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Abstract: In this paper, we introduce new classes of nonsmooth
second-order cone-convex functions and respective generalizations in
terms of first and second-order directional derivative. These classes
encapsulate several already existing classes of cone-convex functions
and their weaker variants. Second-order KKT type sufficient opti-
mality conditions and duality results for a nonsmooth vector opti-
mization problem are proved using these functions. The results have
been supported by examples.

Keywords: vector optimization; cones; nonsmooth second-order
cone-convexity; second-order optimality; duality

1. Introduction

It is well-known that second-order optimality conditions have important ap-
plications in sensitivity analysis and optimal algorithms for example penalty
methods (see Auslender, 1979; Facchinei and Lucidi, 1998). There is a need for
studying second-order optimality conditions for nonsmooth vector optimization
problems because, first, the differentiability condition does not always hold. Sec-
ondly, as pointed by Cominetti and Correa (1990), there are many techniques
commonly used in optimization theory that generate nonsmoothness even when
the problems are differentiable. For example, in duality theory, sensitivity and
stability analysis, decomposition techniques, penalty methods and many more
(see Auslender, 1979; Yuan et al., 2010).

We have a rich literature that deals with vector optimization problems con-
taining twice differentiable data (wherein the objective function and constraints
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are twice differentiable) with both natural (cone is R
n
+) and unnatural order-

ing cones. Generalizations to second-order convex function (Mond, 1974) like
second-order (F, ρ) convex (Aghezzaf, 2003), second-order (F, α, ρ, d) convex
(Ahmad and Husain, 2006), second-order cone-convex (Suneja, Sharma and
Vani, 2008), genearalized higher order (F, ρ, θ,m, h) (Kumar and Sharma, 2017)
and many others along with their weaker notions have been defined for twice
differentiable functions and used to study second-order duality results for mul-
tiobjective and vector optimization problems. Mangasarian (1975) first formu-
lated the second-order dual involving second-order derivatives for a nonlinear
programming problem and established second-order duality results under cer-
tain inclusion conditions. By introducing two additional parameters, Hanson
(1993) formulated a second-order dual similar to that of Mangasarian (1975)
and established duality results under the assumption of second-order type I in-
vexity. Mishra (1997) deduced second-order duality results for multiobjective
programming problem using classes of second-order pseudo-type I, second-order
quasi-type I and related functions. Suneja, Sharma and Vani (2008) defined
second-order cone-convex, second-order cone-pseudoconvex and second-order
cone-quasiconvex functions and used them to prove second-order duality results
for vector optimization problem over cones with twice differentiable data.

In this paper, in the absence of twice differentiability, we have extended the
classes of second-order cone-convex and related functions from Suneja, Sharma
and Vani (2008) to the nonsmooth setting. We have defined new classes of non-
smooth second-order cone-convex, nonsmooth second-order (strictly, strongly)
cone-pseudoconvex and nonsmooth second-order cone-quasiconvex functions in
terms of second-order directional derivative. Interrelations among the above
functions have been studied and illustrated by examples. We have also discussed
the conditions, under which these functions reduce to the functions already ex-
isting in the literature. Using these functions, we have proven second-order
KKT type sufficient optimality conditions and Mond-Weir type duality results
for nonsmooth vector optimization problem over cones.

2. Notations and definitions

Let K ⊆ R
m be a closed convex pointed (K ∩ (−K) = {0}) cone with vertex at

the origin, such that intK 6= ∅, where intK denotes interior of K. The positive
dual cone K+ and strict positive dual cone Ks+ are defined as follows:

K+ := {y ∈ R
m : zT y ≥ 0, ∀ z ∈ K}

and

Ks+ := {y ∈ R
m : zT y > 0, ∀ z ∈ K0 = K \ {0}}.
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Since the cone under consideration is closed and convex, by bipolar theorem
there is K = (K+)+. In this case,

x ∈ K ⇐⇒ λTx ≥ 0, ∀ λ ∈ K+.

As given by Flores–Baźan, Hadjisavvas and Vera (2007), we have

x ∈ intK ⇐⇒ λTx > 0, ∀ λ ∈ K+ \ {0}.

Let S ⊆ R
n be a non-empty open subset and f = (f1, f2, . . . , fm)T : S → R

m

be a vector valued function. We recall the definitions of first and second-order
directionally differentiable functions, which are weaker notions as compared to
that of differentiability, and twice differentiability, respectively.

Definition 2.1 The first-order directional derivative of fi : S → R at x ∈ S
in the direction d ∈ R

n is defined as an element of R given by:

f ′i(x, d) := lim
t→0+

fi(x+ td)− fi(x)

t
.

If f ′i(x, d) exists and is finite, then function fi is called first-order directionally
differentiable at x in the direction d. The function fi is said to be first-order
directionally differentiable on S if the derivative f ′i(x, d) exists for each x ∈ S
and direction d ∈ R

n.

Definition 2.2 (Demyanov and Pernyi, 1974) Suppose fi : S → R is first-
order directionally differentiable at x ∈ S in the direction d ∈ R

n. The second-
order directional derivative of fi at x in the direction d is defined as an element
of R, given by:

f ′′i (x, d) := lim
t→0+

2(fi(x+ td)− fi(x)− tf ′i(x, d))

t2
.

If f ′′i (x, d) exists and is finite, then function fi is called second-order direc-
tionally differentiable at x in the direction d. The function fi is said to be
second-order directionally differentiable on S if it is first-order directionally dif-
ferentiable on S and the derivative f ′′i (x, d) exists for each x ∈ S and direction
d ∈ R

n.

Remark 2.1 f is said to be first-order directionally differentiable at x ∈ S in
the direction d ∈ R

n if each fi is first-order directionally differentiable at x in
the direction d. The first-order directional derivative of f at x in the direction
d is defined to be the vector:

(f ′1(x, d), f
′

2(x, d), . . . , f
′

m(x, d))T .



38 P. Yadav

Remark 2.2 Suppose f is first-order directionally differentiable at x ∈ S in the
direction d ∈ R

n. f is said to be second-order directionally differentiable at x in
the direction d if each fi is second-order directionally differentiable at x in the
direction d. The second-order directional derivative of f at x in the direction d
is defined to be the vector:

(f ′′1 (x, d), f
′′

2 (x, d), . . . , f
′′

m(x, d))T .

Remark 2.3 In the absence of twice differentiability, the idea of using first and
second-order directional derivatives stems from the observation that if f is twice
continuously differentiable at x̄, then

f ′(x̄, x− x̄) = ∇f(x̄)(x− x̄)

and

f ′′(x̄, x− x̄) = (x− x̄)T∇2f(x̄)(x− x̄)

where (x− x̄)T∇2f(x̄)(x− x̄) denotes the vector

(

(x− x̄)T∇2f1(x̄)(x− x̄), . . . , (x− x̄)T∇2fm(x̄)(x− x̄)
)T
.

For each i = 1, 2, . . . ,m, ∇2fi(x̄) is the n × n Hessian matrix of fi at x̄ and
∇f(x̄) is the m× n Jacobian matrix of f at x̄.

Now, we introduce new classes of nonsmooth second-order cone-convex func-
tions and their weaker variants involving first and second-order directional
derivatives. These will be used to study second-order optimality conditions
and duality results for the nonsmooth vector optimization problem. Let x̄ ∈ S,
where S is a non-empty open subset of Rn, K ⊆ R

m, be a closed convex pointed
cone with intK 6= ∅ and f = (f1, f2, . . . , fm) : S → R

m be first and second-order
directionally differentiable vector valued function.

Definition 2.3 f is said to be nonsmooth second-order K-convex at x̄, if there
exists a real valued function ω(., .) : S × S −→ [0,∞) such that for all x ∈ S

f(x)− f(x̄)− f ′(x̄, x− x̄)− ω(x, x̄)f ′′(x̄, x− x̄) ∈ K.

Definition 2.4 f is said to be nonsmooth second-order K-pseudoconvex at x̄,
if there exists a real valued function ω(., .) : S × S −→ [0,∞) such that for all
x ∈ S

−[f ′(x̄, x− x̄) + 2ω(x, x̄)f ′′(x̄, x− x̄)] /∈ intK

=⇒ −[f(x)− f(x̄) + ω(x, x̄)f ′′(x̄, x− x̄)] /∈ intK.
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Definition 2.5 f is said to be nonsmooth second-order K-quasiconvex at x̄,
if there exists a real valued function ω(., .) : S × S −→ [0,∞) such that for all
x ∈ S

[f(x)− f(x̄) + ω(x, x̄)f ′′(x̄, x− x̄)] /∈ intK

=⇒ −[f ′(x̄, x− x̄) + 2ω(x, x̄)f ′′(x̄, x− x̄)] ∈ K.

Definition 2.6 f is said to be nonsmooth second-order strongly K-pseudoconvex
at x̄, if there exists a real valued function ω(., .) : S×S −→ [0,∞) such that for
all x ∈ S

−[f ′(x̄, x− x̄) + 2ω(x, x̄)f ′′(x̄, x− x̄)] /∈ intK

=⇒ [f(x)− f(x̄) + ω(x, x̄)f ′′(x̄, x− x̄)] ∈ K.

Definition 2.7 f is said to be nonsmooth second-order strictly K-pseudoconvex
at x̄, if there exists a real valued function ω(., .) : S×S −→ [0,∞) such that for
all x ∈ S

−[f(x)− f(x̄) + ω(x, x̄)f ′′(x̄, x− x̄)] ∈ K0

=⇒ −[f ′(x̄, x− x̄) + 2ω(x, x̄)f ′′(x̄, x− x̄)] ∈ intK.

Remark 2.4 Following are few important reductions of the new classes defined
above:

(i) Suppose f is twice continuously differentiable at x̄ and ω(., .) ≡ 1
2
. Then,

nonsmooth second-order K-convex function and its generalizations reduce
to the second-order K-convex function and the corresponding generaliza-
tions, defined by Suneja, Sharma and Vani (2008).

(ii) Let m = 1, K = R+. Suppose f is twice continuously differentiable at
x̄ and ω(., .) ≡ 1

2
. Then, nonsmooth second-order K-convex function and

its generalizations reduce to the second-order convex function and the cor-
responding generalizations, defined by Mond (1974) and Mond and Weir
(1981–1983).

(iii) If ω(., .) ≡ 0, then nonsmooth second-order (strongly, strictly) K-pseudo-
convex function reduces to the (strongly, strictly) pseudoconvex with re-
spect to K and nonsmooth second-order K-quasiconvex function reduces
to quasiconvex with respect to K, introduced by Aggarwal (1998).

(iv) Suppose f is differentiable at x̄ and ω(., x̄) ≡ 0, then nonsmooth second-
order K-convex function and its generalizations reduce to the K-convex
function and the corresponding generalizations, defined by Giorgi and Guer-
raggio (1996).

Remark 2.5 The second-order (cone)-convex functions and its generalizations
for twice differentiable functions have been introduced using Jacobian and Hes-
sian matrix. Using the relation mentioned in the Remark 2.3, it can be observed
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that the first and second-order directional derivatives help in direct extension of
the above already existing cone-convexity and second-order cone-convexity con-
cepts in nonlinear and vector optimization problems.

Remark 2.6 Clearly, every nonsmooth second-order K-convex function with
respect to ω(., .) is nonsmooth second-order K-pseudoconvex function with re-
spect to same ω(., .) but converse is not true as can be seen from the following
example.

Example 2.1 Let S = (−3, 3) ⊆ R. Define f = (f1, f2)
T : S −→ R

2 as

f1(x) =











1

x+ 1
, x > 0

1

−x+ 1
, x 6 0

, f2(x) =

{ x

x2 + 1
, x > 0

x2, x 6 0
.

Let x̄ = 0. Then,

f ′(0, x) =

{

(−x, x)T , x > 0

(x, 0)T , x 6 0

f ′′(0, x) =

{

(2x2, 0)T , x > 0

(2x2, 2x2)T , x 6 0
.

Let K = {(x1, x2)
T ∈ R

2 : x2 6 0, x2 6 x1} and ω : S × S −→ (0,∞) be defined
as

ω(x, x̄) =







(

x2 + x+ 2

(x+ 1)(x2 + 1)x

)

+ x̄2, x > 0

1 + x̄2, x ≤ 0

.

Now, f is nonsmooth second-order K-pseudoconvex at x̄ = 0 with respect to
ω(., .) as

intK ∋ −[f(x)− f(0) + ω(x, 0)f ′′(0, x)] =


















(

−1

x+ 1
+ 1−

2(x2 + x+ 2)x

(x+ 1)(x2 + 1)
,− x

x2+1

)T

, x > 0
(

−1

1− x
+ 1− 2x2,−3x2

)T

, x ≤ 0

implies that

x < 0 =⇒ intK ∋ −[f ′(0, x) + 2ω(x, 0)f ′′(0, x)] =










(

x−
4(x2 + x+ 2)x

(x+ 1)(x2 + 1)
,−x

)T

, x > 0
(

−x− 4x2,−4x2
)T
, x ≤ 0

.
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However, f is not nonsmooth second-order K-convex at x̄ with respect to ω(., .)
as for x = −2

f(x)− f(0)− f ′(0, x)− ω(x, 0)f ′′(0, x) =
(

− 20
3
,−4

)T
/∈ K.

Remark 2.7 Every nonsmooth second-order strictly K-pseudoconvex function
with respect to ω(., .) is nonsmooth second-order K-pseudoconvex with respect to
same ω(., .), but converse is not true as can be seen from the following example.

Example 2.2 Let S = (−8, 8) ⊆ R. Define f = (f1, f2)
T : S −→ R

2 as

f1(x) =

{

0, x ≥ 0

x2, x < 0
and f2(x) = x2.

Let x̄ = 0. Then,

f ′(0, x) = (0, 0)T and f ′′(0, x) =

{

(0, 2x2)T , x ≥ 0

(2x2, 2x2)T , x < 0
.

Let K = {(x1, x2)
T ∈ R

2 : x2 ≤ 0, x1 ≥ x2} and ω : S × S −→ [0,∞) be a
constant real valued function with ω(., .) ≡ 1. Now, f is nonsmooth second-
order K-pseudoconvex at x̄ = 0 with respect to ω(., .) as

intK ∋ −[f(x)− f(0) + ω(x, 0)f ′′(0, x)] =
{

(

0,−3x2
)T
, x ≥ 0

(

−3x2,−3x2
)T
, x < 0

implies that

x > 0 =⇒ intK ∋ −[f ′(0, x) + 2ω(x, 0)f ′′(0, x)] =
{

(

0,−4x2
)T
, x ≥ 0

(

−4x2,−4x2
)T
, x < 0

.

However, f is not nonsmooth second-order strictly K-pseudoconvex at x̄ = 0
with respect to w(., .) as for x < 0,

K0 ∋ −[f(x)− f(0) + ω(x, 0)f ′′(x, 0)] =
{

(

0,−3x2
)T
, x ≥ 0

(

−3x2,−3x2
)T
, x < 0

but

−[f ′(0, x) + 2ω(x, 0)f ′′(0, x)] =
{

(

0,−4x2
)T
, x ≥ 0

(

−4x2,−4x2
)T
, x < 0

/∈ intK.
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Remark 2.8 Every nonsmooth second-order strongly K-pseudoconvex function
with respect to ω(., .) is nonsmooth second-order K-pseudoconvex with respect to
the same ω(., .), but the converse is not true. Let us consider the last example
again.

Example 2.3 We have shown in the last example that f is nonsmooth second-
order K-pseudoconvex at x̄ = 0 with respect to ω(., .). However, f is not nons-
mooth second-order strongly K-pseudoconvex at x̄ = 0 with respect to the same
ω(., .), as for x < 0,

−[f ′(0, x) + 2ω(x, 0)f ′′(0, x)] =
{

(

0,−4x2
)T
, x ≥ 0

(

−4x2,−4x2
)T
, x < 0

/∈ intK

but

[f(x)− f(0) + ω(x, 0)f ′′(x, 0)] =
{

(

0, 3x2
)T
, x ≥ 0

(

3x2, 3x2
)T
, x < 0

/∈ K.

3. Second-order optimality conditions

We consider the following nonsmooth vector optimization problem:

K-Minimize f(x) (VOP)

subject to − g(x) ∈ Q,

where S is a non-empty open subset of Rn and f = (f1, f2, . . . , fm)T : S →
R

m, g = (g1, g2, . . . , gp)
T : S → R

p are first and second-order directionally
differentiable vector valued functions on S. K and Q are closed convex pointed
cones with non-empty interiors in R

m and R
p, respectively, and S0 = {x ∈ S :

−g(x) ∈ Q} denotes the set of all feasible solutions of (VOP).

Vector optimization problems do not possess an optimal solution in the sense
that such a solution optimizes all the objective functions simultaneously. The
solution concepts for vector optimization problem (VOP) are defined as follows:

Definition 3.1 (Coladas, Li and Wang, 1994) A point x̄ ∈ S0 is called a

(i) weak minimum of (VOP) if for all x ∈ S0, f(x̄)− f(x) /∈ intK.
(ii) minimum of (VOP) if for all x ∈ S0, f(x̄)− f(x) /∈ K0 = K \ {0}.
(iii) strong minimum of (VOP) if for all x ∈ S0, f(x)− f(x̄) ∈ K.
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We begin with proving second-order KKT type sufficient optimality con-
ditions for a feasible point to be weak minimum of (VOP) using nonsmooth
second-order cone-convexity. The optimality conditions involve first and second-
order directional derivatives, which allows us to employ nonsmooth second-order
cone-convexity concepts and its generalizations in proving the result. These op-
timality conditions help to locate (weak, strong) minimizer for vector optimiza-
tion problem, where the functions involved are not differentiable, but possess
first- and second–order directional derivative. Thus, the results are applicable
for a broader class of functions.

Theorem 3.1 Let f be nonsmooth second-order K-convex and g be nonsmooth
second-order Q-convex at x̄ ∈ S0 with respect to ω(., .). Suppose there exist
λ̄ ∈ K+ \ {0}, µ̄ ∈ Q+ such that for all x ∈ S0,

λ̄T f ′(x̄, x− x̄) + µ̄T g′(x̄, x− x̄)

+2ω(x, x̄)[µ̄T g′′(x̄, x− x̄)] ≥ 0, (1)

µ̄T g(x̄)− ω(x, x̄)µ̄T g′′(x̄, x− x̄) ≥ 0, and (2)

ω(x, x̄)λ̄T f ′′(x̄, x− x̄) = 0. (3)

Then, x̄ is a weak minimum of (VOP).

Proof Let, if possible, x̄ be not a weak minimum of (VOP). Then, there exists
u ∈ S0 such that, f(x̄)− f(u) ∈ intK. As λ̄ ∈ K+ \ {0}, we get

λ̄T [f(x̄)− f(u)] > 0. (4)

Since f is nonsmooth second-order K-convex at x̄ with respect to ω(., .) and
λ̄ ∈ K+ \ {0}, we obtain

λ̄T [f(u)− f(x̄)− f ′(x̄, u− x̄)− ω(u, x̄)f ′′(x̄, u− x̄)] ≥ 0. (5)

Adding (4) and (5), we get

−λ̄T f ′(x̄, u− x̄)− ω(u, x̄)λ̄T f ′′(x̄, u− x̄) > 0.

Using the above equation, (1) and (3), we obtain

µ̄T g′(x̄, u− x̄) + 2ω(u, x̄)µ̄T g′′(x̄, u− x̄) > 0. (6)

Nonsmooth second-order cone-convexity of g at x̄ with respect to ω(., .), together
with µ̄ ∈ Q+ implies

µ̄T [g(u)− g(x̄)− g′(x̄, u− x̄)− ω(u, x̄)g′′(x̄, u− x̄)] ≥ 0. (7)
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By adding (6) and (7), we get

µ̄T [g(u)− g(x̄) + ω(u, x̄)g′′(x̄, u− x̄)] > 0.

Using (2), we obtain that µ̄T g(u) > 0, which is a contradiction to u ∈ S0.
Hence, x̄ is a weak minimum of (VOP).

Along the similar lines, we can prove the following second-order KKT type
sufficient optimality conditions for a feasible point to be a minimum and strong
minimum of (VOP).

Theorem 3.2 Let f be nonsmooth second-order K-convex and g be nonsmooth
second-order Q-convex at x̄ ∈ S0 with respect to ω(., .). Suppose there exist
λ̄ ∈ Ks+, µ̄ ∈ Q+ such that for all x ∈ S0, (1), (2) and (3) hold. Then, x̄ is a
minimum of (VOP).

Theorem 3.3 Let f be nonsmooth second-order K-convex and g be nonsmooth
second-order Q-convex at x̄ ∈ S0 with respect to ω(., .). Suppose there exist
µ̄ ∈ Q+ such that for all x ∈ S0, (1) and (2) hold and (1) and (3) hold for
every λ ∈ K+. Then, x̄ is a strong minimum of (VOP).

Next, we prove the KKT type sufficient optimality conditions for (VOP)
under the weaker assumption of nonsmooth second-order K-pseudoconvexity
and nonsmooth second-order Q-quasiconvexity.

Theorem 3.4 Let f be nonsmooth second-order K-pseudoconvex and g be non-
smooth second-order Q-quasiconvex at x̄ ∈ S0 with respect to ω(., .). Suppose
there exist λ̄ ∈ K+ \ {0}, µ̄ ∈ Q+ such that for all x ∈ S0, (1), (2) and (3) hold.
Then, x̄ is a weak minimum of (VOP).

Proof Let x ∈ S0. Then, µ̄
T g(x) ≤ 0. Using (2), we get

µ̄T g(x)− µ̄T g(x̄) + ω(x, x̄)µ̄T g′′(x̄, x− x̄) ≤ 0.

If µ̄ 6= 0, then

g(x)− g(x̄) + ω(x, x̄)g′′(x̄, x− x̄) /∈ intQ.

Since g is nonsmooth second-order Q-quasiconvex at x̄ with respect to ω(., .),
we obtain

− [g′(x̄, x− x̄) + 2ω(x, x̄)g′′(x̄, x− x̄)] ∈ Q

=⇒µ̄T g′(x̄, x− x̄) + 2ω(x, x̄)µ̄T g′′(x̄, x− x̄) ≤ 0.

The above inequality also holds for µ̄ = 0. From (1), we get

λ̄T f ′(x̄, x− x̄) ≥ 0.
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Using (3), the above can be written as

λ̄T f ′(x̄, x− x̄) + 2ω(x, x̄)λ̄T f ′′(x̄, x− x̄) ≥ 0.

Since λ̄ 6= 0, we get

−[f ′(x̄, x− x̄) + 2ω(x, x̄)f ′′(x̄, x− x̄)] /∈ intK.

Now f is nonsmooth second-order K-pseudoconvex at x̄ with respect to ω(., .),
therefore

− [f(x)− f(x̄) + ω(x, x̄)f ′′(x̄, x− x̄)] /∈ intK.

From (3) we get,

f(x̄)− f(x) /∈ intK.

As x ∈ S0 is arbitrary, we get

f(x̄)− f(x) /∈ intK, ∀ x ∈ S0.

Hence, x̄ is a weak minimum of (VOP).

Remark 3.1 In the above theorem, if we assume f to be nonsmooth second-
order strictly K-pseudoconvex (nonsmooth second-order strongly K-pseudocon-
vex), then x̄ will be a minimum (strong minimum) of (VOP).

We conclude this section with an example to illustrate Theorem 3.4.

Example 3.1 Let

S = (−2, 2) ⊆ R,K = {(x1, x2)
T ∈ R

2 : x2 6 0, x2 6 x1}

and

Q = {(x1, x2)
T ∈ R

2 : x1 ≥ 0, x1 ≥ x2}.

Define f = (f1, f2)
T : S −→ R

2 and g = (g1, g2)
T : S −→ R

2 as

f1(x) = f2(x) =











1

x+ 1
, x > 0

1

−x+ 1
, x < 0

g1(x) =

{

0, x > 0

x2, x < 0
and g2(x) =

{

x2, x > 0

−x2, x < 0
.
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The feasible set of the corresponding problem (VOP) is S0 = [0, 2). Let x̄ = 0.
Then,

f ′(0, x) =

{

(−x,−x)T , x > 0

(x, x)T , x < 0
and f ′′(0, x) = (2x2, 2x2)T .

g′(0, x) = (0, 0)T and g′′(0, x) =

{

(0, 2x2)T , x > 0

(2x2,−2x2)T , x < 0
.

Let ω : S × S −→ [0,∞) be a real valued function with ω(., .) ≡ 1. Now, f is
nonsmooth second-order K-pseudoconvex at x̄ = 0 with respect to ω(., .) as

−[f ′(0, x) + 2ω(x, 0)f ′′(0, x)] =
{

(

x− 4x2, x− 4x2
)T
, x > 0

(

−x− 4x2,−x− 4x2
)T
, x < 0

/∈ intK

=⇒ x ∈ (−2, 2) and for all such x,

−[f(x)− f(0) + ω(x, 0)f ′′(0, x)] =
{

( −1
x+1

+ 1− 2x2, −1
x+1

+ 1− 2x2)T , x > 0

( 1
x−1

+ 1− 2x2, 1
x−1

+ 1− 2x2)T , x < 0
/∈ intK.

Also, g is nonsmooth second-order Q-quasiconvex at x̄ = 0 with respect to
ω(., .) as

[g(x)− g(0) + ω(x, 0)g′′(0, x)] =

{

(0, 3x2)T , x > 0

(3x2,−3x2)T , x < 0
/∈ intQ

=⇒ x > 0

=⇒ −[g′(0, x) + 2ω(x, 0)g′′(0, x)] =

{

(0,−4x2)T , x > 0

(−4x2, 4x2)T , x < 0
∈ Q.

Here, K+ = {(x1, x2) : x2 6 −x1 6 0}, Q+ = {(x1, x2) : −x1 6 x2 6 0}.

For λ = (1,−1) ∈ K+ \ {0} and µ = (1, 0) ∈ Q+, the following conditions hold
for all x ∈ S0:

λT f ′(0, x) + µT [g′(0, x) + 2ω(x, 0)g′′(0, x)] =

{

0, x > 0

4x2, x < 0
> 0,

µT g(0)− ω(x, 0)µT g′′(0, x) =

{

0, x > 0

−2x2, x < 0
> 0,

ω(x, 0)λT f ′′(0, x) = 0.

Therefore, by Theorem 3.4, x̄ = 0 is a weak minimum of (VOP).
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4. Second-order duality

Aggarwal (1998) associated first-order dual with (VOP) in terms of first-order
directional derivative and proved duality results under the assumption of pseu-
doconvexity and quasiconvexity with respect to cone. Suneja, Sharma and Vani
(2008) formulated a second-order dual involving first and second-order deriva-
tives for vector optimization problem over cones and established duality results
using second-order cone-convex functions and its weaker notions.

In the absence of second-order derivatives, we formulate the following second-
order Mond-Weir type Dual (MD) in terms of first and second-order directional
derivatives and establish duality results using nonsmooth second-order strongly
cone-pseudoconvexity and nonsmooth second-order cone-quasiconvexity:

K-Maximize f(u) (MD)

subject to λT f ′(u, x− u) + µT g′(u, x− u)

+ 2ξ[λT f ′′(u, x− u) + µT g′′(u, x− u)] ≥ 0, ∀x ∈ S0, (8)

µT g(u)− ξµT g′′(u, x− u) ≥ 0, ∀x ∈ S0, (9)

ξλT f ′′(u, x− u) ≤ 0, ∀x ∈ S0, (10)

u ∈ S, λ ∈ K+ \ {0}, µ ∈ Q+, ξ ∈ R+. In general, ξ can be regarded as a
function.

Let D be the feasible set of (MD).

Definition 4.1 A point (ū, λ̄, µ̄, ξ̄) ∈ D is called weakly efficient solution (weak
maximum) of (MD) if for all (u, λ, µ, ξ) ∈ D, f(u)− f(ū) /∈ intK.

Theorem 4.1 (Weak Duality) Let x ∈ S0 and (u, λ, µ, ξ) ∈ D. Suppose f
is nonsmooth second-order strongly K-pseudoconvex and g is nonsmooth second-
order Q-quasiconvex at u with respect to ξ. Then, f(u)− f(x) /∈ intK.

Proof Since x ∈ S0, we get µ
T g(x) 6 0. This, along with equation (9), implies

µT g(x)− µT g(u) + ξ(x, u)µT g′′(u, x− u) ≤ 0.

If µ 6= 0, then

g(x)− g(u) + ξ(x, u)g′′(u, x− u) /∈ intQ.

As g is nonsmooth second-order Q-quasiconvex at u with respect to ξ(., .), we
obtain

− [g′(u, x− u) + 2ξ(x, u)g′′(u, x− u)] ∈ Q

=⇒µT g′(u, x− u) + 2ξ(x, u)µT g′′(u, x− u) ≤ 0.
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The above inequality also holds for µ = 0. From (8), we get

λT f ′(u, x− u) + 2ξ(x, u)λT f ′′(u, x− u) ≥ 0.

As λ 6= 0, the above implies

−[f ′(u, x− u) + 2ξ(x, u)f ′′(u, x− u)] /∈ intK.

Also f is nonsmooth second-order strongly K-pseudoconvex at u with respect
to ξ(., .), therefore

[f(x)− f(u) + ξ(x, u)f ′′(u, x− u)] ∈ K

=⇒λT [f(x)− f(u) + ξ(x, u)f ′′(u, x− u)] ≥ 0.

From (10), we get λT [f(x)− f(u)] ≥ 0. Hence, f(u)− f(x) /∈ intK.

To prove the Strong Duality result, we use the first-order KKT type nec-
essary optimality conditions, derived by Aggarwal (1998) under the following
regularity condition.

Definition 4.2 (Aggarwal, 1998) The function g is said to satisfy regular-
ity condition at x̄ ∈ S if

g′(x̄;S − x̄) + {αg(x̄) | α ≥ 0}+Q = R
p. (11)

Theorem 4.2 (Aggarwal, 1998) Let x̄ be a weak minimum of (VOP). If
f ′(x̄, x − x̄) is K-subconvexlike and g′(x̄, x − x̄) is Q-subconvexlike on S and
the regularity condition (11) holds at x̄, then there exist λ ∈ K+ \ {0}, µ ∈ Q+

such that

λT f ′(x̄, x− x̄) + µT g′(x̄, x− x̄) ≥ 0, ∀ x ∈ S, (12)

µT g(x̄) = 0. (13)

Theorem 4.3 (Strong Duality) Let x̄ be a weak minimum of (VOP). As-
sume that f ′(x̄, x−x̄) is K-subconvexlike and g′(x̄, x−x̄) is Q-subconvexlike on S
and the regularity condition (11) holds at x̄. Then, there exist λ̄ ∈ K+ \{0}, µ̄ ∈
Q+ such that (x̄, λ̄, µ̄, ξ̄ = 0) is feasible for the dual problem (MD) and the objec-
tive function values of (VOP) and (MD) are equal. Moreover, if the conditions
of Weak Duality Theorem 4.1 hold for all (u, λ, µ, ξ) ∈ D, then (x̄, λ̄, µ̄, ξ̄ = 0)
is a weak maximum of (MD).

Proof Since x̄ is a weak minimum of (VOP), by Theorem 4.2 there exist λ̄ ∈
K+ \ {0}, µ̄ ∈ Q+ such that (12) and (13) are satisfied. Then, (x̄, λ̄, µ̄, ξ̄ = 0)
is feasible for the dual problem (MD) and objective function values of (VOP)
and (MD) are equal. Let, if possible, (x̄, λ̄, µ̄, ξ̄ = 0) be not a weak maximum of
(MD), then there exists (u, λ, µ, ξ) ∈ D such that f(u)− f(x̄) ∈ intK, which is
a contradiction to Weak Duality Theorem 4.1. Hence, (x̄, λ̄, µ̄, ξ̄ = 0) is a weak
maximum of (MD).
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Remark 4.1 The second-order KKT type sufficient optimality conditions in-
volve ω with second-order directional derivatives of both the objective function f
as well as constraint function g. Thus, we need to assume that f and g satisfy
nonsmooth second-order cone-convexity assumptions (and their generalizations)
with respect to the same ω.

We can also consider the general case, wherein f satisfies nonsmooth second-
order cone-convexity assumptions with respect to φ(., .) and g satisfies non-
smooth second-order cone-convexity assumptions with respect to ω(., .). The
modified second-order KKT type sufficient optimality conditions will be as fol-
lows:

Theorem 4.4 Let f be nonsmooth second-order K-convex at x̄ with respect to
φ(., .) and g be nonsmooth second-order Q-convex at x̄ ∈ S0 with respect to
ω(., .).

Suppose there exist λ̄ ∈ K+ \ {0}, µ̄ ∈ Q+ such that for all x ∈ S0,

λ̄T f ′(x̄, x− x̄) + µ̄T g′(x̄, x− x̄)

+2ω(x, x̄)[µ̄T g′′(x̄, x− x̄)] ≥ 0, (14)

µ̄T g(x̄)− ω(x, x̄)µ̄T g′′(x̄, x− x̄) ≥ 0, and (15)

φ(x, x̄)λ̄T f ′′(x̄, x− x̄) = 0. (16)

Then, x̄ is a weak minimum of (VOP).

Along the lines of Hanson (1993), the second-order Mond-Weir dual will
then be reformulated as

K-Maximize f(u) (MD)

subject to λT f ′(u, x− u) + µT g′(u, x− u)

+ 2ξ[λT f ′′(u, x− u) + µT g′′(u, x− u)] ≥ 0, ∀x ∈ S0, (17)

µT g(u)− ξµT g′′(u, x− u) ≥ 0, ∀x ∈ S0, (18)

ψλT f ′′(u, x− u) ≤ 0, ∀x ∈ S0, (19)

u ∈ S, λ ∈ K+ \ {0}, µ ∈ Q+, ξ, ψ ∈ R+. In general, ξ and ψ can be regarded as
functions.

Here the number of parameters in the dual has increased.

5. Conclusion

We have introduced new classes of nonsmooth second-order cone-convex and
related functions in terms of second-order directional derivative. Second-order
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KKT type sufficient optimality conditions and Mond-Weir type duality results
for (VOP) are proved using these functions. As first-order (second-order) differ-
entiable functions are also first-order (second-order) directionally differentiable,
so the results obtained by us can be applied to a wider class of problems. It will
be interesting to derive aforesaid results in the higher-order setting.
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