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Abstract: This paper studies the robust finite-time H∞ state
feedback control problem of continuous-time Markov jump systems
(MJSs) subject to norm bounded uncertainties. Transition proba-
bilities are allowed to be known, uncertain with known bounds or un-
known. Based on the continuous transition probability property and
the developed slack variable technique, Lyapunov variables are sep-
arated from unknown transition probabilities and system matrices.
With these separations, a relaxed method for robust finite-time H∞

controller design is proposed in terms of linear matrix inequalities
(LMIs). Numerical examples are given to illustrate the effectiveness
of and the benefit from the proposed method.

Keywords: Markov jump systems, partly known transition
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1. Introduction

Over the last few years, a lot of attention has been attracted to stochastic hybrid
systems with Markov jump parameters, since the model can be effectively used
to describe the plants whose structure is subject to random abrupt changes due
to, for instance, failures or repairs, sudden environment changes, modification of
the operating point of a nonlinear system, etc. The results related to this class
of systems have found wide applications in various practical problems, such as

∗Submitted: February 2014; Accepted: April 2015.
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target tracking, manufacturing processes and fault-tolerant control systems (see
Mariton, 1990; Costa, Fragoso and Marques, 2005). Meanwhile, Markov jump
systems (MJSs) theory has been extensively investigated and important results
have been obtained, associated with problems such as stability and stabilization
(see Ji, 1990; Feng, Loparo, Ji and Chizeck, 1992; Yue and Han, 2005; Xiong and
Lam, 2005; Bolzern, Colaneri and De Nicolao, 2013; Huang and Shi, 2012; Ma,
Boukas and Chinniah, 2010; Zhang, Boukas and Lam, 2008; Zhang and Boukas,
2009a; Shen and Yang, 2012a; Zhang, Cui, Liu and Zhao, 2011; Zhang, Gao
and Kaynak, 2013; Zhang, Zhuang and Shi, 2015), H∞ and H2 control (see De
Farias, Geromel, Do Val and Costa, 2000; Dong and Yang, 2007, 2008; Shen and
Ye, 2013), or H∞ and H2 filtering (see He and Liu, 2010a; Zhang and Boukas,
2009b; Shen and Yang, 2012b; Wang, Zhang and Sreeram, 2010; Wu, Su and
Chu, 2014; Zong and Yang, 2014); synchronization of Markovian jump neural
networks with time-varying delays is discussed in Wu, Shi, Su and Chu (2013),
passivity analysis for discrete-time stochastic Markovian jump neural networks
with mixed time-delays is presented in Wu, Shi, Su and Chu (2011), model
reduction is considered in Sun, Lam, Xu and Shu (2012), or Zhang, Boukas and
Shi (2009), and so on.

As it is known, stability plays a crucial role in systems analysis, systems
theory and control engineering. Concerning the above results on MJSs, most
of them are devoted to the stochastic stability over an infinite time interval.
While this type of stability is often sufficient for practical applications, there
exist some cases where large values of the state are not acceptable, for instance
in the presence of saturations. In order to avoid the unacceptable state values,
finite-time stability is considered. A system is said to be finite-time stable
if, given a bound on the initial condition, its state does not exceed a certain
threshold during a specified time interval (see Amato, Ariola and Dorate, 2001;
Amato and Ariola, 2005; Amato, Ariola and Cosentino, 2011). Recently, some
appealing results related to finite-time control of MJSs have been obtained (see
He and Liu, 2010b, 2012; Zuo, Li, Liu and Wang, 2012; Luan, Liu and Shi,
2010, 2011). Specifically, He and Liu (2010b) provide an observer-based finite-
time control of time-delayed MJSs. Based on a fuzzy Lyapunov-Krasovskii
functional approach, the finite-time H∞ control of time-delay nonlinear MJSs
via dynamic observer-based state feedback is presented (see He and Liu, 2012).
Considering the transition probabilities as being partially known, the finite-time
stochastic stability and stabilization problem is studied (see Zuo, Li, Liu and
Wang, 2012). On the other hand, because of the difficulty of measuring various
parameters, and the environmental noise in practical engineering, it is difficult to
establish an exact mathematical model. The type of norm bounded uncertainties
is deemed as a common and effective tool to describe system uncertainty (see
Shi, Boukas and Agarwal, 1999). Regarding this topic, under the assumption
that the transition probabilities are unknown, but belong to fixed finite intervals,
the robust finite-time filtering and controller design for MJSs were studied (see
Luan, Liu and Shi, 2010, 2011). However, when the transition probabilities are
unknown, the proposed methods cannot be applied.
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This paper extends the consideration of the robust finite-time H∞ control
of continuous-time MJSs with norm-bounded parameter uncertainties. Here,
the transition probabilities may be known, uncertain with known lower and
upper bounds, and unknown. Based on the property of continuous transition
proba-bilities and a matrix transformation technique, Lyapunov variables are
separated from unknown transition probabilities and system matrices, respec-
tively. Based on these separations, sufficient conditions are established in the
framework of linear matrix inequality (LMI), which guarantee that the closed-
loop system is finite-time stochastic stable with the prescribed H∞ performance
index. Two numerical examples are also given to illustrate the effectiveness of
and the benefits from the proposed method.

Notation: Throughout this paper, MT represents the transpose of ma-
trix M . The notation X ≤ Y (X < Y ) means that X − Y is negative semi-
definite (negative definite), where X and Y are symmetric matrices. λmin(P )
and λmax(P ) are the minimal eigenvalue and the maximal eigenvalue of a sym-
metric matrix P , respectively. I and 0 represent the identity matrix and the zero
matrix, respectively. L2 denotes the space of square integrable vector functions
of a given dimension over [0, +∞) with norm ||x||22 =

∫∞

0
E{x(t)Tx(t)dt} < ∞,

where E{·} stands for the mathematical expectation. ∗ denotes the entries of
matrices implied by symmetry. Matrices, if not explicitly stated, are assumed
to have appropriate dimensions. Finally, the symbol He(X) is used to represent
X +XT .

2. Preliminaries and problem statement

Consider the following continuous-time MJS with parameter uncertainties:






ẋ(t) = [A(r(t)) + ∆A(r(t))]x(t) + [B(r(t)) + ∆B(r(t))]u(t)
+Bw(r(t))w(t),

z(t) = C(r(t))x(t) +D(r(t))u(t) +Dw(r(t))w(t),
(1)

where x(t) is the state variable, w(t) ∈ Rnw is the disturbance input, which
belongs to L2[0, + ∞), z(t) ∈ Rp is the regulated output. A(r(t)), B(r(t)),
Bw(r(t)), C(r(t)), D(r(t)) and Dw(r(t)) are known mode-dependent constant
matrices having appropriate dimensions. ∆A(r(t)) and ∆B(r(t)) are the time-
varying but norm bounded uncertainties satisfying

[∆A(r(t)) ∆B(r(t))] = G(r(t))Fr(t)(t) [H1(r(t)) H2(r(t))] ,

where G(r(t)), H1(r(t)) and H2(r(t)) are known mode-dependent matrices hav-
ing appropriate dimensions, and Fr(t)(t) is a time-varying unknown matrix func-
tion with Lebesgue norm measurable elements satisfying Fr(t)(t)

TFr(t)(t) ≤ I.
r(t) is a time-homogeneous Markov process with right continuous trajectories,
taking values on the finite set I = {1, 2, · · ·, S} with stationary transition prob-
abilities

Pr{r(t+ dt) = j|r(t) = i} =

{

πijdt+ o (dt), i 6= j

1 + πiidt+ o (dt), i = j
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where dt > 0 and lim
dt→0

o(dt)
dt

= 0. πij is the jump rate from mode i to mode j

satisfying







πij ≥ 0, ∀i 6= j ∈ I,
S
∑

j=1,i6=j

πij = −πii, i = 1, ..., S.
(2)

Hence, the Markov process transition probability matrix Π is given by

Π =











π11 π12 · · · π1S

π21 π22 · · · π2S

...
...

. . .
...

πS1 πS2 · · · πSS











.

In distinction from the studies to date, the transition probabilities of the
jumping process {r(t), t ≥ 0} in this paper are allowed to be known, uncertain
with known lower and upper bounds, or completely unknown (see Shen and Ye,
2013). For example, for system (1) with four operation modes, the transition
probability matrix may be:

Π =









ρ11 ? ρ13 ?
? ρ22 ? ρ24
α ? ρ33 ?
? ? β ?









,

where ”?” represents the unaccessible elements, α and β are uncertain with
known lower and upper bounds (i.e, α ≤ α ≤ ᾱ and β ≤ β ≤ β̄), and ρij means
that πij is completely known with πij = ρij .

Therefore, the following three sets can be adopted to describe all the possible
cases that the transition probabilities may belong to



















Ri
k

∆
= {j : πij is known},

Ri
uk1

∆
= {j : lower and upper bounds of πij are known},

Ri
uk2

∆
= {j : there is no information available for πij}.

(3)

Although the elements in Ri
uk1 are unknown, their upper and lower bounds

can be utilized. So, we rewrite the above sets as follows:







Ii
k

∆
= Ri

k ∪Ri
uk1,

Ii
uk

∆
= Ri

uk2.
(4)

For any πij ∈ Ri
uk1, we denote the lower and upper bounds as πij and πij ,

respectively. For πij ∈ Ri
k, we let πij = πij = πij . Meanwhile, we employ
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Li
k (Li

uk) to represent the index set of the known (unknown) elements in the ith
row of matrix Π:

Li
k

∆
= {m|m ∈ Ii

k and m 6= i}, Li
uk

∆
= {m|m ∈ Ii

uk and m 6= i}.

Moveover, the set Li
k can be expressed as Li

k = {mi1, · · · ,mia}, where 1 ≤
mi1 < · · · < mia ≤ S. Our aim is to design a state feedback controller

u(t) = K(r(t))x(t), (5)

such that the resulting closed-loop system

{

ẋ(t) = (Ā(r(t)) + ∆Ā(r(t)))x(t) +Bw(r(t))w(t)
z(t) = C̄(r(t))x(t) +Dw(r(t))w(t)

(6)

is finite-time stochastic bounded and satisfies

E{
∫ N

0

zT (t)z(t)dt} ≤ γ2E{
∫ N

0

wT (t)w(t)dt} (7)

under zero initial conditions for any non-zero w(k), where

Ā(r(t)) = A(r(t)) +B(r(t))K(r(t)),

∆Ā(r(t)) = ∆A(r(t)) + ∆B(r(t))K(r(t)),

C̄(r(t)) = C(r(t)) +D(r(t))K(r(t)).

For simplicity, system matrices are abbreviated as Ai, Bi, Bwi, Ci, Di, Dwi,
Ki, ∆Ai, ∆Bi, Gi, H1i, H2i and Fi(t) when r(t) = i (i ∈ I), denoting also
Âi = Āi +∆Āi and Ĉi = C̄i.

Remark 1 There exist some results related to MJSs with partly known tran-
sition probabilities in the literature. All transition probabilities πij are either
assumed to be uncertain with known bounds (see Luan, Liu and Shi, 2011),
or they must be known or completely unknown (see Zuo, Li, Liu and Wang,
2012). Actually, these cases may happen simultaneously in practice. Obviously,
the method of Luan, Liu and Shi (2011) is not applicable to the completely un-
known case, and the method of Zuo, Li, Liu and Wang (2012) may lead to
conservative result since the uncertain case is treated as completely unknown.

Before discussing the finite-time H∞ controller design problem, some neces-
sary assumption, definitions and lemmas are brought in as follows
Assumption 1. For any given positive number d, the external disturbance
w(t) is time-varying and satisfies

E{
∫ N

0

w(t)Tw(t)dt} ≤ d. (8)
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Definition 1 (Finite-time stochastic stability (FTSS)) For a given constant
N > 0, the continuous-time MJSs (1) with w(t) = 0 is said to be FTSS with
respect to (c1, c2, Ri, N) if

E{xT (0)Rix(0)} ≤ c1 → E{xT (t)Rix(t)} ≤ c2, ∀t ∈ [0, N ], (9)

where 0 < c1 < c2 and Ri > 0.

Definition 2 (Finite-time stochastic boundedness (FTSB)) For a given con-
stant N > 0, the continuous-time MJSs (1) is said to be FTSB with respect to
(c1, c2, Ri, N, d) if (9) holds, where 0 < c1 < c2, Ri > 0 and w(t) satisfies (8).

Lemma 1 Let T, M, W and Y be real matrices of appropriate dimensions with
WTW ≤ I, then for any positive scalar β, we have

T +MWY + (MWY )T ≤ T + βMMT + β−1Y TY. (10)

Recently, some methods for finite-time stochastic stability analysis and robust
H∞ control of continuous-time MJSs were proposed: see Zuo, Li, Liu and Wang
(2012) and Luan, Liu and Shi (2011), respectively, where the transition prob-
abilities of visited modes were also assumed to be partly known or uncertain
with known lower and upper bounds. For convenience of comparison, the main
results from Zuo, Li, Liu and Wang (2012) and Luan, Liu and Shi (2011) are
quoted as the following lemmas.

Lemma 2 (Zuo, Li, Liu and Wang, 2012) For a given time-constant µ > 0,
MJSs (1) is FTSS with respect to (c1, c2, Ri, N), if there exist matrices Pi > 0,
Wv = WT

v (v = 1, 2, · · · , g) and two positive scalars λ1 and λ2 such that

He(AT
i Pi)− µPi +

∑

j∈Ii
k

πij (Pj −Wv) < 0 (11)

Pj −Wv ≤ 0, ∀j ∈ Ii
uk, i 6= j (12)

Pj −Wv ≥ 0, ∀j ∈ Ii
uk, i = j (13)

λ1I ≤ P̂i ≤ λ2I (14)

c1λ2e
µT − c2λ1 < 0 (15)

where Pi = R
1

2 P̂iR
1

2 .

Lemma 3 (Luan, Liu and Shi, 2011) MJSs (1) is FTSB with respect to
(c1, c2, Ri, N, d) and has H∞ performance index γ via state feedback controller
(5), if there exist matrices Pi > 0 such that







He
(

Pi

(

Āi +∆Āi

))

− (Si − 1)πmin,iPi + πmax,i

∑

j 6=i

Pj ∗ ∗

BT
wiPi −γ2I ∗
Ci Dwi −I






<0,

(16)

c1Ωmax(P̂i) + γ2d
1 − e−µN

µ
≤ e−µNc2Ωmin(P̂i), (17)
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where Si is the number of modes visited from mode i including the mode i itself,
πmin,i and πmax,i are known parameters for each mode or may represent the

lower and upper bounds when all the jump rates are known. P̂i = R
− 1

2

i PiR
− 1

2

i ,
Ωmin and Ωmax denote the minimal and maximal eigenvalues of the augment,
respectively.

3. Main results

In this section, the general method for stability analysis of system (1) with
general transition probabilities is first presented. Then, the finite-time robust
H∞ controller design method is also proposed in terms of LMIs.

Theorem 1 For given (c1, c2, Ri, N, d) and µ > 0, the closed-loop system (6)
is robustly FTSB with H∞ performance index γ if there exist Qi > 0, Vi and
Ti (i = 1, 2, · · · , S) such that the following inequalities hold:

(i) for πii ∈ Ii
k























He(−Vi) ∗ ∗ ∗ ∗ ∗ ∗
Σi21 Σi22 ∗ ∗ ∗ ∗ ∗
0 BT

wi −γ2I ∗ ∗ ∗ ∗
C̄iVi 0 Dwi −I ∗ ∗ ∗
Vi 0 0 0 −Ti ∗ ∗
C i
k 0 0 0 0 −D i

k ∗
√

λ̄i
kVi 0 0 0 0 0 −Ql























< 0, (l ∈ Li
uk)

(18)

(ii) for πii ∈ Ii
uk























































He(−Vi) ∗ ∗ ∗ ∗ ∗
Σi21 Σi22 ∗ ∗ ∗ ∗
0 BT

wi −γ2I ∗ ∗ ∗
C̄iVi 0 Dwi −I ∗ ∗
Vi 0 0 0 −Ti ∗
C i
k 0 0 0 0 −D i

k

















< 0,

Qi ≤ Ql, (l ∈ Li
uk)

(19)

c1λmax(P̂i) + γ2d
1− e−µN

µ
≤ e−µNc2λmin(P̂i) (20)
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where P̂i = R
− 1

2

i Q−1
i R

− 1

2

i and

Σi21 = (Āi +∆Āi)Vi +Qi,

Σi22 =

{

π̄iiQi + Ti − 2Qi − µQi, i ∈ Ii
k,

−δikQi + Ti − 2Qi − µQi, i ∈ Ii
uk.

C
i
k =

[

(
√
π̄mi1

Vi)
T · · · (

√
π̄mia

Vi)
T

]T
,

D
i
k = diag

{

Qmi1
, · · · , Qmia

}

,

λ̄i
k = −πii −

∑

j∈Li
k

πij ,

δik =
∑

j∈Li
k

πij .

Proof We first show that if (18) and (19) hold, then the following inequal-
ities hold:









He
(

PiÂi

)

+
∑

j∈Ii
k

π̄ijPj − µPi + λ̄i
kPl ∗ ∗

(PiBwi)
T −γ2I ∗

Ĉi Dwi −I









< 0 (i ∈ Ii
k, l ∈ Li

uk)

(21)































He
(

PiÂi

)

+
∑

j∈Li
k

π̄ijPj − δikPi − µPi ∗ ∗

(PiBwi)
T −γ2I ∗

Ĉi Dwi −I









< 0,

Pl ≤ Pi (i ∈ Ii
uk, l ∈ Li

uk)

(22)

where PiQi = I.

By pre- and post-multiplying both sides of (21) by diag
{

Qi, I, I
}

and
its transpose, respectively, we get









He(ÂiQi) + (π̄ii − µ)Qi ∗ ∗ ∗
BT

wi −γ2I ∗ ∗
ĈiQi Dwi −I ∗
E i
kQi 0 0 −D̄ i

k









< 0, (23)

where

E
i
k =

[ √
π̄imi1

I · · · √
π̄imia

I

√

λ̄i
kI

]T

,

D̄
i
k = diag

{

Qmi1
· · · , Qmia

Ql

}

.
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From the continuity of LMI, there always exists a set of sufficiently small positive
scalars ǫi satisfying









He(ÂiQi) + (π̄ii − µ)Qi ∗ ∗ ∗
BT

wi −γ2I ∗ ∗
ĈiQi Dwi −I ∗
E i
kQi 0 0 −D̄ i

k









+ ǫi









Âi

0

Ĉi

E i
k









Qi









Âi

0

Ĉi

E i
k









T

<0.

(24)

After direct algebraic manipulations, (24) can be rewritten as








−ǫ−1
i Qi + (π̄ii − µ)Qi ∗ ∗ ∗

BT
wi −γ2I ∗ ∗
0 Dwi −I ∗
0 0 0 −D̄

i
k









+









(ǫiÂi + I)Qi

0

ǫiĈiQi

ǫE i
kQi









(ǫiQi)
−1









(ǫiÂi + I)Qi

0

ǫiĈiQi

ǫE i
kQi









T

< 0. (25)

From the Schur complement, (25) is equivalent to












−ǫiQi ∗ ∗ ∗ ∗
(ǫiÂi + I)Qi −ǫ−1

i Qi + (π̄ii − µ)Qi ∗ ∗ ∗
0 BT

wi −γ2I ∗ ∗
ǫiĈiQi 0 Dwi −I ∗
ǫE i

kQi 0 0 0 −D̄ i
k













< 0. (26)

Let Vi = ǫiQi, (26) is then further rewritten as
















He(−Vi) ∗ ∗ ∗ ∗ ∗
ÂiVi +Qi −ǫ−1

i Qi + (π̄ii − µ)Qi ∗ ∗ ∗ ∗
0 BT

2i −γ2I ∗ ∗ ∗
ĈiVi 0 D2i −I ∗ ∗
Vi 0 0 0 −ǫiQi ∗

E i
kVi 0 0 0 0 −D̄ i

k

















< 0.

(27)

Note that ǫi − 2 ≥ −ǫ−1
i , it is known that (27) can be guaranteed if

















He(−Vi) ∗ ∗ ∗ ∗ ∗
ÂiVi +Qi (ǫi − 2)Qi + (π̄ii − µ)Qi ∗ ∗ ∗ ∗

0 BT
wi −γ2I ∗ ∗ ∗

ĈiVi 0 Dwi −I ∗ ∗
Vi 0 0 0 −ǫiQi ∗

E i
kVi 0 0 0 0 −D̄ i

k

















< 0,

(28)
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which is just (18) by letting Ti = ǫiQi. This means that if (18) holds, then (21),
as well, holds. Along the lines similar to the above procedure, we can prove
that if (19) holds, then (22) also holds.

Choose a candidate stochastic Lyapunov function as

V (x(t), r(t) = i) = V (x, i) = xTPix

with Pi > 0. Along the trajectories of the system (6), the corresponding time
derivative of V (x(t), i) is given by

ΓV (x(t), i) = lim
∆t→0

1

∆t
[E{V (x(t+∆t), i+∆t)|x(t), r} − V (x(t), r)]

= xT



He
(

PiÂi

)

+

S
∑

j=1

πijPj



x+ 2xTPiBwiw. (29)

1) For the case of πii ∈ Ii
k, one has

ΓV (x(t), i) = xT



He
(

PiÂi

)

+
∑

j∈Ii
k

πijPj +
∑

l∈Ii
uk

πilPl



x+ 2xTPiBwiw.

(30)

In such a situation, according to (3) and (4), there is

Li
uk = Ii

uk and Li
k ∪ {i} = Ii

k.

Note that

∑

j∈Li
uk

πij +
∑

j∈Li
k

πij = 0,

we further have the fact that

∑

l∈Li
uk

πil = λi
k,

where

λi
k = −πii −

∑

j∈Li
k

πij .
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Since the transition probabilities are partly known, so λi
k > 0 and this yields

ΓV (x(t), i) = xT



He
(

PiÂi

)

+
∑

j∈Ii
k

πijPj +
∑

l∈Ii
uk

πilPl



x+ 2xTPiBwiw

= xT







∑

l∈Li
uk

πil

λi
k



He
(

PiÂi

)

+
∑

j∈Ii
k

πijPj



+
∑

l∈Li
uk

πilPl






x+2xTPiBwiw

=
1

λi
k

∑

l∈Li
uk

πil



xT



He
(

PiÂi

)

+
∑

j∈Ii
k

πijPj + λi
kPl



 x+ 2xTPiBwiw



 .

(31)

Therefore, from (21), it one can easily see that

ΓV (x(t), i) + E
{

z(t)T z(t)− γ2w(t)Tw(t)
}

< µV (x(t), i). (32)

2) For the case of πii ∈ Ii
uk, there is Li

k = Ii
k and Li

uk ∪ {i} = Ii
uk. From

πii = −
∑

j∈Li
k

πij −
∑

l∈Li
uk

πil,

(29) can be rewritten as follows

ΓV (x(t), i) = xT



He
(

PiÂi

)

+
∑

j∈Li
k

πijPj +
∑

l∈Li
uk

πilPl + πiiPi



x+ 2xTPiBwiw

= xT



He
(

PiÂi

)

+
∑

j∈Li
k

πij(Pj − Pi) +
∑

l∈Li
uk

πil (Pl − Pi)



x+ 2xTPiBwiw

= xT



He
(

PiÂi

)

+
∑

j∈Li
k

πij(Pj − Pi)



 x+ 2xTPiBwiw +
∑

l∈Li
uk

πilx
T (Pl − Pi)x.

(33)

Similarly, from (22) one can derive that ΓV (x(t), i) < 0 holds.
Subsequently, it is easy to see that

ΓV (x(t), i) < µV (x(t), i) + γ2w(t)Tw(t) (34)

if (18) and (19) hold.
By multiplying (34) by e−µt, we obtain

Γ
[

e−µtV (x(t), i)
]

< γ2w(t)Tw(t)e−µt. (35)
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Integration of (35) over 0 to t, gives

e−µtV (x(t), i)− V (x(0), i0) <

∫ t

0

γ2w(̟)Tw(̟)e−µ̟d̟. (36)

Then, (36) is equivalent to

V (x(t), i) < eµtV (x(0), i0) + γ2eµt
∫ t

0

w(̟)Tw(̟)e−µ̟d̟

< eµtV (x(0), i0) + γ2deµt
∫ t

0

e−µ̟d̟

= eµt
[

V (x(0), i0) + γ2d
1− e−µt

µ

]

. (37)

Moreover, by choosing P̂i = R
− 1

2

i PiR
− 1

2

i , one has

V (x(t), i) < eµt
[

c1λmax(P̂i) + γ2d
1− e−µt

µ

]

. (38)

On the other hand, the following condition holds

V (x(t), i) ≥ λmin(P̂i)x
TRix. (39)

By combining (38) and (39), we obtain

E{xTRix} <
eµt

[

c1λmax(P̂i) + γ2d1−e−µt

µ

]

λmin(P̂i)
. (40)

Thus, according to the condition (20), fulfillment of condition E
{

xTRix
}

≤ c2
can be guaranteed for ∀t ∈ [0, N ], which also signifies that the MJSs (1) with
incomplete transition probabilities are FTSB with respect to (c1, c2, Ri, N, d).

Next, we consider the H∞ performance problem of MJSs (1) in the frame-
work of FTSS.

From (18) and (19), one obtains

ΓV (x(t), i) − µV (x(t), i) < E
{

γ2w(t)Tw(t) − z(t)T z(t)
}

. (41)

Upon multiplying (41) by e−µt, the following is obtained:

Γ [e−µtV (x(t), i)] < e−µtE
{

γ2w(t)Tw(t) − z(t)T z(t)
}

. (42)

Integration of (42) over 0 to t with the zero initial condition, leads to the fol-
lowing inequality:

e−µtV (x(t), i) < E

{∫ t

0

e−µ̺
(

γ2w(̺)Tw(̺) − z(̺)T z(̺)
)

d̺

}

. (43)
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Therefore, for t ∈ [0, N ], the following inequality holds

E

{

∫ N

0

z(̺)T z(̺)d̺

}

< γ̄2E

{

∫ N

0

w(̺)Tw(̺)d̺

}

, (44)

which is just (7) with γ̄ =
√
e−µNγ. This completes the proof. �

Remark 2 Due to the unknown transition probabilities πil (l ∈ Ii
uk), there

exists a nonlinear relationship between πil and Pl. In order to linearize this
nonlinearity, the property of transition probabilities is made full use of in this
theorem.

Remark 3 By employing a matrix transformation, two sets of slack variables
are introduced to separate the Lyapunov variables from system matrices. With
this separation, conditions (18) and (19) of Theorem 1 are expressed in the form
of LMIs even if system matrices have norm bounded uncertainties. However, a
nonlinear inequality (20), accompanied by (18) and (19), is difficult to be solved
by means of the convex optimization methods. To overcome this difficulty, the
subsequent theorem with an extra constraint on Qi is presented below to give a
controller design method.

Based on the conditions given in Theorem 1, an LMI-based method for
dealing with the robust finite-time controller design is given in the following
theorem.

Theorem 2 Considering MJSs (1) with incomplete transition probabilities, given
(c1, c2, Ri, N), if there exist Qi > 0, Vi, Ti , γ and βi such that the following
inequalities hold:

(i) for πii ∈ Ii
k































He(−Vi) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Σi21 Σi22 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 BT

wi −γ2I ∗ ∗ ∗ ∗ ∗ ∗
CiVi +DiLi 0 Dwi −I ∗ ∗ ∗ ∗ ∗

Vi 0 0 0 −Ti ∗ ∗ ∗ ∗
C

i
k 0 0 0 0 −D

i
k ∗ ∗ ∗

√

λ̄i
kVi 0 0 0 0 0 −Ql ∗ ∗
0 βiG

T
i 0 0 0 0 0 −βiI ∗

H1iVi +H2iLi 0 0 0 0 0 0 0 −βiI































< 0,

(45)
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(ii) for πii ∈ Ii
uk















































































He(−Vi) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Σi21 Σi22 ∗ ∗ ∗ ∗ ∗ ∗
0 BT

wi −γ2I ∗ ∗ ∗ ∗ ∗
CiVi +DiLi 0 Dwi −I ∗ ∗ ∗ ∗

Vi 0 0 0 −Ti ∗ ∗ ∗
C i
k 0 0 0 0 −D i

k ∗ ∗
0 βiG

T
i 0 0 0 0 −βiI ∗

H1iVi +H2iLi 0 0 0 0 0 0 −βiI

























< 0,

Qi ≤ Ql (l ∈ Li
uk),

(46)

ε1R
−1
i ≤ Qi ≤ R−1

i , (47)

[

γ2d1−eµN

µ
− c2e

−µN √
c1

∗ −ε1

]

< 0, (48)

then the closed-loop system (6) is robustly FTSB with H∞ performance index
γ.

Moreover, the controller is given by

Ki = LiV
−1
i . (49)

Proof Let Li = KiVi and ∆Σ̄i21 = ∆AiVi +∆BiLi +Qi. Then, (18) is equiv-
alent to

Zi = Z1i + Z2i < 0,
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where

Z1i =























He(−Vi) ∗ ∗ ∗ ∗ ∗ ∗
Σi21 Σi22 ∗ ∗ ∗ ∗ ∗
0 BT

wi −γ2I ∗ ∗ ∗ ∗
CiVi +D1iLi 0 Dwi −I ∗ ∗ ∗

Vi 0 0 0 −Ti ∗ ∗
C i
kVi 0 0 0 0 −D i

k ∗
√

λ̄i
kVi 0 0 0 0 0 −Ql























,

Z2i =





















0 ∗ ∗ ∗ ∗ ∗ ∗
∆Σi21 0 ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 0





















=

He









































0
Gi

0
0
0
0
0





















Fi(t)





















(H1iVi +H2iLi)
T

0
0
0
0
0
0





















T



















.

According to Lemma 1, one can deduce

Z2i ≤ βi





















0
Gi

0
0
0
0
0









































0
Gi

0
0
0
0
0





















T

+β−1
i





















(H1iVi +H2iLi)
T

0
0
0
0
0
0









































(H1iVi +H2iLi)
T

0
0
0
0
0
0





















T

.

Thus, from the Schur complement, (45) is obtained, and (46) can be derived
from (18) by taking the similar approach.

On the other hand, it is easy to check that condition (20) is guaranteed by
imposing the conditions (47) and (48). �

Remark 4 In order to solve the finite-time H∞ control problem by means of
Matlab LMI toolbox, an extra constraint is imposed on Qi, which may cause
some conservatism. An open problem, which is left for our future research, is
the development of a procedure to reduce such potential conservatism.
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Remark 5 A strict LMI-based method is proposed in Theorem 2 for fixed
(c1, c2, Ri, N). To obtain an optimised finite-time stabilised controller, set
σ = γ2 and minimize σ subject to (45) -(48), namely,

min
Vi,Ti,Xi,βi s.t.(45)−(48)

σ. (50)

Then, the optimal H∞ performance index γ =
√
σ∗, as well as the corresponding

controller gains, can be obtained by (49).

4. Numerical examples

In this section, two numerical examples are provided in order to illustrate the
effectiveness of the proposed method.

Example 1 Consider the unforced system (1) with four operation modes and
the following data:

A1=

[

0.8 −2.3
1.5 −0.9

]

, A2=

[

−1.3 2.7
−2.3 −1.9

]

, A3=

[

0.2 −0.8
0.7 −0.9

]

, A4=

[

−0.5 −0.2
−1 0.2

]

R=

[

−0.5 −0.2
−1 0.2

]

,Π=









−1.3 0.2 ? ?
? ? 0.3 0.3
? ? −1.5 ?
0.4 ? ? ?









c1 = 2, c2 = 18, T = 1.5, µ = 1

where ”?” denotes the completely unknown transition probabilities.

First, we use Lemma 2, Lemma 3 and Theorem 1 for finite time stochastic
stability analysis. On the one hand, the LMIs in Lemma 2 are infeasible. On
the other hand, from the transition probability matrix Π, it is difficult to obtain
the boundary information of some unknown elements (such as in the fourth
row) which leads to the conclusion that the conditions given in Lemma 3 are
infeasible. However, the method proposed in this paper can give a solution to
the partly known transition probabilities as follows:

P1 =

[

32.3539 −9.4587
−9.4587 35.8116

]

, P2 =

[

32.9689 −9.5457
−9.5457 37.0462

]

P3 =

[

29.1767 −7.9654
−7.9654 25.0810

]

, P4 =

[

34.9333 −10.8484
−10.8484 39.0734

]

.

According to the above example, it can be seen that the results proposed in
this paper are less conservative than the existing ones.

Another example for robust H∞ control of MJS (1) is given below to show
the effectiveness and benefit of the proposed method.
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Example 2 Consider the MJS (1) with parameters given by as in Luan, Liu
and Shi (2011):

A1=

[

|! 0 1
1 2

]

, A2=

[

0 1
2 1

]

, A3=

[

0 1
3 2

]

, G1=

[

0.1 0
0 0.1

]

, G2=

[

0.2 0
0 0.3

]

,

G3 =

[

0.3 0
0 0.2

]

, B1 =

[

0
1

]

, B2 =

[

0
2

]

, B3 =

[

0
3

]

, H11 =

[

1 2
0 3

]

,

Bw1=

[

0
0.1

]

, Bw2=

[

0
0.2

]

, Bw3=

[

0
0.3

]

, H12=

[

0.1 2
0 0.3

]

, H13=

[

0.1 0.2
0 0.3

]

,

C1=

[

1
2

]

, C2=

[

1
1

]

, C3=

[

1
3

]

, H21=

[

0.1
0

]

, H22=

[

0.2
0

]

, H23=

[

0.3
0

]

,

D1 = Dw1 = 0.1, D2 = Dw2 = 0.2, D3 = Dw3 = 0.3.

The switching between the modes is described by

Π =





0 π12 π13

π21 0 π23

π31 π32 0



 .

The parameters πij for all i, j ∈ I are assumed to satisfy 1.3 ≤ π13 ≤ 2.8,
1.5 ≤ π21 ≤ 2.5 and 1.4 ≤ π32 ≤ 2.9.

With introduction of the initial values for c1 = 0.5, c2 = 4 , N = 5, d = 4
and µ = 0.5, and application of Lemma 3 and Theorem 2, one obtains the
optimal values of γ∗, which are listed in Table 1.

Table 1. γ∗ values for different methods

Lemma 3 Theorem 2
2.2074 1.7458

According to Table 1, it can be seen that the proposed method is more effective
than the existing result.

Furthermore, corresponding to the obtained γ∗, the controller gains obtained
from the respective solution, are given below:

K1 =
[

−38.4169 −22.1939
]

K2 =
[

−13.8180 −5.5900
]

K3 =
[

−17.8749 −6.4380
]

.

With the obtained controller gains, along with the initial condition x0=
[

0.5− 0.3
]T

,

the systems state response curves and the trace of x(t)TRix(t) are shown in Fig.1
and Fig.2, respectively.

According to these figures, it can be seen that the designed controllers render
the closed-loop system finite-time stochastic stable.



228 S.Yan, M. Shen, S. Fei and G. Zhang

Figure 1. The state response curves of x1(t) and x2(t)

Figure 2. The dynamic trace of xT (t)Rix(t)

5. Conclusions

This paper considers the robust finite-time H∞ control problem of continuous-
time MJSs with incomplete transition probabilities. A relaxed H∞ controller
design procedure is proposed in terms of LMIs. Numerical examples are given
to illustrate the effectiveness and the benefits of the proposed method.
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