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Abstract: This paper presents extensions of some results, ob-
tained for the analysis of classical nonlinear control systems, to the
nonlinear fractional order systems. It is shown that the results re-
lated to limit cycle prediction using describing function method can
be applied to the fractional order plants. The frequency and the am-
plitude of the limit cycle are used for auto-tuning of the PID con-
troller for nonlinear control systems with fractional order transfer
functions. Fractional order control system with parametric uncer-
tainty is also considered for the nonlinear case. On the other hand,
a new method is provided for stability margin computation for frac-
tional order nonlinear control system with parametric uncertainty
structure using the Nyquist envelopes of the fractional order uncer-
tain plant and the describing function that represents the nonlinear-
ity of the system. Maximum perturbation bounds of the parameters
of the fractional order plant are computed. Numerical examples are
included to illustrate the methods presented.
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1. Introduction

Increasing popularity of the fractional calculus encouraged many researchers to
investigate new features of the fractional order systems (Samko et al., 1993;
Oustaloup et al., 2000; Oldham and Spanier, 1974; Miller and Ross, 1993).
In this regard, considerable attention has been paid to the fractional order
control systems (FOCS) (Podlubny, 1999). Some important results dealing with
the applications of the fractional calculus to the control systems have been
extensively studied (Oustaloup et al., 1999). Fractional differentiation becomes
an important tool in scientific and industrial applications due to the development
in the use of fractional differentiation in various fields during last two decades
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(Hwang and Cheng, 2006; Sabatier et al., 2004; Malti et al., 2008; Nataraj, 2008;
Bettou et al., 2008). Thus, the extension of the results obtained for classical
control systems to the fractional order one, will be important (Yeroglu et al.,
2010). In this paper, some results related to the limit cycle analysis of the
classical nonlinear systems are extended to nonlinear FOCS and some results
related to the stability margin computations, obtained for classical nonlinear
control, are extended to fractional order interval control system (FOICS) in the
presence of nonlinearity.

The stability analysis of the nonlinear control systems is often carried out
under the conditions of existence of sustained oscillations known as limit cycles
(Glad and Ljung, 2000). The most powerful method to analyze the limit cycle
is known as the Describing Function method (Oliveira et al., 2006; Nataraj
and Kalla, 2009). Theoretically, the frequency at the intersection point of the
Nyquist plot of the system and the complex plot of the negative inverse of
describing function is used in limit cycle analysis (Glad and Ljung, 2000). Some
new results for determining the limit cycles using the approximate describing
function method and an exact method have been lately announced in Atherton
et al. (2014). In the present study, oscillation frequency of the limit cycle of
nonlinear system is calculated at the intersection point of the Nyquist plot of
the FOCS and the negative inverse plot of the describing function. Simulation
results of the fractional order nonlinear systems with static nonlinearities are
verified with the theoretical values of the oscillation frequency.

Another important subject in classical control is the auto-tuning of the con-
troller. The difficulty of the traditional frequency response method of auto-
tuning is that the appropriate frequency of the input signal must be chosen.
But the nonlinear feedback of the relay method can generate a limit cycle os-
cillation. Using an ideal relay, this method gives an input signal to the process
with a period close to the ultimate frequency of the open loop system. The
period and amplitude of the oscillation give the ultimate period and the ulti-
mate gain. Then, the parameters of the PID controller can be determined from
these values (Åström and Hägglund, 2006) and the auto-tuning of controllers in
classical nonlinear control can be extended to FOCS. Some studies related to
the auto-tuning of the FOCS have been presented in Monje et al. (2007, 2008).
The results presented in this paper for obtaining the limit cycle are used for
auto-tuning of PID controllers. The frequency and amplitude of the oscillation
is determined and the parameters of the PID controller are obtained using the
classical Zigler-Nichols and Åström–Hägglund methods. Robust performance
of the PID controllers in controlling the fractional order system and the frac-
tional order plant with parametric uncertainty structure are demonstrated via
illustrative examples.

On the other hand, the frequency domain analysis of systems is also an
important topic in control theory. It is clear that the extensions of the frequency
domain analysis of the classical control to the FOICS will provide useful tools
for analysis and design. The Nyquist and Bode envelopes have been obtained for
frequency response analysis of FOICS in recent studies (Yeroglu et al., 2010). In
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this paper, the Nyquist envelope is used for the stability margin computation of
nonlinear FOICS. As known from the classical control theory, the computation
of the stability margin is important in the analysis and design of the control
systems (Ogata, 2002). Due to the importance of this issue, several studies have
been published for the stability margin computation (Datta et al., 2009). For
example; a numerical method for computing the stability margin of time-delay
linear time-invariant systems with delay dependence by using a constrained
simulated annealing algorithm is provided in Kim and Bae (2006). An algorithm
for finding the stability margins and cross over frequencies for an uncertain
fractional-order system using the interval constraint propagation technique is
proposed in Nataraj and Kalla (2010). Nyquist robust stability margin and its
application to systems with real affine parametric uncertainties are discussed
in (Baab et al., 2001). Most of the studies, related to the stability margin
computation, reported in the literature, have been performed for classical control
systems. Extension of the results of the stability margin computation in classical
nonlinear control to the FOICS in the presence of nonlinearity shall, as well,
contribute to the studies in this field.

Consequently, one of the contributions of the present paper is to use the
describing function method, combined with the auto-tuning technique, for non-
linear FOCS and FOICS. The procedure, given for the stability margin com-
putation is another contribution of the paper. Here, the Nyquist envelope of
the fractional order interval plant is combined with the classical describing func-
tion method to compute the maximum allowable parameter perturbations while
preserving the stability.

The rest of the paper is organized as follows: in Section 2, mathematical
background is briefly summarized. Describing function analysis for nonlinear
fractional order control systems is given in Section 3. Relay auto-tuning of the
PID controller for fractional order nonlinear systems is presented in Section 4.
Stability margin computation of the fractional order nonlinear interval system
is discussed in Section 5. Section 6 contains the concluding remarks.

2. Brief mathematical background

Fractional calculus can be considered to be the generalization of integration
and differentiation of the integer order expressions to the non-integer order ones.
The most frequently used integro-differential definitions are Grünwald-Letnikov,
Riemann-Liouville and Caputo expressions (Xue et al., 2007; Caponetto et al.,
2010). Generally, dynamic behaviors of systems can be analyzed using the
transfer function of the control system. Thus, the Laplace transformations of
the integro-differential expressions for fractional order control systems are im-
portant. Fortunately, the difference between the Laplace transformation of the
fractional order expression and the integer order one is not very important. The
most general formula for the Laplace transformations of the integro-differential
expressions can be given as (see Caponetto et al., 2010),
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]
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(1)

where n is an integer number and m satisfies n − 1 < m < n. The transfer
function of a fractional order plant can be obtained using Eq. (1) as follows:

G(s) =
Y (s)

X(s)
=

bmsβm + bm−1s
βm−1 + ....+ b0s

β0

ansαn + an−1sαn−1 + .....+ a0sα0
(2)

where αn > αn−1 > · · · > α0 ≥ 0, βm > βm−1 > · · · > β0 ≥ 0, ak (k =
0, 1, 2, ..., n), and bl (l = 0, 1, 2, ...,m), are constants (Xue et al., 2007). Upon
substituting s = jω in the transfer function of the control system in Eq. (2),
the frequency domain analysis of the fractional order control system can be
performed.

3. Describing function analysis for nonlinear fractional or-

der control systems

Describing function analysis is a widely known technique for studying the fre-
quency response of nonlinear systems. It is an extension of the linear frequency
response analysis. In linear systems, transfer functions depend only on the fre-
quency of the input signal. In nonlinear systems, when a specific class of input
signals, such as sinusoidal ones, is applied to a nonlinear element, one can repre-
sent the nonlinear element by a function that depends not only on frequency, but
also on input amplitude. This function is referred to as a describing function.
Describing function analysis has a wide area of applications, which is covered
in many books and papers (see, for instance, Vukic et al., 2003; Khalil, 1996).
Consider the nonlinear control system, given in Fig.1.

Figure 1. Nonlinear control system

The nonlinearity of the system is represented with N(X,ω), and the plant is
represented with G(s). X is the amplitude of the input signal of the nonlinear
element and ω is the frequency of the oscillation. The characteristic equation
of the system can be given as

∆(jω) = 1 +N(X,ω)G(jω) = 0. (3)
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The plant G(s) in Eq. (3) is the linear part of the characteristic equation
of the system. One can conclude that the existence of the limit cycle can be
predicted with the following relationship, if the input is taken to be zero (Glad
and Ljung, 2000):

G(jω) =
−1

N(X,ω)
. (4)

The negative inverse plot of the describing function N(X,ω) in the complex
plane and the Nyquist plot of the plant G(jω) can be obtained as defined in Xue
et al. (2007). It is clear from Eq. (4) that the occurrence of the possible limit
cycle can be predicted, if there is any intersection between these two curves.
Namely, frequency value at the intersection point of these two curves will be
the oscillation frequency of the limit cycle. Frequency domain analysis of the
transfer function enables us to design a suitable controller or compensator for the
desired system. The frequency domain analysis of the FOCS can be conducted
in the similar way as for the integer order one. The frequency domain expression
can be easily obtained by substituting s = jω in the Laplace transform of the
transfer function. Since the describing function method is a frequency domain
approach, it can be applied to the FOCS to analyze the nonlinearity. Thus,
the extension of the results of frequency response analysis in classical nonlinear
control to the nonlinear FOCS can be implemented. Let the nonlinearity in the
negative feedback control system of Fig. 1 be saturation nonlinearity N(X,ω)
and the plant G(s) be a fractional order transfer function. The saturation
nonlinearity can be expressed as (Glad and Ljung, 2000),

N =
2k

Mπ



arcsin(
S

X
) +

S

X

√

1−

(

S

X

)2


 (5)

where k is the slope of saturation, X is the amplitude of oscillation, M and
S are the magnitudes of the saturation (see Fig. 2). A plot of the describing
function of Eq. (5), normalized with slope, plotted versus X/S, is shown in Fig.
3. The Nyquist plot of the G(s) can be obtained using toolbox in Yeroglu and
Tan (2009) and the negative inverse of the describing functions for saturation
nonlinearity can be computed using Eq. (5). Now, consider the transfer function
with a fractional order representation as follows,

G(s) =
K

s3.2 + 4s2.2 + 4s1.2
. (6)

Consider that the describing function represents the saturation nonlinearity.
The slope of the saturation and values of the S are taken as 1 for all cases,
X/S values are calculated with respect to the N/k values from Fig. 3 and the
magnitudes of the oscillation X are obtained for S = 1.
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Figure 2. Control system with saturation nonlinearity

Figure 3. Plot of N/k versus X/S

Fig. 4 presents the Nyquist plot of the plant G(s) for different values of the
gain K and the negative inverse of the describing function in Eq. (5). One can
compute the oscillation frequency using Fig. 4 and Eq. (4) as ω = 1.453 rad/sec.
for all K values. The value of the describing function, values of X/S and
magnitude of the oscillations for K = 8, 9.571, 12 are given in Table 1.

Table 1. Parameters of the describing function for different gains of the plant
at intersection point

Gain -1/N values at intersection N/k X/S(S = 1)
K = 8.0000 No intersection 1.1962 -
K = 9.5710 -1.0000 1.0000 1.0000
K = 12.0000 -1.254 0.7974 1.4700

The value of the describing function can be computed as N = 1 for X/S = 1
and the slope k = 1 in Fig. 3. As a result, −1/N = −1/1 = −1, which
means that the negative inverse of the describing function starts at the point
-1 and goes through −∞. One can make the simulation of the system using
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integer approximation of the fractional order transfer function (Ozyetkin and
Tan, 2009). Fig. 5 shows that the simulation results of the nonlinear FOCS are
in agreement with the calculated values for all cases in Table 1. As seen from
Fig. 4, the Nyquist plot of G(s) crosses the negative real axis at -1 point for
K = 9.5710. We observed that K = 9.5710 = Kcr is the critical gain value.
The Nyquist curve of the FOCS crosses the negative inverse of the describing
function for K > Kcr and the limit cycle occurs for the system. One can
conclude from Fig. 6 that the system will be stable for the gain K < Kcr and
becomes more stable for decreasing gain. Figs. 4 and 5 show that there will be
a limit cycle for the value of K > Kcr. Parameters of the limit cycle can be
used for the analysis and design of FOCS. In order to obtain the time response
characteristics of the system in Figs. 5 and 6, 4th order integer approximation of
the fractional order plant, which is obtained using CFE (Continuous Fractional
Expansion) method, are used in the Simulink model of the negative feedback
system (Ozyetkin and Tan, 2009). On the other hand, obtaining of the exact
time response of the fractional order systems from the frequency response data
has been first studied in Atherton et al. (2015).

Figure 4. The Nyquist plots of G(jω) and the −1/N plot for saturation nonlin-
earity for K = 8, 9.571, 12

4. Relay auto-tuning of PID controller for fractional order

nonlinear systems

Several methods for auto-tuning of PID controllers to control integer order con-
trol systems can be found in the literature (Chen and Moore, 2005; Chen et al.,
2004). However, only few methods for auto-tuning of controllers have been pro-
posed for fractional order control systems (Monje et al., 2007, 2008). In this sec-
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Figure 5. Limit cycle of fractional order system with saturation nonlinearity for
K = 8, 9.571, 12

Figure 6. Step responses of the system for K = 8, 6, 4, 2

tion, the relay auto-tuning of fractional order nonlinear system is demonstrated
using the idea of the describing function method for the nonlinear FOCS, which
was presented in Section 3. In the classical Zigler–Nichols method, the critical
gain and critical frequency were determined manually. In order to determine
the critical gain and frequency, a better method was proposed by Åström and
Hägglund. In this method, a relay was connected in a feedback loop with the
plant as given in Fig. 7. The relay is connected to the loop in tuning mode. In
this case, the error signal e is a periodic signal. The parameters, such as the
critical gain Kc and the oscillation frequency ωc, can be determined using the
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describing function method. The characteristic equation of the system can be
obtained in the form of Eq. (3) and condition of the oscillation can be given
as in Eq. (4). Thus, the frequency and amplitude of the oscillation of the limit
cycle can be determined by using the following equations,

Re{1 +N(X,ω)G(jω)} = 0 (7)

Im{1 +N(X,ω)G(jω)} = 0. (8)

The critical gain Kc and oscillation period Tc are determined, respectively,
as

Kc =
4M

πX
and Tc =

2π

ωc

(9)

where X is the amplitude of the input signal of the nonlinear element and,
generally, M = 1. Then, the parameters of the PID controller can be obtained
using the classical Zigler–Nichols tuning rules as

kp = 0.6Kc , Ti = 0.5Tc and Td = 0.125Tc. (10)

The PID controller can be expressed as

C(s) = kp(1 +
1

Tis
+ Tds). (11)

As known from the classical Åström and Hägglund tuning rule, the following
equations can be written for the parameters of the PID controller for specified
phase margin φm,

kp = Kc cos φm , ωcTd −
1

ωcTi

= tanφm and Ti = αTd (12)

where α = 4 is chosen in most cases. Then, the PID controller can be obtained
in the form of Eq. (11). Numerous PID tuning methods have been proposed
in the literature. However, this paper intends to use critical values of the limit
cycle of the fractional order system for controller design. Thus, basic and very
well-known tuning methods, namely the classical Zigler-Nichols and Åström
and Hägglund tuning rules are used to present the methodology clearly. The
following two examples give the explicit applications of this section. Example
1 demonstrates the auto-tuning method for the fractional order nonlinear sys-
tem and Example 2 extends the method for the same system with parametric
uncertainty structure.
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Example 1 Consider the plant G(s) in Eq. (6) for K = 16 as follows

G1(s) =
16

s3.2 + 4s2.2 + 4s1.2
. (13)

Theoretically, the value of the describing function can be computed from the
intersection of the Nyquist curve of fractional order system and the negative
inverse of the describing function using Eq. (5). The describing function for
relay nonlinearity in Fig. 7 can be defined as

N =
4M

πX
(14)

where M = 1 for most cases. The amplitude and the frequency of the possible
limit cycle of FOCS can be determined easily using Eq. (14) with the infor-
mation obtained from the intersection point of the Nyquist plot of the plant
G1(s) and the negative inverse of the describing function for relay nonlinear-
ity of Fig. 8. The simulation result for the same system, which is given in
Fig. 9, verifies the theoretical values. The limit cycle parameters of the frac-
tional order nonlinear system for relay nonlinearity can be calculated using Eq.
(14) with the information from Figs. 8 and 9. In this example, the magnitude
and the frequency of the limit cycle oscillation are computed, respectively, as,
ω = 1.453 rad/sec. and X = 2.2. Using Eqs. (9), (10) and (11) with the
parameters of the limit cycle, the PID controller can be obtained as follows,

C1(s) = 0.3446(1 +
1

2.1622s
+ 0.5405s). (15)

Different values of parameters of the controller C1(s) for different values of
gain K can be obtained. The PID controller for φm = 45◦ phase margin can be
obtained using Eqs. (9), (11) and (12) as follows,

C2(s) = 0.3017(1 +
1

4.3504s
+ 1.0876s). (16)

The step responses of C1(s)G1(s) and C2(s)G1(s) are given in Fig. 10.

Example 2 Consider the plant in Eq. (6) with parameter uncertainty structure
as follows,

G2(s) =
K

a2s3.2 + a1s2.2 + a0s1.2
(17)

where a2ǫ [0.8, 1.2], a1ǫ [3.5, 4.5] and a0ǫ [3.5, 4.5]. Different transfer functions of
G2(s) can be obtained using lower and upper values of the uncertain parameters
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Figure 7. Relay auto-tuning system

Figure 8. The Nyquist plots of G1(jω) and the −1/N plot for relay nonlinearity
(for K = 16)

of the plant. The parameters of the limit cycle can be obtained for the lower
and upper values of the uncertain parameters as in Table 2.

It is possible to obtain different controllers for different values of the critical
gain, period, amplitude and frequency of the limit cycle, as given in Table 2.
These controllers satisfy the robust performance of the system for the values of
a2ǫ [0.8, 1.2], a1ǫ [3.5, 4.5] and a0ǫ [3.5, 4.5].

Let C3(s) be one of the controllers given in Table 2. Figs. 11 and 12 illustrate
the step responses and control signals of the system, which satisfy the robust
performance of C3(s)G2(s) for different values of the uncertain plant. These
figures also illustrate good disturbance rejection performance of the controllers,
the disturbance being applied to the system at the 30th second. The Bode
plots of the system C3(s)G2(s) in Fig. 13 show that the controllers satisfy the
required phase margin and robust performance.
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Figure 9. Limit cycle of fractional order system G1(s) with relay nonlinearity
(for K=16)

Figure 10. Step responses of C1(s)G1(s) and C2(s)G1(s)

5. Stability margin computation of fractional order non-

linear interval system

The purpose of this section is to present the extension of some results, related
to the stability margin computation in classical nonlinear control, to the FOICS
in the presence of nonlinearity. The computation of the frequency responses
of uncertain transfer functions plays an important role in the application of
frequency domain methods for the analysis and design of robust control systems.
For example, Nyquist envelope of a fractional order interval transfer function
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Table 2. Values of the parameters of the limit cycle and the parameters of the
PID controller in the form of C2(s) for different values of a2, a1 and a0 (for
K = 16 and φm = 45◦)

X Kc Tc ωc kp Ti Td

a2= 0.8, a1= 3.5,
a0= 3.5

2.37 0.5372 4.1944 1.498 0.2822 4.7040 1.1760

a2= 0.8, a1= 3.5,
a0= 4.5

1.64 0.7764 3.5599 1.765 0.4079 3.9924 0.9981

a2= 0.8, a1= 4.5,
a0= 3.5

2.27 0.5609 4.5896 1.369 0.2947 5.1472 1.2868

a2= 0.8, a1= 4.5,
a0= 4.5

1.55 0.8214 3.8595 1.628 0.4315 4.3284 1.0821

a2= 1.2, a1= 3.5,
a0= 3.5

3.22 0.3954 4.8369 1.299 0.2077 5.4248 1.3562

a2= 1.2, a1= 3.5,
a0= 4.5

2.25 0.5659 4.1337 1.520 0.2973 4.6360 1.1590

a2= 1.2, a1= 4.5,
a0= 3.5

2.99 0.4258 5.2186 1.204 0.2237 5.8528 1.4632

a2= 1.2, a1= 4.5,
a0= 4.5

2.07 0.6151 4.4217 1.421 0.3234 4.9592 1.2398

Figure 11. Step responses of the system C3(s)G2(s) for different values given in
Table 2

(FOITF) can be used for the stability margin computation of the nonlinear
FOICS.
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Figure 12. Control signals of the system C3(s)G2(s) for different values given
in Table 2

Figure 13. Bode plots of the system C3(s)G2(s) for different values given in
Table 2

Nyquist Envelope of FOITF

The numerator and denominator polynomials of a FOITF are the fractional
order interval polynomials (FOIP) of the form,

P (s, q) = q0s
α0 + q1s

α1 + q2s
α2 + q3s

α3 + · · ·+ qns
αn (18)
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where α0 < α1 < · · · < αn are generally real numbers, q = [q0, q1, q2, · · · , qn] is
the uncertain parameter vector, and the uncertainty box is

Q =
{

q : qiǫ
[

q
i
, qi

]

, i = 0, 1, 2, ..., n
}

.

Here, q
i
and qi are specified lower and upper bounds of ith perturbation qi,

respectively. Thus, a FOITF can be represented as,

G(s, a, b) =
N(s, b)

D(s, a)
=

b0s
α0 + b1s

α1 + b2s
α2 + ...+ bmsαm

a0sβ0 + a1sβ1 + a2sβ2 + ...+ ansβn

(19)

where α0 < α1 < . . . < αm and β0 < β1 < · · · < βn are generally real numbers,
a = [a0, a1, a2 · · ·, an] and b = [b0, b1, b2 · · ·, bm] are uncertain parameter vectors,
A = {a : aiǫ [ai, ai] , i = 0, 1, 2, ..., n} and B =

{

b : biǫ
[

bi, bi
]

, i = 0, 1, 2, ...,m
}

are uncertainty boxes. It is first shown that the value set of the family of
polynomials of Eq. (18) can be constructed using the upper and lower values of
uncertain parameters. Then, using the geometric structure of the value set, the
Nyquist envelopes of FOITF, represented by Eq. (19), can be computed. For
FOIP of Eq. (18), substituting s = jω gives,

P (jω, q) = q0(k0r + jk0i)ω
α0 + · · ·+ qn(knr + jkni)ω

αn

= (q0k0rω
α0 + · · ·+ qnknrω

αn) + j(q0k0iω
α0 + · · ·+ qnkniω

αn)
(20)

where klr and kli, l = 1, 2, ..., n are constants. It is clear from Eq. (20) that
the uncertain parameters appearing in both the real and imaginary parts are
linearly dependent on each other. The value set of such a polynomial in the
complex plane is a polygon. Thus, the corresponding polytope of a family of
Eq. (18) in the coefficient space has 2(n+1) vertices and (n+1)2n exposed edges,
since the polynomial family has (n+1) uncertain parameters. All of the 2(n+1)

vertex polynomials of P (s, q) can be written using the upper and lower values
of the uncertain parameters, in the following pattern

v1(s) = q0s
α0 + q1s

α1 + q2s
α2 + · · ·+ qns

αn

v2(s) = q0s
α0 + q1s

α1 + q2s
α2 + · · ·+ qns

αn

...
v2(n+1)(s) = q0s

α0 + q1s
α1 + q2s

α2 + · · ·+ qns
αn .

(21)

From these vertex polynomials the exposed edges can be obtained. For
example, the vertex polynomials v1(s) and v2(s) have the same structure, except
that the parameter q0 is its lower value q

0
in v1(s) and its upper value q0 in

v2(s). Thus, one of the exposed edges can be expressed as

e(v1, v2) = (1 − λ) v1(s) + λ v2(s) (22)

where λǫ [0, 1]. The numerator and denominator polynomials of FOITF of Eq.
(19) are in the form of P (s, q) of Eq. (18). Therefore, the results given above
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can be used to obtain the Nyquist envelope of FOITF. The detailed algorithm
for obtaining the Nyquist envelope of FOITF can be found in Yeroglu et al.
(2010).

Stability margin computation

Parameters of all real systems include different types of uncertainties due to
the tolerance values of the components, environmental conditions and nonlinear
effects. Parameter uncertainty is, namely, inevitable in the real systems. In
control theory, robust control methods have been developed for the analysis and
design of the systems with parametric uncertainty structure. Determination of
the maximum allowable perturbation bounds of the parameters of the control
system which preserves stability is one of the important problems in robust
analysis of the system (Tan and Atherton, 2002). In this section, a graphical
procedure for the stability margin computation of the fractional order nonlinear
interval control system is demonstrated.

Consider the feedback closed loop nonlinear control system of Fig. 2 with
saturation nonlinearity. In this case, the nonlinearity of the system can be
expressed with Eq. (5). In the case of M = 1, S = 1, X = 1 and k = 2 in
Eq. (5), the value of the describing function can be calculated as N = 2 . The
negative inverse of the describing function is −1/N = −1/2 = −0.5, namely,
the negative inverse of the describing function starts at the point −0.5 and goes
through −∞. If G(s) of Fig. 2 represents the fractional order interval plant,
the Nyquist envelope of the plant can be constructed using the procedure given
in Yeroglu et al. (2010). The Nyquist envelope of the fractional order interval
plant and the plot of the negative inverse of the describing function in complex
plane can be obtained as given in Fig. 14. If there is any intersection between
these two plots, one can conclude from the results of Section 3 that there is a
limit cycle oscillation in the system. The frequency and amplitude of this limit
cycle can be computed from the intersection point of the Nyquist envelope of
FOITF and the negative inverse of the describing function. If the Nyquist curve
of the system does not cross the negative inverse of the describing function, there
will be no limit cycle in the system and the nonlinear fractional order system
becomes stable for the values of the parameters of the fractional order interval
plant. The question is how big a perturbation of the parameters of fractional
order plant can be applied while preserving the stability of the fractional order
nonlinear interval system. Perturbation bounds of the parameters of the plant
can be identified using the graphical approach of Fig. 14.

The procedure given below can be followed for stability margin computation
of the fractional order nonlinear interval control system:

• Specify the nonlinearity of the system and select the appropriate describ-
ing function that represents the related nonlinearity.

• Obtain the complex plot of the negative inverse of the describing function
in a complex plane.

• Construct the Nyquist envelope of the fractional order interval plant.



Describing function analysis of fractional order nonlinear control systems 249

Figure 14. The Nyquist envelopes of the fractional order interval plant and the
complex plot of −1/N

• If there is an intersection between these two plots, there is oscillation in
the system.

• If there is no intersection between these two plots, then change the interval
of the parameters of the fractional order plant and reconstruct the Nyquist
envelope. Repeat this step until the Nyquist envelope of the fractional
order interval plant just touches the plot of the negative inverse of the
describing function.

• The stability margin of the system can be computed from the magnitude
of perturbation of the parameters of the fractional order plant.

Three different fractional order plants are considered in this section to illus-
trate the method. Examples 3 and 4 concern the fractional order interval plants,
while Example 5 concerns the fractional version of a first order plus dead time
system. Saturation nonlinearities are applied to the systems in the examples.
Maximum perturbation bounds of the parameters of the fractional order plant,
which preserve stability of the nonlinear systems, are investigated.

Example 3 Consider that the transfer function G(s) in Fig. 2 is given as
follows,

G3(s) =
b0s

2.2 + b1s
1.1 + b2

a0s4.3 + a1s3.2 + a2s2.1 + a3s0.9 + a4
. (23)

Nominal values of the parameters are given as: b0 = 1, b1 = 3, b2 = 60,
a0 = 1, a1 = 3, a2 = 35, a3 = 40, a4 = 60. Let the perturbation of the
parameters b1, b2, a3 and a4 be 1% percent, while the other parameters remain
the same as the nominal values. As shown in Fig. 15, the Nyquist envelope can
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be constructed and the plot of −1/N can be obtained using the parameters of
M = 1, S = 1, X = 1 and k = 2 in Eq. (5). One can conclude from Fig. 15
that the system still preserves the stability. If one perturbs the parameters b1,
b2, a3 and a4 by 11% percent, while the other parameters remain the same as
the nominal values, the Nyquist envelope can be constructed as shown in Fig.
16.

Figure 15. Plot of −1/N and Nyquist envelope of G3(s) from Eq. (23) for 1%
percent perturbations of parameters b1, b2, a3 and a4

Figure 16. Plot of −1/N and Nyquist envelope of G3u(s) from Eq. (24), for
0.1 < ω < 10 rad/sec

The Nyquist envelope of the fractional order plant in Fig. 16 just touches the
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plot of −1/N for the frequency ω = 4.273 rad/sec. One can conclude from Fig.
16 that the stability of the fractional order nonlinear system can be preserved
for 11% percent perturbation of the parameters b1, b2, a3 and a4. Thus, the
system is stable for the following uncertain fractional order plant:

G3u(s) =
s2.2 + [2.67, 3.33]s1.1 + [53.4, 66.6]

s4.3 + 3s3.2 + 35s2.1 + [35.6, 44.4]s0.9 + [53.4, 66.6]
. (24)

For this example, one can conclude that the system still preserves stabil-
ity until parameter perturbations reach 11% percent. If the parameters are
perturbed more than 11% percent, the system will be unstable.

Example 4 Consider that an integrating plant is given as follows

G4(s) =
b0

s(a0s2.4 + a1s1.3 + a2s0.2)
. (25)

Nominal values of the parameters of G4(s) are given as b0 = 0.5, a0 =
1, a1 = 2, a2 = 1. For the values of the describing function M = 1, S =
1, X = 1 and k = 1 in Eq. (5). The plot of −1/N begins from -1 and
goes through −∞. The Nyquist envelope of the plant G4(s) for 13% percent
perturbations of all the parameters and the plot of −1/N are given in Fig.
17. The Nyquist envelope of this system just touches the plot of −1/N at
the frequency ω = 0.641 rad/sec. Consequently, one can conclude that the
system preserves stability for the uncertain fractional order plant given in Eq.
(26). Thus, the perturbation bound of the parameters is 13% percent for this
example. Exceeding the threshold of 13% percent perturbation will drive the
system to unstable state.

G4u(s) =
[0.435, 0.565]

[0.87, 1.13]s3.4 + [1.74, 2.26]s2.3 + [0.87, 1.13]s1.2
. (26)

Example 5 First order plus dead time (FOPDT) systems provide simple char-
acterization of a process and give valuable information about dynamics of many
applications in process control industry (Roy and Iqbal, 2004). The investiga-
tion of the stability margin for the FOPDT system will be useful. Let the plant
G(s) in Fig. 2 represent the fractional version of the FOPDT system with the
following transfer function,

G5(s) =
b0

a0s1.2 + a1
e−0.65s. (27)

Nominal values of the parameters of G5(s) are given as b0 = 1, a0 = 1 and
a1 = 1. The plot of −1/N can also be obtained for the parameters of M = 1,
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Figure 17. Plot of −1/N and Nyquist envelope of G4u(s) for 0.4 < ω <
10 rad/sec

S = 1, X = 1 and k = 2. Fig. 18 presents the plot of −1/N and the Nyquist
envelope of the fractional order time delay system of Eq. (27) for 17% percent
perturbations of all parameters of G5(s). One can conclude from Fig. 18 that
the system preserves stability for the fractional order uncertain plant given in
Eq. (28). In analogy to the previous two examples, exceeding the 17% percent
perturbation bound of the parameters will cause instability.

G5u(s) =
[0.83, 1.17]

[0.83, 1.17]s1.2 + [0.83, 1.17]
e−0.65s. (28)

6. Conclusions

In this paper, extensions of some results, obtained for classical nonlinear con-
trol, to the nonlinear FOCS are studied. A method is presented for prediction
of the limit cycle of fractional order nonlinear control systems. Parameters of
the limit cycle of the nonlinear FOCS are used for auto-tuning of the PID con-
troller. Auto-tuning method is demonstrated for the plant with the parameter
uncertainty structure. On the other hand, the idea of the describing function
method is used for stability margin computation of fractional order nonlinear
control system with parametric uncertainty structure. Maximum perturbation
bounds of the fractional order plant are investigated. The proposed method
clearly shows that the parameters of the fractional order system can be per-
turbed within a certain interval, while preserving the stability of the system.
Perturbation interval of each parameter of the plant may be investigated indi-
vidually or a relative perturbation proportion may be found for all parameters
of the plant.
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Figure 18. Plot of −1/N and Nyquist envelope of G5u(s) for 0 < ω <
1000 rad/sec
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