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A b s t r a c t :  Evolution strategies arc a class of general optimi-
sation algorithms which arc applicable to functions that are multi-
modal, nondifferentiable, or even discontinuous. Although recom-
bination operators have been introduced into evolution strategies, 
the primary search operator is still mutation. Classical evolution 
strategies rely on Gaussian mutations. A new mutation operator 
based on the Cauchy distribution is proposed in this paper. It is 
shown empirically that the new evolution strategy based on Cauchy 
mutation outperforms the classical evolution strategy on most of 
the 23 benchmark problems tested in this paper. The paper also 
shows empirically that changing the order of mutating the objective 
variables and mutating the strategy parameters does not alter the 
previous conclusion significantly, and that Cauchy mutations with 
different scaling parameters still outperform the Gaussian mutation 
with self-adaptation. However, the advantage of Cauchy mutations 
disappears when recombination is used in evolution strategies. It 
is argued that the search step size plays an important role in de-
termining evolution strategies' performance. The large step size of 
recombination plays a similar role as Cauchy mutation. 
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1 .  I n t r o d u c t i o n  

Among three major branches of evolutionary computation, i.e., genetic algo-
rithms (GAs), evolutionary programming (EP) and evolution strategies (ESs), 
ESs arc the only one originally proposed for numerical optimisation and is still 

1 An earlier short version of this paper Yao and Liu (1997), was presented at the Sixth 
Annual Conference on Evolutionary Programming, Indianapolis, USA, 13-16 April 1997. This 
work is partially supported by a University College Special Research Grant . 
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mainly used in optimisation, Fogel (1994), Back and Schwefel (1993). The pri-
mary search operator in ESs is mutation although recombinations have also 
been used. The state-of-the-art of ESs is (fJ,, >.)-ES, Schwefel (1995), Back and 
Schwefel (1996), where A > /L 2'. 1. (µ, >.) means that µ parents generate >. 
offspring through recombination and mutation in each generation. The best µ 
offspring are selected deterministically from the A offspring and replace the par-
ents. Elitism and probabilistic selection are not used. This paper first considers 
a simplified version of ESs, i.e., ESs without any recombination. Then ESs with 
recombination and a different order of mutating objective variables and strategy 
parameters are investigated. 

ESs can be regarded as a population-based variant of generate-and-test al-
gorithms, Yao (1996). They use search operators such as mutation to g e n e r a t e  
new solutions and use a selection scheme to t e s t  which of the newly gene-
rated solutions should survive to the next generation. The advantage of viewing 
ESs (and other evolutionary algorithms, EAs) as a variant of generate-and-test 
search algorithms is that the relationships between ESs and other search algo-
rithms, such as simulated annealing (SA), tabu search (TS), hill-climbing, etc., 
can be made clearer and thus easier to explore. In addition, the generate-and-
test view of ESs makes it obvious that "genetic" operators, such as crossover 
(recombination) and mutation, are really stochastic search operators which are 
used to generate new search points in a search space. The effectiveness of a 
search operator would be best described by its ability to produce promising 
new points which have higher probabilities of finding a global optimum, rather 
than by some biological analogy. The role of test in a generate-and-test algo-
rithm or selection in ESs is to evaluate how "promising" a new point is. Such 
evaluation can be either deterministic or probabilistic. 

The (/1,, >.)-ESs use Gaussian mutation to generate new offspring and de-
terministic selection to test them. There has been a lot of work on different 
selection schemes for ESs, Back (1996). However, work on mutations has been 
concentrated on self-adaptation, Fogel (1994), Back and Schwefel (1996), rather 
than on new mutations. Gaussian mutations seem to be the only choice, Fo-
gel (1994), Back and Schwefel (1996). Recently, Cauchy mutation has been 
proposed as a very promising search operator due to its higher probability of 
making long jumps, Yao and Liu (1996), Yao, Lin and Liu (1997), Kappler 
(1996). In Yao and Liu (1996), Yao, Lin and Liu (1997), a fast E P  based on 
Cauchy mutation was proposed. It compares favourably to the classical E P  on 
23 benchmark functions (up to 30 dimensions). In Kappler (1996), the idea 
of using Cauchy mutation in EAs was independently studied. An (1 + 1) EA
without self-adaptation and recombination was investigated. Both analytical 
and numerical results on 3 one- or two-dimension functions were presented. It 
was pointed out that "in one dimension, an algorithm working with Cauchy 
distributed mutations is both more robust and faster. This result cannot easily 
be generalized to higher dimensions, ... " Kappler (1996). 

This paper continues the work of fast EP, Yao and Liu (1996), and studies 
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fast ESs which use Cauchy mutations. The idea of Cauchy mutation was origi-
nally inspired by fast simulated annealing, Szu and Hartley (1987), Yao (1995). 
The relationship between the classical ESs (CES) using Gaussian mutation and 
the fast ESs (FES) using Cauchy mutation is analogous to that between classi-
cal simulated annealing and fast simulated annealing. This paper investigates 
multi-membered ESs, i.e., (/t, >.)-ESs with self-adaptation. Extensive experi-
mental studies on 23 benchmark problems (up to 30 dimensions) have been 
carried out. The results have shown that FES outperforms CES on most of the 
23 benchmark problems. 

The rest of this paper is organised as follows. Section 2 formulates the global 
optimisation problem considered in this paper and describes the implementation 
of CES. Section 3 describes the implementation of FES. Section 4 presents and 
discusses the experimental results on CES and FES using 23 benchmark prob-
lems. Section 5 investigates different ES variants. Finally, Section 6 concludes 
with a few remarks. 

2 . F u n c t i o n  o p t i m i s a t i o n  b y  c l a s s i c a l  e v o l u t i o n  s t r a t e g i e s

A global minimisation problem can be formalised as a pair (S, f), where S   Rn

is a bounded set on Rn and f : S f----7 R is an n-dimcnsional real-valued function. 
The problem is to find a point Xmin E S such that f (xm in) is a global minimum 
on S. More specifically, it is required to find an Xmin E S such that 

' ix E S :  f (xm in) ::; f (x) 

Here f docs not need to be continuous, but it must be bounded. We only 
consider unconstrained function minimisation in this paper. 

According to the description by Back and Schwefel (1993), the (/t, >.)-CES 
is implemented as follows in our studies: 

1. Generate the initial population of µ individuals, and set k = 1. Each
individual is taken as a pair of real-valued vectors, (xi,77i), Vi E { l ,  · · · ,µ}.

2. Evaluate the fitness value for each individual (xi,77i), Vi E { l , · · · , µ } ,  of 
the population based on the objective function, f(xi),

3. Each parent (xi, 77i), i = 1, · • •, µ, creates >./Jt offspring on the average, so 
that a total of ,\ offspring are generated: for i = 1, · · · ,  11,, j = 1, · · · ,  n, 
and k = 1, · · · , >., 

Xk 1 (j ) Xi(j) +ryi(j)N(O, 1), (1) 
'T]k1 (j ) 77i(j)exp(T'N(0,l)+TiYi(0,l)) (2) 

where xi(j), xk'(j), 7]i(j) and 77k'(j) denote the j-th components of the 
vectors Xi, xk', 'T]i and 'T]k', respectively. N(O, 1) denotes a normally dis-
tributed one-dimensional random number with mean zero and standard 
deviation one. Ni (O, 1) indicates that the random number is genera-
ted anew for each value of j. The factors T and T1 are usually set to 

(  ) - l a n d  (v12n)- 1
. 
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4. Evaluate the fitness of each offspring (x/ ,  ry/), Vi E {1, · · · ,  .:X.}, according
to f ( x / ) .

5. Sort offspring (x/ ,  ry/), Vi E {1, · · · ,  .:X.} in a non-descending order accord-
ing to their fitness values, and select the µ best offspring out of .:X. to be
parents of the next generation.

6. Stop if the stopping criterion is satisfied; otherwise, k = k + l and go to
Step 3. 

It is worth mentioning that swapping the order of (1) and (2) and using 'T/k' (j) 
to generate xk'(j)  may give better performance for some problems, Gehlhaar 
and Fogel (1996). However, no definite conclusion can be drawn yet. 

3. Fast evolution strategies
The one-dimensional Cauchy density function centred at the origin is defined 
by: 

( ) 1 t 
f t  X = - - 2 - - 2 ,1rt +x - O O  < X < oo, 

where t > 0 is a scale parameter. The corresponding distribution function is 

( 1 1 (X) 
Ft x) = - + -ardan -2 1r t 

The shape of ft(x) resembles that of the Gaussian density function but ap-
proaches the axis so slowly that an expectation does not exist. As a result, 
the variance of the Cauchy distribution is infinite. Fig. 1 shows the difference 
between Cauchy and Gaussian functions. It is obvious that the Cauchy function 
is more likely to generate a random number far away from the origin because of 
its long flat tails. So, a Cauchy mutation in FES is more likely to escape from 
a local minimum or move away from a plateau. 

In order to investigate the impact of Cauchy mutation on ESs, the minimal 
change has been made to the CES. The F E S  studied in this paper is kept exactly 
the same as the CES described in Section 2, except for (1) which is replaced by 
the following: 

(3) 

where /5.i is a Cauchy random variable with the scale parameter t = 1 and is 
generated anew for each value of j. It is worth indicating that (2) is unchanged 
in F E S  in order to keep the modification of CES to a minimum. 'T/ in F E S  plays 
the role of the scale parameter t and not the variance in the Cauchy distribution. 

In our experiments, the Gaussian random number was generated according 
to the following FORTRAN function, Press et al. (1992). 

FUNCTION gasdev(idum) 
INTEGER idum 
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Figure 1. Comparison between Cauchy and Gaussian distributions. 

REAL gasdev 
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C Returns a normally distributed number with zero mean and unit 
C variance, using ran1(idum) as the source of uniform numbers). 

INTEGER iset 
REAL fac,gset,rsq,v1,v2,ran1 
SAVE iset,gset 
DATA iset/0/ 
if(iset.eq.O)then 

1 v1 = 2 .*ran1(idum)-1. 
v2= 2 .*ran1(idum)-1. 
rsq= v1**2+v2**2 
if(rsq.ge.1 .. or.rsq.eq.0.)goto 1 
fac= sqrt (-2.*log(rsq)/rsq) 
gset = vi*fac 
gasdev= v2*fac 
iset = 1 

else 
gasdev= gset 
iset = O 

endif 
return 
END 
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The Cauchy random number was generated according to the following pro-
cedure, Devroye (1986 p. 451). 

FUNCTION cauchy(idum) 
REAL cauchy· 

C Returns a Cauchy random number with probability density 
C function f(x)=1/(pi*(1+x*x)). 

REAL v1,v2 
v1=gasdev(idum) 
v2=gasdev(idum) 
if(v2.ne.0.)then 

cauchy=v1/v2 
else 

cauchy=O.O 
endif 
return 
END 

The uniform random number was generated according to the FORTRAN 
function given by Press et al. (1992), p. 271. 

4. Experimental studies

4.1. Test functions 

A set of 23 well-known functions, Fogel (1991), Torn and Zilinskas (1989), 
Schwefel (1995), Back and Schwefel (1993), Ingber and Rosen (1992), Dekkers 
and Aarts (1991), are used in our experimental studies. This relatively large 
set is necessary in order to reduce biases in evaluating algorithms. The 23 test 
functions are listed in Table 1. The detailed description of each function is given 
in the Appendix. Functions J i to f13 are high-dimensional problems. Functions 
J i to f5 are unimodal functions. Function f6 is the step function which has one 
minimum and is discontinuous. Function h is a noisy quartic function, where 
random[O, 1) is a uniformly distributed random variable in (0, 1). Functions f8 
to f 13 are multimodal functions where the number of local minima increases 
exponentially with the function dimension, Torn and Zilinskas (1989), Schwe-
fel (1995). Functions f14 to fz3 are low-dimensional functions which have only 
a few local minima, Torn and Zilinskas (1989). For unimodal functions, the 
convergence rate of F E S  and CES is more important than the final results of 
the optimisation in this paper, as there are other methods which are specifi-
cally designed to optimise unimodal functions. For multimodal functions, the 
important issue is whether an algorithm can find a better solution in a shorter 
time. 
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Table 1. The 23 test functions used in our experimental studies, where n is 
the dimension of the function, f min is the minimum value of the function, and 
S t;;; R n . The detailed description of each function is given in the Appendix. 
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4.2.  E x p e r i m e n t a l  se tup  

The experimental setup was based on Back and Schwefel's (1993) suggestion. 
For all experiments, (30, 200)-ES with self-adaptive standard deviations, no cor-
related mutations, no recombination, the same initial standard deviations 3.0, 
and the same initial population were used. All experiments were repeated for 50 
runs. The initial population was generated uniformly at random in the ranges 
specified in Table 1. The number of generations for each function was deter-
mined after some limited preliminary runs which showed that an ES would have 
converged (either prematurely or globally) after certain number of generations. 
There is little point in running the algorithm longer if this is unlikely to improve 
the performance further. 

4.3.  Exper imenta l  results  

4.3.1.  Unimodal  functions ( f i - h )  

Unimodal functions are not the most interesting and challenging test problems 
for global optimisation algorithms, such as ESs. There are more efficient algo-
rithms than ESs, which are specifically designed to optimise them. The aim here 
is to use them to get a picture of the convergence rate of CES and FES. Figs. 2 
and 3 show the evolutionary process of CES and F E S  on unimodal functions 
f i - h .  The final results are summarised in Table 2. 

Function No. of F E S  CES F E P - C E P  
Generations Mean Best Std Dev Mean Best Std Dev t-test

Ji 750 2.5 X 10-4 6.8 X 10-t> 3.4 X 10-t> 8.6 X 10-o 22.07* 
h 1000 6.0 X 10- 2 9.6 X 10- 3 2.1 X 10- 2 2.2 X 10- 3 27.96* 
h 2500 1.4 X 10- 3 5.3 X 10-4 1.3 X 10-4 8.5 X 10- 5 16.53* 
f4 2500 5.5 X 10- 3 6.5 X 10-4 0.35 0.42 -5.78*
f 5  7500 33.28 43.13 6.69 14.45 3.97*
!6 750 0 0 411.16 695.35 -4.18*
h 1500 1.2 X 10- 2 5.8 X 10- 3 3.0 X 10- 2 1.5 X 10- 2 -7.93*

Table 2. Comparison between CES and FES on f i - h .  The results were aver-
aged over 50 runs. "Mean Best" indicates the mean best function values found 
in the last generation. "Std Dev" stands for the standard deviation. 
* The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

In terms of final results, F E S  performs better than CES on f4, !6 and h ,
but worse than CES on f i - h  and f5• No strong conclusion can be drawn here.
However, a closer look at the evolutionary processes reveals some interesting 
facts. For example, FES  performs far better than CES on f 6 (the step function). 
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Figure 2. Comparison between CES and FES on f i - f4 . The vertical axis is the 
function value and the horizontal axis is the number of generations. 
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Figure 3. Comparison between CES and FES on h - h . T h e  vertical axis is the 
function value and the horizontal axis is the number of generations. 
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It has a very fast convergence rate and converges to the global minimum every 
time. This indicates that FES is very good at dealing with plateaus due to its 
long jumps. Such long jumps enable FES to move from one plateau to a lower 
one easily, while CES would have to wander about a plateau for a long time 
before it can reach a lower plateau. 

FES's behaviour on J i  is also very interesting. According to Fig. 2, J i  's 
value decreases much faster for FES than for CES in the beginning. This is 
probably caused by FES's long jumps, which take it to the center of the sphere 
more rapidly. When FES approaches the center, i.e., the minimum, long jumps 
are less likely to generate better offspring and FES has to depend on small 
steps to move towards the minimum. The smaller central part of the Cauchy 
distribution, as shown by Fig. 1, implies that Cauchy mutation is weaker than 
Gaussian one at fine-grained neighbourhood (local) search. Hence the decrease 
of J i  's value for FES slows down considerably in the vicinity of the minimum, 
i.e., when J i  is smaller than 10-3_ CES, on the other hand, improves f i ' s  value 
steadily throughout the evolution and eventually overtakes FES. 

The behaviour of FES and CES for other functions can be explained in a 
similar wa y . The probability of making long jumps by a mutation pl a y s an 
important role in determining the behaviour of ESs. 

4.3.2. Multimodal functions with many local minima Us - f 13 ) 

Functions f s - f i3 are multimodal functions with many local minima. The num-
ber of local minima increases exponentially as the function dimension increases. 
These functions appear to be very "rugged" and difficult to optimise. Fig. 4 
shows the 2-dimensional version of f s. 

The evolutionary processes of FES and CES for f s - f13 are shown in Figs. 5 
and 6. The final results arc summarised in Table 3. Somewhat surprisingly, FES 
outperforms CES consistently on these apparently difficult functions. Figs. 5 
and 6 show that CES stagnates rather early in search and makes little progress 
thereafter, while FES keeps finding better function values throughout the evo-
lution. It appears that CES is trapped in one of the local minima and is unable 
to get out due to its more localised Gaussian mutation. FES, on the other hand, 
has a much higher probability of making long jumps and thus is easier to get 
out of a local minimum when trapped. A good near (global) minimum is more 
likely to be found by FES. 

4.3.3. Multimodal functions with a few local minima ( f i c h 3) 

The evolutionary processes of FES and CES on functions f i e  f23 are shown 
in Figs. 6, 7 and 8. The final results are summarised in Table 4. Although 
these functions arc also multimodal functions, the behaviour of FES and CES 
on them is rather different from that on multimodal functions with many local 
minima. There is no consistent winner here. For functions f i4 and f i5, FES 
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1 8 -

500 

Figure 4. The 2-dimensional version of fs, 

Function No. of FES CES FES-CES  
Generations Mean Best Std Dev Mean Best Std Dev t-test 

Is 4500 -12556.4 32.53 -7549.9 631.39 -56.10*
Jg 2500 0.16 0.33 70.82 21.49 -23.19*
fio 750 1.2 X 10-2 1.8 X 10-3 9.07 2.84 -22.51 *
/11 1000 3.7 X 10-2 5.0 X 10-2 0.38 0.77 -3.11*
fi2 750 2.8 X 10-5 8.1 X 10-7 1.18 1.87 -4.45*
/13 750 4.7 X 10-5 1.5 X 10-5 1.39 3.33 -2.94*

Table 3. Comparison between CES and FES on fs-/13. The results were aver-
aged over 50 runs. Explanation same as to Table 2. 
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Figure 5. Comparison between CES and FES  on f 8- f n , The vertical axis is 
the function value and the horizontal axis is the number of generations. 
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Figure 6. Comparison between CES and FES on f i2- f i5 . The vertical axis is 
the function value and the horizontal axis is the number of generations. 
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outperforms CES. However, FES  is outperformed by CES on functions h i and 
h 2 . No statistically significant difference has been detected between FES's  and 
CES's performance on other functions. In fact, the final results of FES  and CES 
were exactly the same for f15, !11 and ! i s  although the initial behaviours were 
different. 

Function Number of FES  CES F E S - C E S  
Generations Mean Best Std Dev Mean Best Std Dev t-test

fi4 50 1.20 0.63 2.16 1.82 -3 .91"
f15 2000 9.7 X 10-4 4.2 X 10-4 1.2 X 10-3 1.6 X 10- 5 -4 .36 2 

!16 50 -1.0316 6.0 X 10-7 -1.0316 6.0 X 10-7 0 
h 1 50 0.398 6.0 X 10-s 0.398 6.0 X 10-S 0 
h s 50 3.0 0 3.0 0 0 
f19 50 -3.86 4.0 X 10-3 -3.86 1.4 X 10- 5 1.30
h o  100 -3.23 0.12 -3 .24  5.7 X 10-2 0.93
h i 50 -5.54 1.82 -6.96 3.10 2.81 2 

h 2 50 -6.76 3.01 -8.31 3.10 2.502 

h 3  50 -7.63 3.27 -8 .50 3.14 1.25 

Table 4. Comparison between CES and FES  on f i r h 3 .  The results were 
averaged over 50 runs. Explanation same as to Table 2. 

At the beginning, it was suspected that the low dimensionality of functions 
f i 4 - h 3  might contribute to the similar performance of F E S  and CES. Hence 
another set of experiments were carried out using the 5-dimensional version 
of functions fs- f i3 .  The same pattern as that shown by Figs. 5 and 6 was 
observed. This result shows that dimensionality is not one of the factors which 
affect FES's  and CES's performance on functions f i r h 3 .  The characteristics 
of these functions are the factors. One of such characteristics might be the 
number of local minima. Unlike functions f8-f 13 , all these functions have just a 
few local minima. The advantage of FES's  long jumps might be weakened in this 
case since there are not many local minima to escape. Also, fewer local minima 
imply that most of the optimisation time would be spent on searching in one 
of the local minima's "basin of attractions," where there is only one minimum. 
Hence, CES's performance would be very close to or even better than FES's. 

Since the goal of FES is to minimise multimodal and not unimodal functions, 
FES's  worse performance on functions h i and h 2 warrants a closer examina-
tion. Among 16 multimodal functions tested in this paper, these two were the 
only cases where F E S  was outperformed by CES. (Only statistically significant 
difference is considered in this paper.) Fig. 9 shows the 2-dimensional version of 
function h 1 . The shape of h 2 is similar. It can be seen from the figure that h 1 
is rather spiky with some small but deep local minima scattered on a relatively 
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Figure 7. Comparison between CES and F E S  on f16-f19 . The vertical axis is 
the function value and the horizontal axis is the number of generations. 
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Figure 8. Comparison between CES and FES  on f 20- f23 . The vertical axis 1s 
the function value and the horizontal axis is the number of generations. 
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flat area. These small but deep "spikes" cause some difficulties to FES. Neither 
FES 's  nor CES's result was close to the global minimum. Both of them seemed 
to be trapped in some local minimum. However, F E S  suffered more. This fact 
appears to contradict our previous discussion which says FES 's  long jumps are 
beneficial, but it does not. Recall the analysis of FES 's  and CES's behaviour 
on J i in Section 4.3.1. It is not difficult to see that long jumps are not always 
beneficial. They are detrimental when the search points are already close to the 
global minimum. This turns out to be the case with functions h 1  and h2-

For functions ]2 1 and h 2 ,  the ranges of x ; ' s  arc relatively small. Some 
of the points in the initial populations are already very close to the global 
minimum. After a few generations, the whole population will be close to the 
global minimum. In such a situation, long jumps will no longer be beneficial. 
This can be verified both analytically and empirically. The detailed results were 
presented elsewhere. 

100 
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Figure 9. The 2-dimensional version of function ]2 1 (Shekel-5). 

4.4. Related work on fast evolutionary programming 

Similar to FES, fast evolutionary programming (FEP), Yao and Liu (1996), Yao, 
Lin and Liu (1997), also uses Cauchy mutation. F E P  has been tested on the 
same 23 benchmark functions as described by Table 1. Comparing those results, 
Yao and Liu (1996), Yao, Lin and Liu (1997), with the results obtained from 
the current study, it is clear that the difference between F E S  and CES is very 
similar to the difference between F E P  and CEP. Similar evolutionary patterns 
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were observed from F E P  and CEP for the three function categories. The only 
exceptions were h, f5, fi5 and f23. For h, F E S  performed worse than CES,
while F E P  performed better than CEP. For h, F E S  also performed worse than
CES, while there was no statistically significant difference between F E P  and 
CEP. For f15, F E S  performed better than CES, while there was no statistically 
significant difference between F E P  and CEP either. For f23 , there was no 
statistically significant difference between FES and CES, but F E P  performed 
worse than CEP. In general, the relationship between F E S  and CES is very 
similar to that between F E P  and CEP. Since the major difference between 
E P  and ES is their selection schemes, the results of FES  and F E P  indicate 
that Cauchy mutation is a very robust search operator which can work with 
different selection schemes. In fact, FES's  performance can be further improved 
by mixing Cauchy and Gaussian mutations. Such improvement has been proven 
to be very successful in the case of FEP, Yao, Lin and Liu (1997). 

5. Other variants of evolution strategies

The previous sections present only some results with a simple version of evolu-
tion strategies. This section investigates 

l .  whether changing the order of mutating objective variables and strategy
parameters would make much difference between CES's and FES 's  perfor-
mance, 

2. whether F E S  still performs better if a different scale parameter t is used
in the Cauchy distribution, and 

3. whether F E S  still performs better if recombination is used.

5.1. The order of mutations 

We have run the experiments with a different order of mutating objective vari-
ables and strategy parameters. Table 5 shows the results of CES and FES,  
where the strategy parameter (2) was mutated first, for the three representative 
functions. No recombination was used in CES and FES. 

For J i ,  which is a typical function in the first group of the 23 benchmark 
functions, F E S  was outperformed by CES significantly. For ho, which is a 
typical function in the second group, F E S  performed significantly better than 
CES. For f23, which is a typical function in the third group, F E S  was again 
outperformed by CES. These observations are the same as what we observed 
when we mutated the objective variables first. That is, changing the order of 
mutation has little impact on the observations we made in Section 4 about 
CES's and FES 's  relative performance, although their absolute (i.e., individual) 
performance may have changed slightly. 
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F Gen's F E S  CES F E S - C E S  
Mean Best Std Dev Mean Best Std Dev t-test

h 750 2.0 X 10-4 2.3 X 10-n 2.4 X 10-n 2.8 X 10-b 52.47* 
h o 750 1.0 X 10-2 9.4 X 10-4 8.50 2.89 -20.75*
h 3  50 -8.86 2.92 -9.75 2.19 1.76*

Table 5. Comparison between CES and F E S  with no recombination ( only chang-
ing the order of (1) and (2)) on J i ,  h o and h3- The results were averaged over 
50 runs. 
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

5.2. Cauchy mutation with a different scale parameter 

All the previous experiments assumed scale parameter t = 1 in the Cauchy 
distribution. Tables 6 and 7 show the results of CEP and F E P  on h o when dif-
ferent values of the scale parameter were used. Table 6 shows the results when 
the objective variables were mutated first, while Table 7 shows the results when 
the strategy parameters were mutated first. It is interesting to note that F E S  
still outperforms CES for both t = 0.5 and t = 1.5. However, the performance 
of F E S  deteriorates as t increases for this particular problem. A general con-
clusion about the relationship between the scale parameter and the algorithm's 
performance is difficult to draw because it is problem-dependent. 

Scaling Gen's FES CES F E S - C E S  
Mean Best Std Dev Mean Best Std Dev t-test

0.5 750 5.9 X 10- 0 7.5 X 10-4 9.72 2.75 -25.01 *
1.0 750 1.2 X 10-2 1.8 X 10-3 9.07 2.84 -22.51 *
1.5 750 0.42 2.82 7.61 2.83 -14.92*

Table 6. Comparison between CES and F E S  for different scale parameters with 
no recombination. Objective variables were mutated first. The experiment was 
based on 50 runs using ho.  
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

5.3. Evolution strategies with recombination 

Although evolution strategies emphasise mutation, they do use recombination. 
The current wisdom is to use discrete recombination on the objective variables 
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Scaling Gen's F E S  CES F E S - C E S  
Mean Best Std Dev Mean Best Std Dev t-test

0.5 750 5.2 X 10-:i 4.4 X 10-4 8.47 3.07 -19.52*
1.0 750 1.0 X 10-2 9.4 X 10-4 8.50 2.89 -20.75*
1.5 750 0.81 3.95 6.79 2.74 -9.29*

Table 7. Comparison between CES and FES  for different scale parameters with 
no recombination. Strategy parameters were mutated first. The experiment 
was based on 50 runs using fio. 
*The value of t with 49 degrees of freedom is significant at a. = 0.05 by a
two-tailed test.

and global intermediate recombination on the strategy parameters. Table 8 
shows the results of CES and FES  with aforementioned recombinations. The 
same recombinations were implemented for both algorithms. 

F Gen's F E S  CES F E S - C E S  
Mean Best Std Dev Mean Best Std Dev t-test

Ji 750 27.94 34.52 2.2 X 10-b 2.4 X 10-1:i 5.72* 
ho ·750 4.64 1.49 3.4 X 10-3 2.4 X 10-4 22.03* 
h3 50 -10.34 0.63 -10.54 1.4 X 10-4 2.22* 

Table 8. Comparison between CES and FES  with recombination ( discrete re-
combination on the objective variables and global intermediate recombination 
on the strategy parameters). The strategy parameters were mutated first. All 
results were averaged over 50 runs. 
*The value of t with 49 degrees of freedom is significant at a. = 0.05 by a
two-tailed test.

The results in Table 8 reveal that FES performed poorly against CES for 
all three functions when recombination was used. The introduction of recom-
bination to F E S  has significantly worsened FES's  performance, while CES's 
performance improved greatly with the recombinations. Our preliminary analy-
sis of such phenomena indicates that the search step size of different operators 
pla ys an important role in determining the performance of an algorithm. As 
pointed out earlier, Yao, Lin and Liu (1997), Cauchy mutation has a much larger 
search step size than Gaussian mutation. A large search step size is beneficial 
when the current search point is far away f rom the global optimum, which is 
often the case at the beginning of search. When the current search point is close 
to the global optimum, which is likely towards the end of search, large search 
step sizes arc detrimental to search. 
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The two recombinations implemented in our experiments have very large 
search step sizes, especially the global intermediate recombination. Using both 
Cauchy mutation and these recombinations imply a huge search step size which 
would be undesirable for the functions we studied. That is why the introduc-
tion of recombination into F E S  brought no benefit at all. On the other hand, 
Gaussian mutation's search step size is relatively small. The introduction of 
recombination into CES greatly increased CES's search step size and thus its 
performance. In a sense, introducing recombination to CES has a similar ef-
fect as replacing Gaussian mutation by Cauchy mutation. Both increase the 
algorithm's search step size. 

To support our arguments and preliminary analysis, another set of experi-
ments were carried out where only the discrete recombination was used on both 
objective variables and strategy parameters in FES. (The search step size of 
the discrete recombination is much smaller than the global intermediate recom-
bination.) CES was kept the same as before. Table 9 shows the results of 
the experiment. It is clear that FES's  performance has improved dramatically 
after this minor change. The results demonstrate that the search step size of 
Cauchy mutation is sufficiently largo. There might not be any benefit of using 
recombination on the strategy parameters. 

F Gen's F E S  CES F E S - C E S  
Mean Best Std Dev Mean Best Std Dev t-test

h 750 1.3 X 10-4 1.8 X 10-b 2.2 X 10-b 2.4 X 10-o 39.67*
ho 750 8.3 X 10-3 6.6 X 10-4 3.4 X 10-3 2.4 X 10-4 49.87*
f23 50 -10.22 1.03 -10.54 1.4 X 10-4 2.15* 

Table 9. Comparison between CES and F E S  with recombination ( discrete re-
combination on the objective variables and global intermediate recombination 
on the strategy parameters for CES, and discrete recombination on both objec-
tive variables and strategy parameters for FES). The strategy parameters were 
mutated first. All results were averaged over 50 runs. 
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a

. two-tailed test.

5.3.1. The impact of different scale parameters 

Table 10 shows the impact of the scale parameter in Cauchy distribution on 
FES 's  performance when recombination is used. It indicates that different scale 
parameters did not change the global picture very much, although it did affect 
FES 's  performance slightly. 
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Scaling Gen's FES CES F E S - C E S  
Mean Best Std Dev Mean Best Std Dev t-test

0.5 750 4.2 X 10-:; 3.0 X 10-4 1.7 X 10-:; 9.7 X 10- 5 59.03* 
1.0 750 8.3 X 10- 3 6.6 X 10-4 3.4 X 10-3 2.4 X 10-4 49.87* 
1.5 750 1.21 4.78 5.3 X 10- 3 3.2 X 10-4 1.78* 

Table 10. Comparison between CES and F E S  with recombination ( discrete 
recombination on the objective variables and global intermediate recombina-
tion on the strategy parameters for CES, and discrete recombination on both 
objective variables and strategy parameters for FES), when a different scale pa-
rameter is used. The strategy parameters were mutated first. All results were 
averaged over 50 runs on fio, 
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

6. Conclusions

This paper proposes a new(µ, >-)-ES algorithm (i.e., FES) using Cauchy muta-
tion. Extensive empirical studies on 23 benchmark problems (up to 30 dimen-
sions) were carried out to evaluate the performance of FES. For multimodal 
functions with many local minima, F E S  outperforms CES consistently. For 
unimodal functions, CES appears to perform slightly better. However, F E S  is 
much better at dealing with plateaus. For multimodal functions with only a few 
local minima, the performance of F E S  and CES is very similar. 

The main reason for the difference in performance between F E S  and CES is 
due to the difference in their probabilities of making long jumps. Long jumps 
are beneficial when the current search points are far away from the global min-
imum, while detrimental when the current search points get close to the global 
minimum. Recent analytical results and further empirical studies, Yao, Lin and 
Liu (1997), support the preliminary analyses presented in this paper. 

According to recent work on analysing EAs using step sizes of search oper-
ators, Lin and Yao (1997), the impact of a search operator on the algorithm's 
search depends heavily on its search step size. It may be conjectured that re-
combination would play a major role in F E S  only if its search step size is larger 
than that of Cauchy mutation. 
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7 .  A p p e n d ix : b e n c h m a r k  f u n c t i o n s  

7 .1. S p h e r e  M o d e l  
30 

fi(x) = I :x ;  
i=l 

- 1 0 0  ::; Xi : : ;  100, min(fi) = J i  (0, . . .  , 0) = 0

7.2. Schwefel 's  problem 2.22 
30 30 

h(x) = L !xii+ IJ !xii 
i=l i=l 

- 1 0  ::; xi ::; 10, min(h) = h (0, . . .  , 0) = 0

7.3. Schwefel 's  prob lem 1.2( )2
30 i 

h(x) = 8  x.i 

- 1 0 0 : : ;  Xi::; 100, min(h) = h(O, ... ,0) = 0
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7.4. Schwefel's problem 2.21 

f4(x) = max{lxil, 1 :Si  :S 30} 

-100 :S xi :S 100, min(f4) = f 4(0, . . .  , 0) = 0

7.5. Generalised Rosenbrock's function 
29 

h(x) = I)10o(xi+l - x;) 2 + (x; - 1) 2
] 

i=l 

-30 :S xi :S 30, mii1(h) = f 5 (1, . . .  , 1) = 0

7.6. Step function 
30 

f5(x) = L (lxi + 0.5J) 2 

i=l 

-100 :S Xi :S 100, min(f5) = f5(0, . . .  ,0) = 0

7.7. Quartic function with noise 
30 

h(x) = L i x ; +  random[0, 1) 
i=l 

-1.28 :S x; :S 1.28, min(h) = h(O, . . .  , 0) = 0

7.8. Generalised Schwefel's problem 2.26 
30 

fa(x) = - L ( Xi sin ( M)) 
i=l 

-500 :S Xi :S 500, min(fs) = fa( 420.9687, . . .  , 420.9687) = -12569.5

7.9. Generalised Rastrigin's function 
30 

fg(x) = L[x; -10cos(21rxi) + 10)] 
i=l 

-5.12 :S xi :S 5.12, min(fg) = fg(0, . . .  , 0) = 0
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7.10. Ackley's function 

frn(x) - -20exp C o 2  310 r.f) · exp ( 3  cos2Kx,) + 20 + ,  

-32 :S :ri :S 32, min(f10) = fio(O, . . .  , 0) = 0

7.11. Generalised Griewank function 

1 30 30 
!11(.T) = -   .'Er - I J c o s  ( 

:r ) + 14000 ° . v i  1.= l i= l 

-600 :S :ri :S 600, min(f11) = !11 (0, . . .  , 0) = 0

7.12. Generalised penalised functions 

; { 10sin2 (7rY1) + t , ( Y i  - 1 ) 2 [1 + 10sin2 (7rYi+1)]+ 

(Yn - 1) 2 }

30 
+ L v.(:ri, 10, 100, 4) 

i = l

-50 :S .Ti :S 50, rnin(f1 2 ) = f i 2 (l , . . .  , 1) = 0

fi3 (:r) 0.1 { sin2 (7r3.T1 + t , ( : r i  - 1 ) 2 [1 + sin2 (37r:ri+i )l+ 

(:rn -1)[1 + sin2 (27rx30)]} 
30 

+ L u(xi, 5,100, 4) 
i = l

-50 :S Xi :S 50, min(fi3) = fi3(l, . . .  , 1) = 0

where 

{ 
k ( x i - a r ,  

11,(xi, a, k, m.) = 0, 

1 1 1 • = 1 + - ( x · + l ),y?. 4 i 

k ( - x i - a r ,  

Xi > a, 
- a  :S xi :S a, 
.Ti< -a.
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7.13. Shekel's foxholes function 

fi4(:r;) = [-1 + f . 2 l 6 ] - l500 .i= l J + I::i= l (xi - ai_i) 

-65.536 ::; Xi : : ;  65.536, min(f 14) = f 14( -32, -32)   1
where 

( 
-32 -16 0 16 32 -32( aij) = -32 -32 -32 -32 -32 -16

7.14. Kowalik's function 

0 16 32 )32 32 32 

- 5 : : ;  Xi::; 5, min(f15)   fi5(0.1928, 0.1908, 0.1231, 0.1358)   0.0003075 

i ai b-:- 1 

0.1957 0.25 
2 0.1947 0.5 
3 0.1735 1 
4 0.1600 2 
5 0.0844 4 
6 0.0627 6 
7 0.0456 8 
8 0.0342 10 
9 0.0323 12 
10 0.0235 14 
11 0.0246 16 

Table 11. Kowalik's function f 15 

7.15. Six-hump camel-back function 

!16 = 4xr - 2.lxj' + ½x  + X1X2 - 4x  + 4xi

- 5  ::; Xi : : ;  5

Xmin = (0.08983, -0.7126), (-0.08983, 0.7126) 

min(f 16) = -1.0316285
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7.16. Branin function 

( 
5.1 2 5 

) 
2 

( 
1 

) fi7(x) = .T2 - - 2 X1 + -X 1 - 6 + 10 1 - - COSX1 + 10 41r 1r 81r 

Xmin = (-3.142, 12.275), (3.142, 2.275), (9.425, 2.425) 

min(f 17) = 0.398 

7.17. Goldstein-price function 

fis(x) [1 + (x 1 + X2 + 1) 2 (19 - 14x 1 + 3xi - 14x 2 + 6x 1 X2 + 3xrn 
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x [30 + (2x 1 - 3x2 )2 (18 - 32x 1 + 12xi + 48x2 - 36x 1 x2 + 27x )] 

- 2  :S: Xi :S: 2, min(fis) = fis(0, -1) = 3

7.18. Hartman's family 

f(x)   - t c, exp [-t, a;;(x, - P;;)']

with n = 3, 6 for f19(x) and f20(x), respectively, 0 :S: x.i :S: 1. The coefficients 
arc defined by Tables 12 and 13, respectively. 

i 
1 
2 
3 
4 

ai.i,J = 1, 2, 3 Ci 

3 10 30 1 
0.1 10 35 1.2 
3 10 30 3 

0.1 10 35 3.2 

Pi.i,j = 1,2,3 
0.3689 0.1170 
0.4699 0.4387 
0.1091 0.8732 

0.038150 0.5743 

Table 12. Hartman function f 19 

0.2673 
0.7470 
0.5547 
0.8828 

For f19(x) the global minimum is equal to -3.86 and it is reached at the 
point (0.114, 0.556, 0.852). For ho(x) the global minimum is -3.32 at the point 
(0.201, 0.150, 0.477, 0.275, 0.311, 0.657). 

7.19. Shekel's family 

f(.T) = - L [ ( x  - ai)(x - a i f  + ci]- 1 

i = l  
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i aij, j = 1, · . .  , 6 Ci Pij, j = 1, · · · , 6 
1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650 
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

Table 13. Hartman Function h o  

i aij,j=l, .. ·,4 c· ,. 
1 4 4 4 4 0.1 
2 1 1 1 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 
6 2 9 2 9 0.6 
7 5 5 3 3 0.3 
8 8 1 8 1 0.7 
9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 

Table 14. Shekel Functions h i ,  h 2 ,  h 3  

with m = 5,710 for h1(x) ,  h2(x)  and h 3 ( x ) ,  respectively, 0 :S x_i :S 10. 
These functions have 5, 7 and 10 local minima for h1(x) ,  h 2 ( x ) ,  and h3(x ), 

respectively. Xz o c a L opt ;:::; ai,  J(xz oc a L opt)   1/ci for 1 : S i  : S m .  The coefficients 
arc defined by Table 14. 


