is invertible or not depends on the combined roles of Fl;,, F J  and F f .  

In order to apply Theorem 1 to find the hierarchical equilibrium strategy, 
we have to find a specific strategy 'Y1* E r 1t such that S2 ('Y1*) C I'2t x r 3t . The 
sufficient conditions under which such a strategy exists will be given later in 
Lemma 2 through the following derivations. 
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Substituting (22a) into (1) and (2b) yields a team-optimal control problem 
to be faced by P2 and P3 , that is, 

. . {1 T E T Q
2 E mm mm -XN N XN+ 

, 2 Er  , 3 Er  2 

½  (xk[Q2 + K t T B H i }  R 21K ;} B T Kt]xkv[ R22Vk + w [  R23wk ) } , (29) 

subject to 

E x k+l = [A - B K ; }  B T Kf]Xk + Cvk + Dwk , Xk=O = Xo, (30) 

(31) 

subject to 
1 A 1 A 2 

zk+l = A1l k zk + A12k zk + C1vk + D1wk , (32a) 
A 1 A 2 0 = A21kzk + A22k zk + C2vk + D2wk , (32b) 

by using (13), where, the corresponding terms are defined in Appendix B. 
Similar to the derivations in Appendix A, define 

S u  = C 1 R ; ; / c r  + D1R2l D i , (33a) 

and 

B12 = C1R2/c ' [  + D1R;;l D'[,

B22 = C2R 2/ c '[ + D2R2l D'[,

, 
[ 

A u k Tl k = ' 2 Q l l
A 

[ 
A n k T3k = A2T - Q l 2k

- 8 1 1 ]
' T A u k 

' 
A

T 

]- S 12 A
T ' - A l 2k

T2k = 

T4k = 

And then, calculate 

[ l\fu k M12k 

M21k M22k 

[ Aok - S ok ] 
CJok 

' T Aok 

] ' - 1  ' = - T 4k T3k , 

' ' ' - 1  ' = T1 k - T 2kT4k T3k · 

[ A12k 
' 2 

Ql2k

[ A22k 
' 2 - Q 22k

-812 
] A

T ' A n k 
- 8 22 ] ' T . 

- A 22k

(33b) 

(33c) 

(34) 

(35) 

(36) 
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REMARK 1 From Appendix B, we know that the corresponding terms in (34) 
contain the unknown parameter matrix F1,. Therefore, calculating {35) and 
{36) is not a simple numerical computation. We need the help of some computer 
algebra system {for example, REDUCE, Copyright of The RAND Corporation 
1985, 1993) to "calculate" {35) and {36). 

From the Hamiltonian matrix (36), we can arrive at a discrete matrix Riccati 
equation 

(37) 

Moreover, we have 
' 2  ' ' ' l  ' 2  ' ' ' l  

z k = M u k + M12kL k , L k = M21k  + M22kL k , (38) 

PROPOSITION 2 A strategy ')'1 E r 1t is admissible if the matrix T4k is invertible 
at each stage k, 0 :::; k :::; N -1. 

Proof. It can be deduced from Appendix A that the regularity of the matrix 
T4k at each stage k, 0 :::; k :::; N - 1 ,  means that the team optimal control problem 
(29),(30) admits a unique open-loop solution. Therefore, 1'1 E f 1 is admissible 
according to Definition 2. ■ 

Solving the team optimal control problem (29), (30), we have 

PROPOSITION 3 Suppose that T4k is invertible at each stage k, 0 :::; k :::; N -1, 
and that the discrete matrix Riccciti equation {37} admits a unique nonnegative 
definite solution P f .  Then, 
(i) the team optimal control problem formulated by {29 ), (30) admits uncount-

ably many team optimal strategies in linear feedback form, with the family
of the strategies given by 

- 2 t  R - 1 cT K
' 2 

'Yk = - 22 k Xk , 
-3t R - l DT K

' 3 'Yk = - 23 k Xk , 
for O :::; k :::; N - 1, where, 

k f  = M T [' 2 . t i 2 ' 2 92 ] H-1  
L k -F k Zk Fk 

kt = M T [ ' 2 . t i 3 ' 2 93 ] H-1 ,  
L k -Fk Z k F k 

(40a) 
(40b) 

(41a) 

(41b) 

Ff and Ff are arbitrary two ( n - r) x ( n - r) matrices making A22 -

B2Ki} B'[ F1, -C2Ri}C'[ Ff - D2Ri}D'!j Ff invertible. 
(ii) The open-loop realizations of i f t  and i f t  are unique, given by 

vt = - R i l [ C [  i l  + c f  .tnz!t ,
wt= - R ; i [ D [  i l  + D f  i%Jz!t , 

(42a) 
(42b) 
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respectively, where, z!t is the unique solution of 
1 z " l  1 1 1 Zk+l = kzk zk=O = Zo' 

and z t satisfies the algebraic equation 
,2 t  z' 2 - l tzk = kzk .

91 

(43) 

(44) 

For an arbitrary admissible strategy 1 1 E r 1t , we have obtained the respond-
ing strategy set S2(, 1 ), which is described by (40). The next problem is to find 
the conditions for a specific strategy , 1* to exist such that S2 ( , 1*) c r2t x r3t .

CONDITION 1 There exists at least one matrix sequence { FJ:/_ 1, FJ7_2, · · · , FJ*} ,  
such that, 

zi 
R'1i(C[ Li;,+ Cf L ) 
R'ii(C[ L/;, + Cf L )

.z1* k ' 

R - l (D T i } *  + D T t2*) 22 1 k 2 k ,

R - l ( DT i ,1* + D TL' 2*) 23 1 k 2 k , 

(45a) 
(45b) 
(45c) 

where, the matrices with the superscript '*' represent the corresponding matrices 
obtained when F1,, 0 ::; k ::; N - 1, in {23a) is substituted by F{*. 

L E M M A  2 Let Condition 1 be satisfied and the obtained strategy 1 1* be an ad-
missible strategy. Then, we have 

by choosing 

,!* = - R 1 }  B T Ki*xk,

with 

(46) 

0 ::; k ::; N - 1, (47) 

(48) 

Proof. From Proposition 3, the set S2 (, 1*) can be described by the strate-
gies 

" '2t* _ - R - l C TK' 2*x 1k - 22 k k, 

"'3h _ - R - l D TK' 3*x 1k - 23 k k, 

(49a) 

(49b) 

where 0::; k::; N - 1. Since 1 1* is admissible, the set S2(, 1*) is the realization 
singleton with the open-loop realization pair described uniquely by 

i/* - - R - l [ c T i ,1* + c T i }*Jzlh k - 22 1 k 2 k k , (50a) 

(50b) 
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where z ! h  is the solution of 
1 1 zk=O = Zo- (51) 

Similar to the statement in Condition 1, the terms with the superscript '* '  
denote the corresponding ones obtained in Proposition 3 when 1'1* is substituted 
into (1) and (2b). Comparing (51) with (26) and (50a,b) with (25b,c) yields 
the relations z !t * = z !  t , i{* = vi and u,t* = wL hence z t * = z t , because of
Condition 1, which implies that the strategy triplet ( 1'1*, i  t *, i  t *) is equivalent 
to the strategy triplet (1'1*, 1' \ ')' t ). Therefore, we have S 2 (1'1*) = r 2t (, '1*) x
r 3t (, '1*) C r 2t X r 3t according to Proposition 1. S 2 (1'1*) = S 1 (1'1*) because 
S 1 (1'1*) = r 2t b 1*) x r 3t b 1*). ■ 

Similar to Ba§ar (1981), the next step in the derivation now is to determine 
a ')'2* E r 2t (1' 1*) such that R 3 (,,1*, ')'2*) C r 3t (1'1*), and {1'2*} x R 3 (1'1*, ')'2*) C 
S2 ( 1'1*). The basic derivation is similar to the above. 

Substituting (47) and (22b) into (1) and (2c) and making a transformation 
using (13) yields a optimal control problem to be faced by P3 , that is, 

· { l 1T
Q

3 1 mm -ZN llNzN+
, 3 Er   2 

½}; ( [ z F  z T
l [ 2 r: ii:: ] [ :i ] + w f  R 33Wk) } '

subject to 
1 ~ 1 - 2 Zk+l = A11kZk + A12kZk + D1 Wk, 

- 1 - 2 0 = A21kzk + A22kzk + D2wk,

where, the corresponding terms are defined in Appendix C. 
Similar to the derivations in Appendix A, define 

and 

T l k  = [ tr Ai:: J 
T,

3k = [ A21k -S'f.i ]
Q-3T A-T - 12k - 12k 

Then, calculate (see also Remark 1) 

M12k ] _ r~ - 1rj', 
M- - - 4k .1.3k, 

22k 

[ A12k 
Q- 3 12k

[ A22k 
Q- 3 - 22k 

(52) 

(53a) 

(53b) 

(54a) 

(54b) 

(54c) 

(55) 

(56) 
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[ Aok 
Qok 
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(57) 

From the Hamiltonian matrix (57), we can arrive at a discrete matrix Riccati 
equation 

(58) 

Moreover, we have 

PROPOSITION 4 Corresponding to the strategy 1' 1*, a strategy ,.,,2 E r2t (1' 1*) is 
admissible i f  the matrix T4k is invertible at each stage k, 0 :S k :S N - 1. 

Proof. The result follows from the same reasoning as in the proof of Propo-
sition 2. ■ 
PROPOSITION 5 Suppose that T4k is invertible at each stage k, 0 :S k :S N - 1, 
and that the discrete matrix Riccati equation (58) admits a unique nonnegative 
definite solution F f .  Then, 
(i) the optimal control problem formulated by (52), (53) admits uncountably 

many optimal strategies in linear feedback form, with the family of the 

(ii) 

strategies given by 
- 3t R-lDTK- 3 
'Yk = - 3 3  kXk, 

where, 
0 :S k :SN -1, 

- 3 _ T [ Ll O ] - 1  Kk - M L2 _ F3 z 2 F3 H ,
k k k k 

(61) 

(62) 

F f  are any ( n - r) x ( n. - r) matrices making A22 - B 2R ;} B'!; F{* -
C2R1lC!  F;, - D2H3l D !  F f  invertible. 

The open-loop realization of .:yft is given by 
wi = - R;l [Df Ll + D f  L%]zlt, 

where, zl t is the unique solution of
1 z-1 1 1 1 

Zk+l = kzk,  zk=O = Zo, 
and z t satisfies the algebraic equation 

-2t z-2 -lt 
zk = kzk . 

(63) 

(64) 

(65) 

From Proposition 5, we can obtain the responding strategy set R 3 (1' 1*, 1'2 ), 
which is described by (61), for a fixed strategy 1' 1* and an arbitrary strategy 
,.,,2 E r 2t (1' 1*). The problem now is to find a specific strategy 1'2* E r 2t (1' 1*) 
such that R 3 (1' 1*,1'2*) C r 3 t (1' 1*) C r 3t _ 
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CONDITION 2 There exists at least one matrix sequence {F..R,*_ 1, F..R,*_2, · · · ,  F5*},  
such that, 

(66a) 

(66b) 

where, the matrices with the superscript ' * '  represent the corresponding matrices 
obtained when F f ,  0::::; k::::; N - I, in (23b) is substituted by F f * ·  

LEMMA 3 Let Condition 2 be satisfied and the obtained strategy ,,y2* be an ad-
missible strategy. Then, we have 

R3 ("11* ' "/2*) C r 3t ("11*) C r 3t

by choosing (47) and 

""2* - - R - 1B TK 2*x 1k - 12 k k,

with 

(67) 

(68) 

(69) 

Proof. When Condition 2 is satisfied, the fact that the strategy triplet 
("11* , 12* , 13) E {"11*} x {"12*} x R 3 ("!1* , 12*) minimizes J1 and J3 simultaneously 
is easy to prove in a similar way to the proof of Lemma 2. Hence, we have 
R 3("!1* , 'Y2*) c r 3t ('Y1*). Furthermore, since S 1("/1*) = S 2("/h ) (Lemma 2), we 
arrive at {"12*} x R3("!1*, 'Y2*) C S 1(1 1*) = S2("11*). ■ 

Summarizing the results of Lemma 2 and Lemma 3, we finally have 

THEOREM 2 For the three-player Stackelberg games o f  linear quadratic discrete-
time descriptor systems formulated in Section 2, suppose that Conditions 1 and 
2 are satisfied. Then, 
(i) "/1* as defined by (47) provides a memoryless hierarchical equilibrium strategy

for  P i ,  1 2*, as defined by ( 68), is a corresponding memoryless equilibrium
strategy fo r  P2 , and any 1 3 E R 3 ("!1*, 1 2*) is a memoryless equilibrium 
strategy fo r  P3. 

(ii) The obtained game values for  Pi ,  P2 and P3 are given, respectively,
1 J *  - - z l TP. l z l 

1 - 2 0 0 o, 

J.* _ ! z 1T
P .

2*z1
2 - 2 0 0 o, 

J.* - 1 z l T P.3* z l 
3 - 2 o o o· 

by 

(70a) 

(70b) 

(70c) 
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Proof. Condition (i) of Theorem 1 is fulfilled since {1'2 *} x R 3 (,y1*, ,-y2*) C 
S2(,y1*). Condition (ii) is also fulfilled since S'2(l*) C S2('-,,1*) = S 1 (,y1*). 
Finally, Condition (iii) is fulfilled by noting Proposition l .  Therefore, (i) of this 
theorem follows directly from Theorem l .  (ii) follows directly from Lemma 1 
and Propositions 3 and 5. ■ 

4. An illustrative example
Consider a linear discrete-time descriptor system 

[  

0 

 ll , lZk + l 
0 Z + l = 

0 Zk + l 

[ : 0 

  l [ ;1 l + 
[ n u , +  [ n v, 

+ 
[ : l w,,

1 
1 

(0   k   N - 1 ) .  

The cost functions are given as 

5 1 N - , [1 
J1 =

2 (z1 )2 + 2 L {xf 1 
k =O 0 

3 1 N - , [1 
J 2 =

2 (z1 )2 + 2 L {xf 0 
k =O 0 

1 1 N - , [1 
J3 =

2 (z1 )2 + 2 L { x f 0 
k =O 0 

1 
 ] x ,+2u/+v /+wl ) ,  1 

0 
0 

  ] x, +u( + 2vl +w1), 2 
0 
0 

 ] x, +ul +v/  + 2wi}, 1 
0 

(71) 

(72a) 

(72b) 

(72c) 

where x f  = [zf T, ZkT, zfT]. In the following, we make use of a computer algebra 
system called REDUCE as stated in Remark 1 to solve the example. The 
relevant terms in Lemma 1 are determined from 

12/(llPf+i + 6), 
12Pf+i/(11Pf+i + 6), [ Zk1 ] _ [ (-5Pf+i + 6)/(llP{+l + 6) ] Zk2 

-
(-12Pf+i + 6)/(l lPf+i + 6) ' 

[ L%1 ] _ [ 
10Pk+i/(11P{t 1 + 6) ] 

Lk2 - - 1 6 Pk + i / (11Pk + l + 6) '

24Pf+ 1 / (11Pf+1 + 6), Pf, = 5, 

for O   k   N - l .  Their numerical results are given in Table l .  
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k Pr; L f 1 L f2 L1 k Zf1 Zf2 
N 5 - - - - -

N-1 1.96721 0.81967 -1.31148 0.98361 -0.98361 -0.50820 
N-2 1.70819 0.71174 -1.13876 0.85409 -0.85409 -0.57295 
N-3 1.65375 0.68906 -1.10250 0.82687 -0.82687 -0.58656 
N-4 1.64068 0.68361 -1.09378 0.82034 -0.82034 -0.58983 
N-5 1.63744 0.68227 -1.09163 0.81872 -0.81872 -0.59064 
N-6 1.63663 0.68193 -1.09169 0.81832 -0.81832 -0.59084 
N-7 1.63643 0.68165 -1.09095 0.81822 -0.81822 -0.59089 
N-8 1.63638 0.68183 -1.09092 0.81819 -0.81819 -0.59090 
N-9 1.63637 0.68182 -1.09091 0.81818 -0.81818 -0.59091 

N-10 1.63636 0.68182 -1.09091 0.81818 -0.81818 -0.59091 
N-11 1.63636 0.68182 -1.09091 0.81818 -0.81818 -0.59091 
N-12 1.63636 0.68182 -1.09091 0.81818 -0.81818 -0.59091 

Table 1. The numerical values of the relevant terms in Lemma 1

A matrix sequence { FJ;,*, 0 � k � N - l}  which satisfies Condition 1 is

p 1 * [ 1 2 ]  k = F.1* 2 '
21k 

(73) 

where, 

Fi{k = 2(Pl+ 1 + 3Pf+1 + 3)/(3(Pl+l - Pf+ 1)), 

Pf* = (3(133(P{+ 1)2 + 84Pf+i + 48Pf+2 + 36))/(llPf+i + 6) 2 , P'f./ = 3. 

The numerical values of Pf* and Fi{k are given in Table 2. Hence, we have

"Ii* = - - [ 2  o 1] Lk 1 - z i 1 - 2 z i2 1 2 zi , (74) 1 

[ 

Ll O O l [ zi l 
2 L2 F.1* z 2 2 z2 F.1* 2 3 k2 - 21k kl - k2 21 k Zk 

a linear feedback strategy. Furthermore, a matrix sequence {Ff*, 0 � k   N - l }
which satisfies Condition 2 is 

p2* [ 2 1] 
k = F.2* 1 

, 
21k 

where, 

(75) 

F]{k -(37(Pl+1)2 + 27Pf+1Pf+ 1 - 48Pf+1Pf+1 + 30Pf+l + l8Pf+1 
-36Pf+ 1 )/ (24(Pl +1 - Pf+1)Pl +1),

Pf* (2(269(Pf+i) 2 + 96Pf+i + 72Pf+ 1 + 36))/(llPf+i + 6) 2 ,
P'f,/ 1. 
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k p2* k p3* k Fi{k Fi{k ITl:1 1t1:1 
N 3 1 - - - -

N-1 3.16447 3.93066 5.66667 -5.39167 18.04167 77.00569 
N-2 3.40805 4.05499 -8.05208 0.99222 30.31347 42.98485 
N-3 3.56924 4.15546 -5.85628 0.64939 18.86102 27.32615 
N-4 3.63957 4.20234 -5.34639 0.58612 16.71896 24.10948 
N-5 3.66533 4.22001 -5.18933 0.56680 16.09842 23.13807 
N-6 3.67388 4.22597 -5.13947 0.56053 15.90531 22.82934 
N-7 3.67656 4.22785 -5.12399 0.55855 15.84573 22.73292 
N-8 3.67736 4.22842 -5.11933 0.55794 15.82781 22.70369 
N-9 3.67759 4.22858 -5.11796 0.55776 15.82255 22.69507 

N-10 3.67766 4.22863 -5.11756 0.55771 15.82104 22.69258 
N-11 3.67768 4.22864 -5.11745 0.55770 15.82062 22.69187 
N-12 3.67768 4.22865 -5.11742 0.55769 15.82050 22.69168 

Table 2. The numerical values of the terms related to the equilibrium strategies 

The numerical values of Pf+1 and Ff{k are also given in Table 2. Therefore, we 
have 

(76) 

It is worthy to noting that the numerical values of the relevant terms above can 
be computed recursively (Xu and Mizukami, 1995). 

Moreover, li'J:I -=/-0 and IT]kl -=/-0 in Table 2 verify that the obtained 
hierarchical equilibrium strategies are admissible (Propositions 2 and 4). 

REMARK 2 In contrast to the memory equilibrium strategies in state space sys-
tems Ba§ar {1981), the resulting equilibrium strategies for  descriptor systems 
in this paper are linear strategies involving only memoryless information on 
x k. The ref ore, the equilibrium strategies obtained in this paper have the ad-
vantages o f  the less information and the simpler structure. Moreover, Condi-
tion 1 and Condition 2, and thereby the equilibrium strategies (47), {68) and 
--y3 E R 3 (--y1* , --y2*) do not depend on the initial state x0. For this reason, the 
obtained equilibrium strategies are less sensitive to unintentional nonoptimal 
actions o f  the players at the lower levels of  the hierarchy. For example, sup-
pose that P3 takes a nonoptimal strategy outside the set R 3 (--y1 *, --y2*) at stage s. 
Then, the obtained state Xs + i will deviates from the optimal state x ;+ i , which 
may affect the cost values of all the players f o r  the total game. However, con-
sidering a subgame starting at stage s + 1, the original equilibrium strategies 
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obtained for the total game still constitute the equilibrium strategies for the re-
maining subgame on the interval [s + 1, s + 2, • • • , N - l]. This property, as 
stated i n  Introduction, makes the equilibrium strategies have the higher credibil-
ity (Tolwinski, 1981). 

5. Conclusions

In this paper, we have considered the three-player Stackelberg games for linear 
quadratic discrete-time descriptor systems with three levels of hierarchy in de-
cision making. We have derived explicitly sufficient conditions for the existence 
of the memoryless hierarchical equilibrium strategies for the player ( called A )  
at the top of the hierarchy, and for the player ( called P2) at the second level 
of the hierarchy. Since the resulting hierarchical equilibrium strategies do not 
depend on the memory information, A 's original optimal team cost remains 
the tight (attainable) lower bound for A 's cost function no matter whether 
the players at the lower levels of hierarchy act or not at the last two ( or one) 
stages. The resulting strategies have the advantages of the simpler structure 
and the higher credibility. Moreover, the method developed in this paper is 
easy to be extended to general M(M > 3) player dynamic games with M-level 
of hierarchy in decision making. The equilibrium strategies can be determined 
sequentially by calculating parameter matrix sequence {Fj.;_ 1 , Fj.;_2 , · · · ,Fd*}, 
i = 1, 2, • • •, M, from the top of the hierarchy. At each level of the hierarchy, 
the similar procedure is adopted to determine the equilibrium strategy. 
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Appendix A 
We provide below a useful technique for finding the solution of the linear 
quadratic optimal regulator problem for discrete-time descriptor systems, that 
is, 

(77) 

subject to 

Exk+ 1 = Axk + B uk, xk=D = xo. (78) 

This technique is different from the well-known ones (Bender and Laub, 1987; 
Mantas and Krikelis, 1989), and has been applied to solve the main problem of 
this paper. 

The necessary conditions for uk, 0 ::; k ::; N - 1, to be the optimal solution 
are (Bender and Laub, 1987; Mantas and Krikelis, 1989) 

Exk+ l = Axk + B uk, 

E T )..k = AT >.k+ l + Qxk, 

0 = Ruk + B T )..k+l , 

with boundary conditions 

Xk=D = xo, E T )..N = E T QNE XN-

(79a) 

(79b) 

(79c) 

(80) 

The above necessary conditions are also sufficient for the linear-quadratic prob-
lem, and can be transformed as 

Zk+ 1 = A n z !  + A12z  + B 1uk,

0 = A21Zk + A22z  + B 2uk, 

)..  = Af1 >-- +1 + Af1 >.%+1 + Qnzk + Q12zt

0 = Af2>. +1 + Af2>.%+1 + Q21Zk + Q22zt 

0 = Ruk + B f >. +1 + B [ >--%+1, 

by using (13). From (81e), we obtain 

* R - l B T '1 R - l B T , 2 
Uk = - 1 "k+l - 2 "k+l· 

Substituting (82) into (81a,b) yields 

] + [ A12 
Q 1 2  

(81a) 

(81b) 

(81c) 

(81d) 

(81e) 

(82) 

-S12 ] [ z  ] ( )AT )..2 ' 83a 
21 k+l 
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where 

S11 = B1R-1 B f ,  S12 = B1R-1 B { ,  S22 = B2R-1 B { .  

Define the matrices in (83) as 

T - [  
A u1 - Q11 

-A 1 ] , T2 = [ AQ12 - 2 ] 
11 · 12 A21 '

T _ [ A21 -sr; ] T, _ [ A22 -S22 ] 3 - - Q L  - A L  ' 4 - -Q22 -A!2 
. 
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(83b) 

(84) 

(85) 

In above, [T4[ =f. 0 if and only if the system (78) is causally controllable and 
observable (Bender and Laab, 1987; Mantas and Krikelis, 1989). Hence, we 
have 

(86) 

and 

[ zlt1 ] = (T1 _ r2r4- 1T3) [ :1 ] = [ Ao - o ] [ :1 ] , (87) 
>..k >..k+1 Qo Ao >..k+l 

from (83). (87) provides a two-point boundary value problem with the boundary 
conditions z l= o = zJ and >..N = Q11Nzi. Let >..l = Pkzk, a matrix Riccati
equation can be obtained from (87) 

Pk = Qo + A  Pk+i[I + SoPk+li-1 Ao, PN = QuN- (88) 

Using the solution of (88), we arrive at the following equations 

where 

Z l  = [J + S0Pk+1]- l A0 ,

Li = PkH [J + S 0Pk+1]- 1A0 .

Furthermore, substituting >..i+l into (86) yields 
2 z2 1 zk = kzk, 

(89) 

(90) 

(91a) 

(91b) 

(92) 

(93) 
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where, 

(94a) 

(94b) 

Based on the derivations given above, we arrive at the following conclusion. 

THEOREM 3 Suppose that the system (78} is causally controllable and observ-
able and the discrete matrix Riccati equation (88} admits a unique nonnegative 
definite solution Pk . Then, 

(i) the optimal regulator problem defined above admits uncountably many lin-
ear feedback solutions given by

Uk= - R - 1B T K k Xk , 0   k   N - l ,  (95) 
where, 

K _ MT [ 
L i  O ] -1 ( )k - L  -Azi Fk H , 96 

and Fk is any ( n - r )  x ( n - r )  matrix making A22 - B 2R - 1 B'[  Fk invertible; 
(ii) the open-loop control of uk is unique, given by 

uk = - R - 1 [B f B ! ]  [ ii ] zl*, 0   k   N - l , (97) 

where zf* is the unique solution of (89) with the initial condition zf= o = 
zi5. 

Proof. The proof follows the derivations prior to the statements of the 
theorem and the reasoning similar to the one employed in the implementation 
of the optimal feedback control (Wang et al., 1988). ■ 
Appendix B 

[£lT 
+ k 

0
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6. Appendix C

Eli = B1H1} R31H1] Bf ,  82 = B1K1] R31H1] Bf,  

83 = B2K1] R31K1] Bf,  

81 = C1H1l R32K;}cf, 82 = C1H;} R32R1}cf, 

83 = C2R1} R32H1}c'f, 

Auk Au - B1R1}[Bf Ll + B f  (L  - Ff*Zk)] 
-C1R1}[C[Ll + cf (L  - F'f zi)],

A21k A21 - B2Ril[Bf Ll + Bi(L  - F// zi)l 
-C2R1}[C[Ll + Ci(L - F'f zrn, 
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