
•

Control and Cybernetics
vol. 2 6 (1997) No. 3

F a s t e v o l u t i o n s t r a t e g i e s 1

by

Xin Yao and Yong Liu

Computational Intelligence Group, School of Computer Science,
University College, The University of New South Wales,

Australian Defence Force Academy, Canberra, ACT, Australia 2600,
Email: { xin,liuy }@csadfa.cs.adfa.oz.au, URL: http:/ /www.cs.adfa.oz.au/ ~xin

A b s t r a c t : Evolution strategies arc a class of general optimi-
sation algorithms which arc applicable to functions that are multi-
modal, nondifferentiable, or even discontinuous. Although recom-
bination operators have been introduced into evolution strategies,
the primary search operator is still mutation. Classical evolution
strategies rely on Gaussian mutations. A new mutation operator
based on the Cauchy distribution is proposed in this paper. It is
shown empirically that the new evolution strategy based on Cauchy
mutation outperforms the classical evolution strategy on most of
the 23 benchmark problems tested in this paper. The paper also
shows empirically that changing the order of mutating the objective
variables and mutating the strategy parameters does not alter the
previous conclusion significantly, and that Cauchy mutations with
different scaling parameters still outperform the Gaussian mutation
with self-adaptation. However, the advantage of Cauchy mutations
disappears when recombination is used in evolution strategies. It
is argued that the search step size plays an important role in de-
termining evolution strategies' performance. The large step size of
recombination plays a similar role as Cauchy mutation.

Keywords : evolutionary strategies, function optimisation,
Cauchy mutation

1 . I n t r o d u c t i o n

Among three major branches of evolutionary computation, i.e., genetic algo-
rithms (GAs), evolutionary programming (EP) and evolution strategies (ESs),
ESs arc the only one originally proposed for numerical optimisation and is still

1 An earlier short version of this paper Yao and Liu (1997), was presented at the Sixth
Annual Conference on Evolutionary Programming, Indianapolis, USA, 13-16 April 1997. This
work is partially supported by a University College Special Research Grant .

468 XIN YAO and YONG LIU

mainly used in optimisation, Fogel (1994), Back and Schwefel (1993). The pri-
mary search operator in ESs is mutation although recombinations have also
been used. The state-of-the-art of ESs is (fJ,, >.)-ES, Schwefel (1995), Back and
Schwefel (1996), where A > /L 2'. 1. (µ, >.) means that µ parents generate >.
offspring through recombination and mutation in each generation. The best µ
offspring are selected deterministically from the A offspring and replace the par-
ents. Elitism and probabilistic selection are not used. This paper first considers
a simplified version of ESs, i.e., ESs without any recombination. Then ESs with
recombination and a different order of mutating objective variables and strategy
parameters are investigated.

ESs can be regarded as a population-based variant of generate-and-test al-
gorithms, Yao (1996). They use search operators such as mutation to g e n e r a t e
new solutions and use a selection scheme to t e s t which of the newly gene-
rated solutions should survive to the next generation. The advantage of viewing
ESs (and other evolutionary algorithms, EAs) as a variant of generate-and-test
search algorithms is that the relationships between ESs and other search algo-
rithms, such as simulated annealing (SA), tabu search (TS), hill-climbing, etc.,
can be made clearer and thus easier to explore. In addition, the generate-and-
test view of ESs makes it obvious that "genetic" operators, such as crossover
(recombination) and mutation, are really stochastic search operators which are
used to generate new search points in a search space. The effectiveness of a
search operator would be best described by its ability to produce promising
new points which have higher probabilities of finding a global optimum, rather
than by some biological analogy. The role of test in a generate-and-test algo-
rithm or selection in ESs is to evaluate how "promising" a new point is. Such
evaluation can be either deterministic or probabilistic.

The (/1,, >.)-ESs use Gaussian mutation to generate new offspring and de-
terministic selection to test them. There has been a lot of work on different
selection schemes for ESs, Back (1996). However, work on mutations has been
concentrated on self-adaptation, Fogel (1994), Back and Schwefel (1996), rather
than on new mutations. Gaussian mutations seem to be the only choice, Fo-
gel (1994), Back and Schwefel (1996). Recently, Cauchy mutation has been
proposed as a very promising search operator due to its higher probability of
making long jumps, Yao and Liu (1996), Yao, Lin and Liu (1997), Kappler
(1996). In Yao and Liu (1996), Yao, Lin and Liu (1997), a fast E P based on
Cauchy mutation was proposed. It compares favourably to the classical E P on
23 benchmark functions (up to 30 dimensions). In Kappler (1996), the idea
of using Cauchy mutation in EAs was independently studied. An (1 + 1) EA
without self-adaptation and recombination was investigated. Both analytical
and numerical results on 3 one- or two-dimension functions were presented. It
was pointed out that "in one dimension, an algorithm working with Cauchy
distributed mutations is both more robust and faster. This result cannot easily
be generalized to higher dimensions, ... " Kappler (1996).

This paper continues the work of fast EP, Yao and Liu (1996), and studies

Fast evolution strategies 469

fast ESs which use Cauchy mutations. The idea of Cauchy mutation was origi-
nally inspired by fast simulated annealing, Szu and Hartley (1987), Yao (1995).
The relationship between the classical ESs (CES) using Gaussian mutation and
the fast ESs (FES) using Cauchy mutation is analogous to that between classi-
cal simulated annealing and fast simulated annealing. This paper investigates
multi-membered ESs, i.e., (/t, >.)-ESs with self-adaptation. Extensive experi-
mental studies on 23 benchmark problems (up to 30 dimensions) have been
carried out. The results have shown that FES outperforms CES on most of the
23 benchmark problems.

The rest of this paper is organised as follows. Section 2 formulates the global
optimisation problem considered in this paper and describes the implementation
of CES. Section 3 describes the implementation of FES. Section 4 presents and
discusses the experimental results on CES and FES using 23 benchmark prob-
lems. Section 5 investigates different ES variants. Finally, Section 6 concludes
with a few remarks.

2 . F u n c t i o n o p t i m i s a t i o n b y c l a s s i c a l e v o l u t i o n s t r a t e g i e s

A global minimisation problem can be formalised as a pair (S, f), where S Rn

is a bounded set on Rn and f : S f----7 R is an n-dimcnsional real-valued function.
The problem is to find a point Xmin E S such that f (xm in) is a global minimum
on S. More specifically, it is required to find an Xmin E S such that

' ix E S : f (xm in) ::; f (x)

Here f docs not need to be continuous, but it must be bounded. We only
consider unconstrained function minimisation in this paper.

According to the description by Back and Schwefel (1993), the (/t, >.)-CES
is implemented as follows in our studies:

1. Generate the initial population of µ individuals, and set k = 1. Each
individual is taken as a pair of real-valued vectors, (xi,77i), Vi E { l , · · · ,µ}.

2. Evaluate the fitness value for each individual (xi,77i), Vi E { l , · · · , µ } , of
the population based on the objective function, f(xi),

3. Each parent (xi, 77i), i = 1, · • •, µ, creates >./Jt offspring on the average, so
that a total of ,\ offspring are generated: for i = 1, · · · , 11,, j = 1, · · · , n,
and k = 1, · · · , >.,

Xk 1 (j) Xi(j) +ryi(j)N(O, 1), (1)
'T]k1 (j) 77i(j)exp(T'N(0,l)+TiYi(0,l)) (2)

where xi(j), xk'(j), 7]i(j) and 77k'(j) denote the j-th components of the
vectors Xi, xk', 'T]i and 'T]k', respectively. N(O, 1) denotes a normally dis-
tributed one-dimensional random number with mean zero and standard
deviation one. Ni (O, 1) indicates that the random number is genera-
ted anew for each value of j. The factors T and T1 are usually set to

() - l a n d (v12n)- 1
.

470 XIN YAO and YONG LIU

4. Evaluate the fitness of each offspring (x/ , ry/), Vi E {1, · · · , .:X.}, according
to f (x /) .

5. Sort offspring (x/ , ry/), Vi E {1, · · · , .:X.} in a non-descending order accord-
ing to their fitness values, and select the µ best offspring out of .:X. to be
parents of the next generation.

6. Stop if the stopping criterion is satisfied; otherwise, k = k + l and go to
Step 3.

It is worth mentioning that swapping the order of (1) and (2) and using 'T/k' (j)
to generate xk'(j) may give better performance for some problems, Gehlhaar
and Fogel (1996). However, no definite conclusion can be drawn yet.

3. Fast evolution strategies
The one-dimensional Cauchy density function centred at the origin is defined
by:

() 1 t
f t X = - - 2 - - 2 ,1rt +x - O O < X < oo,

where t > 0 is a scale parameter. The corresponding distribution function is

(1 1 (X)
Ft x) = - + -ardan -2 1r t

The shape of ft(x) resembles that of the Gaussian density function but ap-
proaches the axis so slowly that an expectation does not exist. As a result,
the variance of the Cauchy distribution is infinite. Fig. 1 shows the difference
between Cauchy and Gaussian functions. It is obvious that the Cauchy function
is more likely to generate a random number far away from the origin because of
its long flat tails. So, a Cauchy mutation in FES is more likely to escape from
a local minimum or move away from a plateau.

In order to investigate the impact of Cauchy mutation on ESs, the minimal
change has been made to the CES. The F E S studied in this paper is kept exactly
the same as the CES described in Section 2, except for (1) which is replaced by
the following:

(3)

where /5.i is a Cauchy random variable with the scale parameter t = 1 and is
generated anew for each value of j. It is worth indicating that (2) is unchanged
in F E S in order to keep the modification of CES to a minimum. 'T/ in F E S plays
the role of the scale parameter t and not the variance in the Cauchy distribution.

In our experiments, the Gaussian random number was generated according
to the following FORTRAN function, Press et al. (1992).

FUNCTION gasdev(idum)
INTEGER idum

Fast evolution strategies

0.4 , - - - - , - - - - - - . - - - - - - - - - - , - - - - - - - , - - - - ,

0.35

0.3

0.25

0.2

0.15

0.1

0.05

-----------______________ , , , / /

N (0 , 1) -
Cauchy, 1=1 - - - -

',,,,,'•····, .. _________________ _
0 L - - - - - ' - - - - = = : : : : _ - - - - ' - - - - - - - - ' - - - - - - - - - ' - - - - - - - = = = - - - - - - - ' - - - _ _ J

-4 -2 2

Figure 1. Comparison between Cauchy and Gaussian distributions.

REAL gasdev

471

C Returns a normally distributed number with zero mean and unit
C variance, using ran1(idum) as the source of uniform numbers).

INTEGER iset
REAL fac,gset,rsq,v1,v2,ran1
SAVE iset,gset
DATA iset/0/
if(iset.eq.O)then

1 v1 = 2 .*ran1(idum)-1.
v2= 2 .*ran1(idum)-1.
rsq= v1**2+v2**2
if(rsq.ge.1 .. or.rsq.eq.0.)goto 1
fac= sqrt (-2.*log(rsq)/rsq)
gset = vi*fac
gasdev= v2*fac
iset = 1

else
gasdev= gset
iset = O

endif
return
END

472 XIN YAO and YONG LIU

The Cauchy random number was generated according to the following pro-
cedure, Devroye (1986 p. 451).

FUNCTION cauchy(idum)
REAL cauchy·

C Returns a Cauchy random number with probability density
C function f(x)=1/(pi*(1+x*x)).

REAL v1,v2
v1=gasdev(idum)
v2=gasdev(idum)
if(v2.ne.0.)then

cauchy=v1/v2
else

cauchy=O.O
endif
return
END

The uniform random number was generated according to the FORTRAN
function given by Press et al. (1992), p. 271.

4. Experimental studies

4.1. Test functions

A set of 23 well-known functions, Fogel (1991), Torn and Zilinskas (1989),
Schwefel (1995), Back and Schwefel (1993), Ingber and Rosen (1992), Dekkers
and Aarts (1991), are used in our experimental studies. This relatively large
set is necessary in order to reduce biases in evaluating algorithms. The 23 test
functions are listed in Table 1. The detailed description of each function is given
in the Appendix. Functions J i to f13 are high-dimensional problems. Functions
J i to f5 are unimodal functions. Function f6 is the step function which has one
minimum and is discontinuous. Function h is a noisy quartic function, where
random[O, 1) is a uniformly distributed random variable in (0, 1). Functions f8
to f 13 are multimodal functions where the number of local minima increases
exponentially with the function dimension, Torn and Zilinskas (1989), Schwe-
fel (1995). Functions f14 to fz3 are low-dimensional functions which have only
a few local minima, Torn and Zilinskas (1989). For unimodal functions, the
convergence rate of F E S and CES is more important than the final results of
the optimisation in this paper, as there are other methods which are specifi-
cally designed to optimise unimodal functions. For multimodal functions, the
important issue is whether an algorithm can find a better solution in a shorter
time.

Fast evolution strategies

Test function

30

30

30

30

30

30

30

30

30

30

30

30

s
[-100, lOO] n

(-10, l0] n

[-100, lOO]n

[-100, lOOJ n

[-30, 30J n

(-100, l00] n

[-1.28, l.28] n

[-500, 500] n

(-5.12, 5.12] n

(-32, 32] n

[-600, 600] n

[-50, SO] n

[-50, 50] n

2 [-65.536, 65.536] n

4

2 (- 5 , 10] X (0, 15]

(- 2 , 2]
0
"

4

4

4

4

(0, 1]"

[0 1 lO] n

(0, 10]"

[O, 10]"

f ... , ..
0

0

0

0

0

0

0

-12569.5

0

0

0

0

0.0003075

-1.0316285

0.398

3

-3.86

-3.32

- l / c 1

-1/q

- l / c 1

473

Table 1. The 23 test functions used in our experimental studies, where n is
the dimension of the function, f min is the minimum value of the function, and
S t;;; R n . The detailed description of each function is given in the Appendix.

474 XIN YAO and YONG LIU

4.2. E x p e r i m e n t a l se tup

The experimental setup was based on Back and Schwefel's (1993) suggestion.
For all experiments, (30, 200)-ES with self-adaptive standard deviations, no cor-
related mutations, no recombination, the same initial standard deviations 3.0,
and the same initial population were used. All experiments were repeated for 50
runs. The initial population was generated uniformly at random in the ranges
specified in Table 1. The number of generations for each function was deter-
mined after some limited preliminary runs which showed that an ES would have
converged (either prematurely or globally) after certain number of generations.
There is little point in running the algorithm longer if this is unlikely to improve
the performance further.

4.3. Exper imenta l results

4.3.1. Unimodal functions (f i - h)

Unimodal functions are not the most interesting and challenging test problems
for global optimisation algorithms, such as ESs. There are more efficient algo-
rithms than ESs, which are specifically designed to optimise them. The aim here
is to use them to get a picture of the convergence rate of CES and FES. Figs. 2
and 3 show the evolutionary process of CES and F E S on unimodal functions
f i - h . The final results are summarised in Table 2.

Function No. of F E S CES F E P - C E P
Generations Mean Best Std Dev Mean Best Std Dev t-test

Ji 750 2.5 X 10-4 6.8 X 10-t> 3.4 X 10-t> 8.6 X 10-o 22.07*
h 1000 6.0 X 10- 2 9.6 X 10- 3 2.1 X 10- 2 2.2 X 10- 3 27.96*
h 2500 1.4 X 10- 3 5.3 X 10-4 1.3 X 10-4 8.5 X 10- 5 16.53*
f4 2500 5.5 X 10- 3 6.5 X 10-4 0.35 0.42 -5.78*
f 5 7500 33.28 43.13 6.69 14.45 3.97*
!6 750 0 0 411.16 695.35 -4.18*
h 1500 1.2 X 10- 2 5.8 X 10- 3 3.0 X 10- 2 1.5 X 10- 2 -7.93*

Table 2. Comparison between CES and FES on f i - h . The results were aver-
aged over 50 runs. "Mean Best" indicates the mean best function values found
in the last generation. "Std Dev" stands for the standard deviation.
* The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

In terms of final results, F E S performs better than CES on f4, !6 and h ,
but worse than CES on f i - h and f5• No strong conclusion can be drawn here.
However, a closer look at the evolutionary processes reveals some interesting
facts. For example, FES performs far better than CES on f 6 (the step function).

Fast evolution strategies

- - - - - - - - - - f _ , (S c h w e f e l ' s Pr !,e m_2_._22_) - - - - - -

, ..• \ -------
 ' - - 7 . . . _ : : : : : : : = = = = I \ _ _ _ _ _ _ _ _ _ _ _ _ _ _ --....._ _ _ _ _ ·c..::::====l

- - - - - - - - - - f _ , ~ (S c h w e f e l ' s Pr }.e m_ l ._2) - - - - - - - - - -
A v o , o g • o ! F E S -
Avo109oo lCES -

·-.___

c - - - - - - - - - - : - i - : r u _ f _ ...,(Schwefel's Prob! m
.... _2_.2_1_) _ _ -----:-::::--.:.-•ig_=_

0 . 0 0 1 - - - - - - - -

475

Figure 2. Comparison between CES and FES on f i - f4 . The vertical axis is the
function value and the horizontal axis is the number of generations.

476

·:= I ·-\
!

\ ____ _

XIN YAO and YONG LIU

t , (Generalized Rosenbrock's Function)

'"""\
, .. \

100 \

.......... ___________________________________ _

f , (Step Function)

Avo1aooorFES-
Av,,.o•olCES-

\--....___
------------ ---- --------------- -----------------------

f , (Quartic Function with Noise)

------------ ----------------

Figure 3. Comparison between CES and FES on h - h . T h e vertical axis is the
function value and the horizontal axis is the number of generations.

Fast evolution strategies 477

It has a very fast convergence rate and converges to the global minimum every
time. This indicates that FES is very good at dealing with plateaus due to its
long jumps. Such long jumps enable FES to move from one plateau to a lower
one easily, while CES would have to wander about a plateau for a long time
before it can reach a lower plateau.

FES's behaviour on J i is also very interesting. According to Fig. 2, J i 's
value decreases much faster for FES than for CES in the beginning. This is
probably caused by FES's long jumps, which take it to the center of the sphere
more rapidly. When FES approaches the center, i.e., the minimum, long jumps
are less likely to generate better offspring and FES has to depend on small
steps to move towards the minimum. The smaller central part of the Cauchy
distribution, as shown by Fig. 1, implies that Cauchy mutation is weaker than
Gaussian one at fine-grained neighbourhood (local) search. Hence the decrease
of J i 's value for FES slows down considerably in the vicinity of the minimum,
i.e., when J i is smaller than 10-3_ CES, on the other hand, improves f i ' s value
steadily throughout the evolution and eventually overtakes FES.

The behaviour of FES and CES for other functions can be explained in a
similar wa y . The probability of making long jumps by a mutation pl a y s an
important role in determining the behaviour of ESs.

4.3.2. Multimodal functions with many local minima Us - f 13)

Functions f s - f i3 are multimodal functions with many local minima. The num-
ber of local minima increases exponentially as the function dimension increases.
These functions appear to be very "rugged" and difficult to optimise. Fig. 4
shows the 2-dimensional version of f s.

The evolutionary processes of FES and CES for f s - f13 are shown in Figs. 5
and 6. The final results arc summarised in Table 3. Somewhat surprisingly, FES
outperforms CES consistently on these apparently difficult functions. Figs. 5
and 6 show that CES stagnates rather early in search and makes little progress
thereafter, while FES keeps finding better function values throughout the evo-
lution. It appears that CES is trapped in one of the local minima and is unable
to get out due to its more localised Gaussian mutation. FES, on the other hand,
has a much higher probability of making long jumps and thus is easier to get
out of a local minimum when trapped. A good near (global) minimum is more
likely to be found by FES.

4.3.3. Multimodal functions with a few local minima (f i c h 3)

The evolutionary processes of FES and CES on functions f i e f23 are shown
in Figs. 6, 7 and 8. The final results are summarised in Table 4. Although
these functions arc also multimodal functions, the behaviour of FES and CES
on them is rather different from that on multimodal functions with many local
minima. There is no consistent winner here. For functions f i4 and f i5, FES

478 XIN YAO and YONG LIU

1 8 -

500

Figure 4. The 2-dimensional version of fs,

Function No. of FES CES FES-CES
Generations Mean Best Std Dev Mean Best Std Dev t-test

Is 4500 -12556.4 32.53 -7549.9 631.39 -56.10*
Jg 2500 0.16 0.33 70.82 21.49 -23.19*
fio 750 1.2 X 10-2 1.8 X 10-3 9.07 2.84 -22.51 *
/11 1000 3.7 X 10-2 5.0 X 10-2 0.38 0.77 -3.11*
fi2 750 2.8 X 10-5 8.1 X 10-7 1.18 1.87 -4.45*
/13 750 4.7 X 10-5 1.5 X 10-5 1.39 3.33 -2.94*

Table 3. Comparison between CES and FES on fs-/13. The results were aver-
aged over 50 runs. Explanation same as to Table 2.

Fast evolution strategies

- - - - - - - - f _ , _ (_ G _ e _ n e _ r a l i z e d Schwefel'. .P_ro_b_Ie_m_2_.2_6"") - - - - - -

" \

\

Bo .. o l F E B -
h•lolCES-·-

A . . ' " ' , ! a o ! F E S -
A•• '"O•olCE!I-·--

f , (Generalized Rastrigin's Function)

, . '-..... _ _ _ ~ - - - - - - - - l

f 10 (Ackley's Function)

.. \, ______________ __,

- - - - - - - - - f ' - ' _(G_e_n eralized G r i e w a ! . F _ u _ n _ c t _ i o n _) _ - - - - -

479

Figure 5. Comparison between CES and FES on f 8- f n , The vertical axis is
the function value and the horizontal axis is the number of generations.

480

\ ··--------------------------

, - - - - - - - - - - - - f , _ , _ (P . , e n a l i s e d Functi P l6)
:::1:im=

---- --------

\ "l _ ____ _

XIN YAO and YONG LIU

- - - - - - - - - - - - - - - - - -

.o,- . . . , ,olFl ,S-
Av,,.,,o1cES - - -

- - - - - - - - - - f _ , . _ (_ S h _ e k e l ' s Foxholes u_n_c_tio_n_) _ _ _ _ _ _ _ _ _ :::::im=

A m . , • o l f E ! l -
A, · , , .aoolCES-

Figure 6. Comparison between CES and FES on f i2- f i5 . The vertical axis is
the function value and the horizontal axis is the number of generations.

Fast evolution strategies 481

outperforms CES. However, FES is outperformed by CES on functions h i and
h 2 . No statistically significant difference has been detected between FES's and
CES's performance on other functions. In fact, the final results of FES and CES
were exactly the same for f15, !11 and ! i s although the initial behaviours were
different.

Function Number of FES CES F E S - C E S
Generations Mean Best Std Dev Mean Best Std Dev t-test

fi4 50 1.20 0.63 2.16 1.82 -3 .91"
f15 2000 9.7 X 10-4 4.2 X 10-4 1.2 X 10-3 1.6 X 10- 5 -4 .36 2

!16 50 -1.0316 6.0 X 10-7 -1.0316 6.0 X 10-7 0
h 1 50 0.398 6.0 X 10-s 0.398 6.0 X 10-S 0
h s 50 3.0 0 3.0 0 0
f19 50 -3.86 4.0 X 10-3 -3.86 1.4 X 10- 5 1.30
h o 100 -3.23 0.12 -3 .24 5.7 X 10-2 0.93
h i 50 -5.54 1.82 -6.96 3.10 2.81 2

h 2 50 -6.76 3.01 -8.31 3.10 2.502

h 3 50 -7.63 3.27 -8 .50 3.14 1.25

Table 4. Comparison between CES and FES on f i r h 3 . The results were
averaged over 50 runs. Explanation same as to Table 2.

At the beginning, it was suspected that the low dimensionality of functions
f i 4 - h 3 might contribute to the similar performance of F E S and CES. Hence
another set of experiments were carried out using the 5-dimensional version
of functions fs- f i3 . The same pattern as that shown by Figs. 5 and 6 was
observed. This result shows that dimensionality is not one of the factors which
affect FES's and CES's performance on functions f i r h 3 . The characteristics
of these functions are the factors. One of such characteristics might be the
number of local minima. Unlike functions f8-f 13 , all these functions have just a
few local minima. The advantage of FES's long jumps might be weakened in this
case since there are not many local minima to escape. Also, fewer local minima
imply that most of the optimisation time would be spent on searching in one
of the local minima's "basin of attractions," where there is only one minimum.
Hence, CES's performance would be very close to or even better than FES's.

Since the goal of FES is to minimise multimodal and not unimodal functions,
FES's worse performance on functions h i and h 2 warrants a closer examina-
tion. Among 16 multimodal functions tested in this paper, these two were the
only cases where F E S was outperformed by CES. (Only statistically significant
difference is considered in this paper.) Fig. 9 shows the 2-dimensional version of
function h 1 . The shape of h 2 is similar. It can be seen from the figure that h 1
is rather spiky with some small but deep local minima scattered on a relatively

482 XIN YAO and YONG LIU

f " (Six-hump Camel-back Function)

B H h l F E S -
.... tolC�S-··

aootolF'ES-
• . . t o l c � s -

fo(Brain)

u· -.:

\

., \
- " - - - - - - - - 1

- - - - - - - - - - f,a(Goldstein-f.;} ce) - - - - - - - - - -"'"'

' "'
 - - - - - - - ,

"\ "' .___------== ----a

<

\
...___ -- - - = = = = - - - - - - l

Figure 7. Comparison between CES and F E S on f16-f19 . The vertical axis is
the function value and the horizontal axis is the number of generations.

Fast evolution strategies

' .. ", \

'-...____ _ _ _ _ _ _ _ _ _ - j

f 20 (Hartman-6)

f o (Shekel-5)

A••"' l l •OIFES-
A,o<>ooo!CE!i•--

fo(Shekel-7)
0

� - - - - - - - - - - �

\\
' - - . . . _ _ _ _ _ _ _ _ - j

483

Figure 8. Comparison between CES and FES on f 20- f23 . The vertical axis 1s
the function value and the horizontal axis is the number of generations.

484 XIN YAO and YONG LIU

flat area. These small but deep "spikes" cause some difficulties to FES. Neither
FES 's nor CES's result was close to the global minimum. Both of them seemed
to be trapped in some local minimum. However, F E S suffered more. This fact
appears to contradict our previous discussion which says FES 's long jumps are
beneficial, but it does not. Recall the analysis of FES 's and CES's behaviour
on J i in Section 4.3.1. It is not difficult to see that long jumps are not always
beneficial. They are detrimental when the search points are already close to the
global minimum. This turns out to be the case with functions h 1 and h2-

For functions]2 1 and h 2 , the ranges of x ; ' s arc relatively small. Some
of the points in the initial populations are already very close to the global
minimum. After a few generations, the whole population will be close to the
global minimum. In such a situation, long jumps will no longer be beneficial.
This can be verified both analytically and empirically. The detailed results were
presented elsewhere.

100

0

-100

-200

-300

-400

-500 10

0 5

10

Figure 9. The 2-dimensional version of function]2 1 (Shekel-5).

4.4. Related work on fast evolutionary programming

Similar to FES, fast evolutionary programming (FEP), Yao and Liu (1996), Yao,
Lin and Liu (1997), also uses Cauchy mutation. F E P has been tested on the
same 23 benchmark functions as described by Table 1. Comparing those results,
Yao and Liu (1996), Yao, Lin and Liu (1997), with the results obtained from
the current study, it is clear that the difference between F E S and CES is very
similar to the difference between F E P and CEP. Similar evolutionary patterns

Fast evolution strategies 485

were observed from F E P and CEP for the three function categories. The only
exceptions were h, f5, fi5 and f23. For h, F E S performed worse than CES,
while F E P performed better than CEP. For h, F E S also performed worse than
CES, while there was no statistically significant difference between F E P and
CEP. For f15, F E S performed better than CES, while there was no statistically
significant difference between F E P and CEP either. For f23 , there was no
statistically significant difference between FES and CES, but F E P performed
worse than CEP. In general, the relationship between F E S and CES is very
similar to that between F E P and CEP. Since the major difference between
E P and ES is their selection schemes, the results of FES and F E P indicate
that Cauchy mutation is a very robust search operator which can work with
different selection schemes. In fact, FES's performance can be further improved
by mixing Cauchy and Gaussian mutations. Such improvement has been proven
to be very successful in the case of FEP, Yao, Lin and Liu (1997).

5. Other variants of evolution strategies

The previous sections present only some results with a simple version of evolu-
tion strategies. This section investigates

l . whether changing the order of mutating objective variables and strategy
parameters would make much difference between CES's and FES 's perfor-
mance,

2. whether F E S still performs better if a different scale parameter t is used
in the Cauchy distribution, and

3. whether F E S still performs better if recombination is used.

5.1. The order of mutations

We have run the experiments with a different order of mutating objective vari-
ables and strategy parameters. Table 5 shows the results of CES and FES,
where the strategy parameter (2) was mutated first, for the three representative
functions. No recombination was used in CES and FES.

For J i , which is a typical function in the first group of the 23 benchmark
functions, F E S was outperformed by CES significantly. For ho, which is a
typical function in the second group, F E S performed significantly better than
CES. For f23, which is a typical function in the third group, F E S was again
outperformed by CES. These observations are the same as what we observed
when we mutated the objective variables first. That is, changing the order of
mutation has little impact on the observations we made in Section 4 about
CES's and FES 's relative performance, although their absolute (i.e., individual)
performance may have changed slightly.

486 XIN YAO and YONG LIU

F Gen's F E S CES F E S - C E S
Mean Best Std Dev Mean Best Std Dev t-test

h 750 2.0 X 10-4 2.3 X 10-n 2.4 X 10-n 2.8 X 10-b 52.47*
h o 750 1.0 X 10-2 9.4 X 10-4 8.50 2.89 -20.75*
h 3 50 -8.86 2.92 -9.75 2.19 1.76*

Table 5. Comparison between CES and F E S with no recombination (only chang-
ing the order of (1) and (2)) on J i , h o and h3- The results were averaged over
50 runs.
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

5.2. Cauchy mutation with a different scale parameter

All the previous experiments assumed scale parameter t = 1 in the Cauchy
distribution. Tables 6 and 7 show the results of CEP and F E P on h o when dif-
ferent values of the scale parameter were used. Table 6 shows the results when
the objective variables were mutated first, while Table 7 shows the results when
the strategy parameters were mutated first. It is interesting to note that F E S
still outperforms CES for both t = 0.5 and t = 1.5. However, the performance
of F E S deteriorates as t increases for this particular problem. A general con-
clusion about the relationship between the scale parameter and the algorithm's
performance is difficult to draw because it is problem-dependent.

Scaling Gen's FES CES F E S - C E S
Mean Best Std Dev Mean Best Std Dev t-test

0.5 750 5.9 X 10- 0 7.5 X 10-4 9.72 2.75 -25.01 *
1.0 750 1.2 X 10-2 1.8 X 10-3 9.07 2.84 -22.51 *
1.5 750 0.42 2.82 7.61 2.83 -14.92*

Table 6. Comparison between CES and F E S for different scale parameters with
no recombination. Objective variables were mutated first. The experiment was
based on 50 runs using ho.
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

5.3. Evolution strategies with recombination

Although evolution strategies emphasise mutation, they do use recombination.
The current wisdom is to use discrete recombination on the objective variables

Fast evolution strategies 487

Scaling Gen's F E S CES F E S - C E S
Mean Best Std Dev Mean Best Std Dev t-test

0.5 750 5.2 X 10-:i 4.4 X 10-4 8.47 3.07 -19.52*
1.0 750 1.0 X 10-2 9.4 X 10-4 8.50 2.89 -20.75*
1.5 750 0.81 3.95 6.79 2.74 -9.29*

Table 7. Comparison between CES and FES for different scale parameters with
no recombination. Strategy parameters were mutated first. The experiment
was based on 50 runs using fio.
*The value of t with 49 degrees of freedom is significant at a. = 0.05 by a
two-tailed test.

and global intermediate recombination on the strategy parameters. Table 8
shows the results of CES and FES with aforementioned recombinations. The
same recombinations were implemented for both algorithms.

F Gen's F E S CES F E S - C E S
Mean Best Std Dev Mean Best Std Dev t-test

Ji 750 27.94 34.52 2.2 X 10-b 2.4 X 10-1:i 5.72*
ho ·750 4.64 1.49 3.4 X 10-3 2.4 X 10-4 22.03*
h3 50 -10.34 0.63 -10.54 1.4 X 10-4 2.22*

Table 8. Comparison between CES and FES with recombination (discrete re-
combination on the objective variables and global intermediate recombination
on the strategy parameters). The strategy parameters were mutated first. All
results were averaged over 50 runs.
*The value of t with 49 degrees of freedom is significant at a. = 0.05 by a
two-tailed test.

The results in Table 8 reveal that FES performed poorly against CES for
all three functions when recombination was used. The introduction of recom-
bination to F E S has significantly worsened FES's performance, while CES's
performance improved greatly with the recombinations. Our preliminary analy-
sis of such phenomena indicates that the search step size of different operators
pla ys an important role in determining the performance of an algorithm. As
pointed out earlier, Yao, Lin and Liu (1997), Cauchy mutation has a much larger
search step size than Gaussian mutation. A large search step size is beneficial
when the current search point is far away f rom the global optimum, which is
often the case at the beginning of search. When the current search point is close
to the global optimum, which is likely towards the end of search, large search
step sizes arc detrimental to search.

488 XIN YAO and YONG LIU

The two recombinations implemented in our experiments have very large
search step sizes, especially the global intermediate recombination. Using both
Cauchy mutation and these recombinations imply a huge search step size which
would be undesirable for the functions we studied. That is why the introduc-
tion of recombination into F E S brought no benefit at all. On the other hand,
Gaussian mutation's search step size is relatively small. The introduction of
recombination into CES greatly increased CES's search step size and thus its
performance. In a sense, introducing recombination to CES has a similar ef-
fect as replacing Gaussian mutation by Cauchy mutation. Both increase the
algorithm's search step size.

To support our arguments and preliminary analysis, another set of experi-
ments were carried out where only the discrete recombination was used on both
objective variables and strategy parameters in FES. (The search step size of
the discrete recombination is much smaller than the global intermediate recom-
bination.) CES was kept the same as before. Table 9 shows the results of
the experiment. It is clear that FES's performance has improved dramatically
after this minor change. The results demonstrate that the search step size of
Cauchy mutation is sufficiently largo. There might not be any benefit of using
recombination on the strategy parameters.

F Gen's F E S CES F E S - C E S
Mean Best Std Dev Mean Best Std Dev t-test

h 750 1.3 X 10-4 1.8 X 10-b 2.2 X 10-b 2.4 X 10-o 39.67*
ho 750 8.3 X 10-3 6.6 X 10-4 3.4 X 10-3 2.4 X 10-4 49.87*
f23 50 -10.22 1.03 -10.54 1.4 X 10-4 2.15*

Table 9. Comparison between CES and F E S with recombination (discrete re-
combination on the objective variables and global intermediate recombination
on the strategy parameters for CES, and discrete recombination on both objec-
tive variables and strategy parameters for FES). The strategy parameters were
mutated first. All results were averaged over 50 runs.
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a

. two-tailed test.

5.3.1. The impact of different scale parameters

Table 10 shows the impact of the scale parameter in Cauchy distribution on
FES 's performance when recombination is used. It indicates that different scale
parameters did not change the global picture very much, although it did affect
FES 's performance slightly.

Fast evolution strategies 489

Scaling Gen's FES CES F E S - C E S
Mean Best Std Dev Mean Best Std Dev t-test

0.5 750 4.2 X 10-:; 3.0 X 10-4 1.7 X 10-:; 9.7 X 10- 5 59.03*
1.0 750 8.3 X 10- 3 6.6 X 10-4 3.4 X 10-3 2.4 X 10-4 49.87*
1.5 750 1.21 4.78 5.3 X 10- 3 3.2 X 10-4 1.78*

Table 10. Comparison between CES and F E S with recombination (discrete
recombination on the objective variables and global intermediate recombina-
tion on the strategy parameters for CES, and discrete recombination on both
objective variables and strategy parameters for FES), when a different scale pa-
rameter is used. The strategy parameters were mutated first. All results were
averaged over 50 runs on fio,
*The value of t with 49 degrees of freedom is significant at a = 0.05 by a
two-tailed test.

6. Conclusions

This paper proposes a new(µ, >-)-ES algorithm (i.e., FES) using Cauchy muta-
tion. Extensive empirical studies on 23 benchmark problems (up to 30 dimen-
sions) were carried out to evaluate the performance of FES. For multimodal
functions with many local minima, F E S outperforms CES consistently. For
unimodal functions, CES appears to perform slightly better. However, F E S is
much better at dealing with plateaus. For multimodal functions with only a few
local minima, the performance of F E S and CES is very similar.

The main reason for the difference in performance between F E S and CES is
due to the difference in their probabilities of making long jumps. Long jumps
are beneficial when the current search points are far away from the global min-
imum, while detrimental when the current search points get close to the global
minimum. Recent analytical results and further empirical studies, Yao, Lin and
Liu (1997), support the preliminary analyses presented in this paper.

According to recent work on analysing EAs using step sizes of search oper-
ators, Lin and Yao (1997), the impact of a search operator on the algorithm's
search depends heavily on its search step size. It may be conjectured that re-
combination would play a major role in F E S only if its search step size is larger
than that of Cauchy mutation.

Acknowledgement

The authors are grateful to Professors Zbigniew Michalewicz and Marc Schoe-
nauer for their constructive comments on the earlier version of this paper.

490 XIN YAO and YONG LIU

References

BACK, T . (1996) Evolv.tionary Algorithms in Theory and Practice. New York:
Oxford University Press.

BACK, T. and SCHWEFEL, H.-P. (1993) An overview of evolutionary algo-
rithms for parameter optimization. Evolv,tionary Compv,tation, 1, 1, 1-23.

BACK, T . and SCHWEFEL, H.-P. (1996) Evolutionary computation: an over-
view. In: Proc. of the 1996 I E E E Int'l Conf. on Evolv,tionary Com-
pv,tation {ICEC'96), Nagoya, Japan, 20-29, IEEE Press, New York, NY
10017-2394.

DEKKERS, A. and AARTS, E . (1991) Global optimization and simulated an-
nealing. Math. Programming, 50, 367-393.

DEVROYE, L. (1986) Non- Uniform Random Variate Generation. New York,
NY 10010: Springer-Verlag.

FELLER, W. (1971) An Introdv.ction to Probability Theory and Its Applica-
tions, 2. John Wiley & Sons, Inc., 2nd ed.

FOGEL, D.B. (1994) An introduction to simulated evolutionary optimisation.
I E E E Trans. on Ne1iral Networks, 5, 1, 3-14.

FOGEL, D.B. (1991) System Ident fication Throv.gh Simv.lated Evol1ition: A
Machine Learning Approach to Modeling. Needham Heights, MA 02194:
Ginn Press.

GEHLHAAR, D.K. and FOGEL, D.B. (1996) Tuning evolutionary programming
for conformationally flexible molecular docking. In: Evofotionary Pro-
gramming V: Proc. of the Fifth Annv.al Conference on Evofotionary Pro-
gramming, L. J. Fogel, P. J . Angeline and T. Back, eds., 419-429, MIT
Press, Cambridge, MA.

INGBER, L. and ROSEN, B . (1992) Genetic algorithms and very fast simulated
reannealing: a comparison. Mathl. Compv,t. Modelling, 16, 11, 87-100.

KAPPLER, C. (1996) Are evolutionary algorithms improved by large muta-
tions? In: Parallel Problem Solving from Nature {PPSN) IV, H.-M. Voigt,
W. Ebeling, I. Rechenberg and H.-P. Schwefel, eds., 1141 of Lectv.re Notes
in Compv.ter Science, Berlin, 346-355, Springer-Verlag.

LIN, G. and YAO, X. (1997) Analysing crossover operators by search step size.
In: Proc. of the 1997 I E E E Int'l Conf. on Evolutionary Compv.tation
{ICEC'97), Indianapolis, USA, 107-110, IEEE Press, New York, NY.

PRESS, W . R . , TEUKOLSKY, S.A. , VETTERLING, W.T. and FLANNERY, B . P .
(1992) Numerical Recipes in FORTRAN. Cambridge, Cambridge Univer-
sity Press.

ScHWEFEL, H.-P. (1995) Evolv.tion and Optimv,m Seeking. New York: John
Wiley & Sons.

Szu, H.H. and HARTLEY, R .L . (1987) Nonconvex optimization by fast simu-
lated annealing. Proceedings of IEEE, 75, 1538-1540.

TORN, A. and ZILINSKAS, A. (1989) Global Optimisation. Berlin: Springer-
Verlag, 1989. Lecture Notes in Computer Science, 350.

Fast evolution strategies 491

YAO, X. (1995) A new simulated annealing algorithm. Int. J . of Computer
Math., 56, 161-168.

YAO, X. (1996) An overview of evolutionary computation. Chinese Journal of
Advanced Software Research, 3, 1, 12-29.

YAO, X. , LIN, G. and LIU, Y . (1997) An analysis of evolutionary algorithms
based on neighbourhood and step sizes. In: Evolutionary Programming
VI: Proc. of the Sixth Annual Conference on Evolutionary Programming,
P. J . Angeline, R. G. Reynolds, J . R. McDonnell and R. Eberhart, eds.,
1213 of Lectv,re Notes in Computer Science, Berlin, 297-307, Springer-
Verlag.

YAO, X. and LIU, Y . (1996) Fast evolutionary programming. In: Evolution-
ary Programming V: Proc. of the Fifth Annual Conference on Evolv,tion-
ary Programming, L. J . Fogel, P. J . Angeline and T. Back, eds., Cam-
bridge, MA, 451-460, The MIT Press.

YAO, X . and LIU, Y . (1997) Fast evolution strategies. In: Evolutionary Pro-
gramming VI: Proc. of the Sixth Annual Conference on Evolutionary Pro-
gramming, P. J . Angeline, R. G. Reynolds, J . R. McDonnell and R. Eber-
hart, eds., 1213 of Lecture Notes in Computer Science, Berlin, 151-161,
Springer-Ver lag.

7 . A p p e n d ix : b e n c h m a r k f u n c t i o n s

7 .1. S p h e r e M o d e l
30

fi(x) = I :x ;
i=l

- 1 0 0 ::; Xi : : ; 100, min(fi) = J i (0, . . . , 0) = 0

7.2. Schwefel 's problem 2.22
30 30

h(x) = L !xii+ IJ !xii
i=l i=l

- 1 0 ::; xi ::; 10, min(h) = h (0, . . . , 0) = 0

7.3. Schwefel 's prob lem 1.2()2
30 i

h(x) = 8 x.i

- 1 0 0 : : ; Xi::; 100, min(h) = h(O, ... ,0) = 0

492 XIN YAO and YONG LIU

7.4. Schwefel's problem 2.21

f4(x) = max{lxil, 1 :Si :S 30}

-100 :S xi :S 100, min(f4) = f 4(0, . . . , 0) = 0

7.5. Generalised Rosenbrock's function
29

h(x) = I)10o(xi+l - x;) 2 + (x; - 1) 2
]

i=l

-30 :S xi :S 30, mii1(h) = f 5 (1, . . . , 1) = 0

7.6. Step function
30

f5(x) = L (lxi + 0.5J) 2

i=l

-100 :S Xi :S 100, min(f5) = f5(0, . . . ,0) = 0

7.7. Quartic function with noise
30

h(x) = L i x ; + random[0, 1)
i=l

-1.28 :S x; :S 1.28, min(h) = h(O, . . . , 0) = 0

7.8. Generalised Schwefel's problem 2.26
30

fa(x) = - L (Xi sin (M))
i=l

-500 :S Xi :S 500, min(fs) = fa(420.9687, . . . , 420.9687) = -12569.5

7.9. Generalised Rastrigin's function
30

fg(x) = L[x; -10cos(21rxi) + 10)]
i=l

-5.12 :S xi :S 5.12, min(fg) = fg(0, . . . , 0) = 0

Fast evolution strategies 493

7.10. Ackley's function

frn(x) - -20exp C o 2 310 r.f) · exp (3 cos2Kx,) + 20 + ,

-32 :S :ri :S 32, min(f10) = fio(O, . . . , 0) = 0

7.11. Generalised Griewank function

1 30 30
!11(.T) = - .'Er - I J c o s (

:r) + 14000 ° . v i 1.= l i= l

-600 :S :ri :S 600, min(f11) = !11 (0, . . . , 0) = 0

7.12. Generalised penalised functions

; { 10sin2 (7rY1) + t , (Y i - 1) 2 [1 + 10sin2 (7rYi+1)]+

(Yn - 1) 2 }

30
+ L v.(:ri, 10, 100, 4)

i = l

-50 :S .Ti :S 50, rnin(f1 2) = f i 2 (l , . . . , 1) = 0

fi3 (:r) 0.1 { sin2 (7r3.T1 + t , (: r i - 1) 2 [1 + sin2 (37r:ri+i)l+

(:rn -1)[1 + sin2 (27rx30)]}
30

+ L u(xi, 5,100, 4)
i = l

-50 :S Xi :S 50, min(fi3) = fi3(l, . . . , 1) = 0

where

{
k (x i - a r ,

11,(xi, a, k, m.) = 0,

1 1 1 • = 1 + - (x · + l),y?. 4 i

k (- x i - a r ,

Xi > a,
- a :S xi :S a,
.Ti< -a.

494 XIN YAO and YONG LIU

7.13. Shekel's foxholes function

fi4(:r;) = [-1 + f . 2 l 6] - l500 .i= l J + I::i= l (xi - ai_i)

-65.536 ::; Xi : : ; 65.536, min(f 14) = f 14(-32, -32) 1
where

(
-32 -16 0 16 32 -32(aij) = -32 -32 -32 -32 -32 -16

7.14. Kowalik's function

0 16 32)32 32 32

- 5 : : ; Xi::; 5, min(f15) fi5(0.1928, 0.1908, 0.1231, 0.1358) 0.0003075

i ai b-:- 1

0.1957 0.25
2 0.1947 0.5
3 0.1735 1
4 0.1600 2
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12
10 0.0235 14
11 0.0246 16

Table 11. Kowalik's function f 15

7.15. Six-hump camel-back function

!16 = 4xr - 2.lxj' + ½x + X1X2 - 4x + 4xi

- 5 ::; Xi : : ; 5

Xmin = (0.08983, -0.7126), (-0.08983, 0.7126)

min(f 16) = -1.0316285

Fast evolution strategies

7.16. Branin function

(
5.1 2 5

)
2

(
1

) fi7(x) = .T2 - - 2 X1 + -X 1 - 6 + 10 1 - - COSX1 + 10 41r 1r 81r

Xmin = (-3.142, 12.275), (3.142, 2.275), (9.425, 2.425)

min(f 17) = 0.398

7.17. Goldstein-price function

fis(x) [1 + (x 1 + X2 + 1) 2 (19 - 14x 1 + 3xi - 14x 2 + 6x 1 X2 + 3xrn

495

x [30 + (2x 1 - 3x2)2 (18 - 32x 1 + 12xi + 48x2 - 36x 1 x2 + 27x)]

- 2 :S: Xi :S: 2, min(fis) = fis(0, -1) = 3

7.18. Hartman's family

f(x) - t c, exp [-t, a;;(x, - P;;)']

with n = 3, 6 for f19(x) and f20(x), respectively, 0 :S: x.i :S: 1. The coefficients
arc defined by Tables 12 and 13, respectively.

i
1
2
3
4

ai.i,J = 1, 2, 3 Ci

3 10 30 1
0.1 10 35 1.2
3 10 30 3

0.1 10 35 3.2

Pi.i,j = 1,2,3
0.3689 0.1170
0.4699 0.4387
0.1091 0.8732

0.038150 0.5743

Table 12. Hartman function f 19

0.2673
0.7470
0.5547
0.8828

For f19(x) the global minimum is equal to -3.86 and it is reached at the
point (0.114, 0.556, 0.852). For ho(x) the global minimum is -3.32 at the point
(0.201, 0.150, 0.477, 0.275, 0.311, 0.657).

7.19. Shekel's family

f(.T) = - L [(x - ai)(x - a i f + ci]- 1

i = l

496 XIN YAO and YONG LIU

i aij, j = 1, · . . , 6 Ci Pij, j = 1, · · · , 6
1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 13. Hartman Function h o

i aij,j=l, .. ·,4 c· ,.
1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

Table 14. Shekel Functions h i , h 2 , h 3

with m = 5,710 for h1(x) , h2(x) and h 3 (x) , respectively, 0 :S x_i :S 10.
These functions have 5, 7 and 10 local minima for h1(x) , h 2 (x) , and h3(x),

respectively. Xz o c a L opt ;:::; ai, J(xz oc a L opt) 1/ci for 1 : S i : S m . The coefficients
arc defined by Table 14.

