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Abstract: In statistical process control, record schemes are used
to reduce the total time on test for the inspection inquiry. In these
schemes, units are examined sequentially and successive minimum
values are recorded. On the basis of record data, Samaniego and
Whitaker (1986) obtained the maximum likelihood (ML) estimate of
the mean for an exponential distribution. Since the two-parameter
Weibull model, as an extension of the exponential distribution, has
a wide range of application, Hoinkes and Padgett (1994) derived
the record-based ML estimators for the parameters of interest in
this model. This paper shows that the ML estimates of the Weibull
parameters do not always exist for the basis of records. Thus, a new
scheme is proposed, in which the ML estimates of the parameters
always exist. An analytic cost-based comparison between the usual
and the new scheme is also carried out. Finally, some concluding
remarks and open problems are formulated.

Keywords: cost analysis; lifetime models; likelihood function;
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1. Introduction

Record data arise in a wide variety of practical situations. Examples include
industrial stress testing, meteorological analysis, sporting and athletic events,
and oil and mining surveys. According to Samaniego and Whitaker (1986),
such data may be represented by (r,k) := (r1, k1, · · · , rm, km), where ri is the
i-th record value, meaning new minimum (or maximum), and ki is the num-
ber of trials following the observation of ri that are needed to obtain a new
record value (or to exhaust the available observations). There are two sampling
schemes for generating such a record-breaking data, called inverse and random
sampling schemes. In the former, items are presented sequentially and sampling
is terminated when the m-th minimum is observed, while in the latter a random
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sample, say Y1, · · · , Yn, is examined sequentially and successive minimum val-
ues are recorded. This paper deals with the random sampling scheme. For the
inversely random scheme, the reader is referred to Gulati and Padgett (1994).

The Weibull distribution function (DF), denoted by W (α, σ), is

F (x;α, σ) = 1− exp
{

−
(x

σ

)α}

, x ≥ 0, α > 0, σ > 0, (1)

and hence its density is

f(x;α, σ) =
αxα−1

σα
exp

{

−
(x

σ

)α}

, x ≥ 0, α > 0, σ > 0. (2)

The scale parameter σ is called the characteristic life, because it is always the
63.2-th percentile. It determines the spread and has the same units as failure
times, for example hours, months, cycles, and so forth. Parameter α is a unitless
pure number and determines the shape of the distribution. For α = 1, the
Weibull distribution is the exponential distribution, denoted by Exp(σ). The
Weibull distribution appears very frequently in practical problems when we
observe data representing minimal values; see, e.g., Lawless (2003).

In the sequel, the following notations are used:

US: usual scheme for record sampling
NS: new proposed scheme for record sampling
TC: total cost for associated record sampling
ETC: expectation of total cost
TTT: total time on test
lnx: the natural logarithm of x
(r,k) : (r1, k1, · · · , rm, km)
(R,K) : (R1,K1, · · · , Rm,Km)
N (n): number of records in a random sample size n under US

N
(n)
⋆ : number of records in a random sample size n under NS

θ̂ : maximum likelihood estimator of the unknown parameter θ
I(A): 1 if the event A occurs and 0 otherwise
X ∼ W (α, σ) : X has a Weibull model with shape and scale parameters α

and σ, respectively

Γ(r):
∫ +∞

0
xr−1e−xdx, the complete gamma function

B(a, b):
∫ 1

0
xa−1(1 − x)b−1dx, the complete beta function

Ψ(x): ∂ ln Γ(x)/∂x.

a(n): E
(

∑N(n)

i=1 KiRi

)

,

b(n): E
({

∑N(n)

i=1 KiRi

}

I
(

N (n−1) > 1
)

)

.

The rest of the paper is organized as follows: in Section 2, the problem of
estimating unknown parameters based on record-breaking data coming from the
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Weibull distribution is reviewed, and it will be shown that the ML estimates do
not always exist. In Section 3, a new scheme (NS) is proposed and ML estimates
under NS are investigated. In Section 4, the two schemes are compared for
estimating the parameters based on a criterion involving a cost function. Section
5 contains a discussion.

2. Record-based Weibull analysis

Assume that the sequence {R1,K1, · · · , Rm,Km} originates from a random sam-
ple Y1, · · · , Yn with the common absolutely continuous DF F (.; θ), where θ ∈ Θ
is the parameter vector and Θ stands for the parameter space. Based on record
data (r,k), the likelihood function (LF) reads (Samaniego and Whitaker, 1986)

L(θ; r,k) ≡

m
∏

i=1

f(ri; θ) {1− F (ri; θ)}
ki−1

I(−∞,ri−1)(ri), (3)

where f(.; θ) is the density of the DF F (.; θ). For the Weibull model, by sub-
stituting Equations (1) and (2) into Equation (3), the corresponding LF with
θ = (α, σ) is obtained as

L(α, σ; r,k) ≡
αm

σmα

{

m
∏

i=1

ri

}α−1

exp

{

−

(

1

σα

m
∑

i=1

kir
α
i

)}

. (4)

From (4), Hoinkes and Padgett (1994) obtained the ML estimates of the
unknown parameters on the basis of record data (r,k) arising from a random
sample by solving the following non-linear equations

σ =

{

1

m

m
∑

i=1

kir
α
i

}1/α

, (5)

and

m

α
+

m
∑

i=1

ln(ri)−
m

∑m
i=1 kir

α
i

m
∑

i=1

kir
α
i ln(ri) = 0, (6)

where N (n) = m is the number of records among Y1, · · · , Yn. One can easily
check that Equation (6) is similar to those of Pike (1966) and conclude that
Equation (6) has a unique solution. But, according to Nelson (1985), there
must be at least two uncensored observations to calculate the estimates for the
Weibull parameters from Equations (5) and (6). In what follows, it is proved
that the ML estimate of Weibull parameters does not exist in the case when the
first observation is the smallest of the n.
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Remark 1 Statistical inference on the basis of upper record values coming from
the Weibull distribution has been considered in literature; see, e.g., Soliman et
al. (2006).

In the case of N (n) = 1, the LF (4) is simplified as

Ls(α, σ; r,k) ≡ f(r1;α, σ)(1 − F (r1;α, σ))
n−1

=
αrα−1

1

σα
exp

{

−n
(r1
σ

)α}

, (7)

with the corresponding log-likelihood function (LLF)

ls(α, σ; r,k) = ln (Ls(α, σ; r,k)) = lnα+(α−1) ln r1−α lnσ−n
(r1
σ

)α

. (8)

For a given α, the LLF (8) is maximized by solving the equation

∂ls(α, σ)/∂σ = 0.

So,

α

σ

(

−1 +
nrα1
σα

)

= 0, (9)

which yields

σ = r1n
1
α . (10)

Note that

∂2

∂σ2
ls(α, σ; r,k) =

α

σ2
−

nα(α+ 1)rα1
σα+2

. (11)

Substituting Equation (10) into Equation (11) gives

∂2

∂σ2
ls(α, σ; r,k)|

σ=r1n
1
α

=

(

α

σ2
−

nα(α+ 1)rα1
σα+2

)

|
σ=r1n

1
α

=

(

α

σ2
−

α(α+ 1)

σ2

)

|
σ=r1n

1
α

= −
(α

σ

)2

|
σ=r1n

1
α

= −

(

α

r1n
1
α

)2

< 0. (12)

This implies that sup
σ>0

ls(α, σ; r,k) = ls(α, σ = r1n
1
α ; r,k) for all α > 0. So, the

ML estimate of α occurs in the region {(α, σ) : σ = r1n
1
α }. Thus, Equation (8)

yields

ls(α, σ = r1n
1
α ; r,k) = α+ (α − 1) ln r1 − α ln

(

r1n
1
α

)

− n

(

r1

r1n
1
α

)α

= α− ln r1 − lnn− 1,
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which is increasing with respect to α, that is, the ML estimate of α is +∞.
This unrealistic estimate merely indicates that the true α is very large. But
a W (α, σ)-distribution tends to a degenerate DF as α → +∞ at point x = σ
because

lim
α→+∞

F (x;α, σ) =

{

1 if x ≥ σ,
0 if x < σ.

So we have the following proposition.

Proposition 1 On the basis of record data arising from a random sampling
scheme, when N (n) = 1, the ML estimate of α does not exist.

One may suggest to use the method of moments (MM) to estimate α and σ.
With this in mind, the k-th central moment readily follows from Equations (1)
and (2) as

µ′
k := E(Xk) = σkΓ

(

k

α
+ 1

)

. (13)

Since R1 = Y1, we have

E(R1) = µ′
1 = σΓ

(

1

α
+ 1

)

, and E(R2
1) = µ′

2 = σ2Γ

(

2

α
+ 1

)

.

Thus, the MM estimates of the unknown parameters are obtained by solving
the equations

R1 = σΓ

(

1

α
+ 1

)

, and R2
1 = σ2Γ

(

2

α
+ 1

)

.

So,

{

Γ

(

1

α
+ 1

)}2

= Γ

(

2

α
+ 1

)

. Hence, the MM estimate of α is obtained by

solving the equation

B

(

1

α
,
1

α

)

= 2α. (14)

Letting g(α) = B

(

1

α
,
1

α

)

− 2α, one can verify that

d

dα
g(α) =

2

x2

(

−Ψ
(

x−1
)

+Ψ
(

2 x−1
))

B
(

x−1, x−1
)

− 2.

It is easy to see that the global minimum point of the function g(α) is 1 and
limα→+∞ g(α) = 0. Graphs of g(α) and d

dαg(α) are given in Fig. 1. This shows
that α̂ = +∞. Again, this unrealistic estimate indicates that the true α is very
large. Hence, the MM estimate of σ is given by
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Figure 1. Graph of g(α) and dg(α)/dα

lim
α→+∞

R1

Γ
(

1
α + 1

) = R1. (15)

Finally, one may suggest the following estimates of α and σ on the basis of
record data arising from a random sample, namely

α̃ =







α̂ if N (n) > 1

+∞ if N (n) = 1
(16)

and

σ̃1 =











{

1
N(n)

∑N(n)

i=1 KiR
α̂
i

}1/α̂

if N (n) > 1

R1 if N (n) = 1

(17)

where α̂ is obtained from Equation (6). We leave the problem of obtaining
reasonable estimates as an open problem. It should be noticed that we did not
use the information on {N (n) = 1} to estimate α and σ given in Equations (16)
and (17), respectively. One may use this information to obtain better estimates.

3. A suggested scheme

As mentioned earlier, one can not use Equations (5) and (6) in order to obtain
ML estimate of α and σ on the basis of record data in the case when the first
observation is the smallest one of the n; i.e. N (n) = 1. The probability of
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this situation is n−1, which vanishes as n goes to infinity. Therefore, for small
sample sizes, one needs to propose a new scheme for estimating parameters of
the Weibull distribution.

Suppose that we are planning to examine the random sample Y1, · · · , Yn

sequentially. For Y1, · · · , Yn−1, we collect record data as usual, that is, the
random sample Y1, · · · , Yn−1 is examined sequentially and only values smaller
than all previous ones are recorded. In the case N (n−1) = 1, the last item, i.e.
Yn, is realized without censoring, otherwise, the usual record-based scheme is
used for Yn; that is, Yn is recorded in the case Yn < min{Y1, · · · , Yn−1}. Hence,
the available data is

data =







R1,K1, · · · , RN(n) ,KN(n) , if N (n−1) > 1,

R1, n− 2 observation larger than R1, Yn, if N (n−1) = 1.

In this setting, the associated LF reads

L(α, σ; data) =











αm

σmα {
∏m

i=1 ri}
α−1

exp
{

− 1
σα

∑m
i=1 kir

α
i

}

, if N (n−1) > 1,

α2(r1yn)
α−1 exp{−n(r1/σ)

α−(yn/σ)
α}

σ2α , if N (n−1) = 1.

In the case of N (n−1) = 1, letting r′1 := r1, r
′
2 := yn, k

′
1 := n, k′2 := 1 and

m = 2, Equation (4) is obtained on the basis of (r′1, k
′
1, r

′
2, k

′
2). Hence, similar

numerical methods to the ones described in Section 2 may be used to obtain
the ML estimates of the unknown parameters.

Remark 2 One may want to examine the properties of the estimators under
one record and see how these properties compare to the properties of the esti-
mators when one has more than one record. We leave this problem as an open
problem while in the next section we compare the two schemes for estimating
the parameters based on a criterion involving a cost function.

4. Cost analysis

Which scheme does dominate the other one? The answer depends on the costs.
To this end, let Ct and Cu denote the costs of time and unit, respectively. It
then readily follows that the total costs associated with US and NS schemes,
denoted by TCUS and TCNS, respectively, are given by

TCUS = CtTUS + CuN
(n), (18)

and

TCNS = CtTNS + CuN
(n)
⋆ , (19)
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where N
(n)
⋆ is the total number of uncensored observations under NS scheme,

i.e.

N
(n)
⋆ =







2 if N (n−1) = 1,

N (n) if N (n−1) > 1.

Also, it can be shown that the total time on test (TTT) under US and NS is
given by

TUS =

N(n)
∑

i=1

KiRi, (20)

and

TNS = {(n− 1)R1 + Yn} I
(

N (n−1) = 1
)

+







N(n)
∑

i=1

KiRi







I
(

N (n−1) > 1
)

, (21)

respectively. Thus, the expectations of the total costs (ETCs) under different
schemes are

ETCUS(n) = CtE (TUS) + CuE
(

N (n)
)

, (22)

and

ETCNS(n) = CtE (TNS) + CuE
(

N
(n)
⋆

)

. (23)

To calculate ETCUS(n) and ETCNS(n) in Equations (22) and (23), respec-

tively, one needs to obtain E
(

N (n)
)

, E
(

N
(n)
⋆

)

, E (TUS) and E (TNS). In what

follows, these quantities are derived.

From Glick (1978), we know that the distribution of N (n) does not depend upon
the parent distribution and

E(N (n)) = 1 +
1

2
+ · · ·+

1

n
. (24)

For E
(

N
(n)
⋆

)

, the following lemma is helpful.

Lemma 1 Suppose that N
(n)
⋆ is the total number of uncensored items under the

NS scheme. Then

N
(n)
⋆ = N (n) + (1 − In)I(N

(n−1) = 1), (25)

where

In = I(Yn < min {Y1, · · · , Yn−1}).
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Proof By definition, we have

N
(n)
⋆ = 2I(N (n−1) = 1) +N (n)I(N (n−1) > 1)

= I(N (n−1) = 1) + I(N (n−1) = 1) +N (n)I(N (n−1) > 1)

= I(N (n−1) = 1) +N (n−1)I(N (n−1) = 1) + (N (n−1) + In)I(N
(n−1) > 1)

= I(N (n−1) = 1) +N (n−1)I(N (n−1) ≥ 1) + InI(N
(n−1) > 1)

= I(N (n−1) = 1) +N (n−1) + InI(N
(n−1) > 1)

= I(N (n−1) = 1) +N (n−1) + In(1− I(N (n−1) = 1))

= I(N (n−1) = 1) +N (n−1) + In − InI(N
(n−1) = 1)

= I(N (n−1) = 1) +N (n) − InI(N
(n−1) = 1)

= N (n) + (1− In)I(N
(n−1) = 1),

which establishes the required result. ✷

It is clear that, for all n,

P
(

N (n) = 1
)

=
(n− 1)!

n!
=

1

n
. (26)

Equations (24)-(26) and the fact that N (n−1) and In are independent random
variables (Glick, 1978) imply an expression for the expected number of complete
observations resulting from the modified scheme in the form of

E
(

N
(n)
⋆

)

= E
(

N (n)
)

+
1

n
. (27)

Let Y1, · · · , Yn be independent and identically distributed random variables
coming from the W (α, σ)-distribution. From Equation (21), the expectation of
TTT under NS is

E(TNS) = E



{(n− 1)R1 + Yn}I
(

N (n−1) = 1
)

+







N(n)
∑

i=1

KiRi







I
(

N (n−1) > 1
)





= E
(

{(n− 1)R1 + Yn} I
(

N (n−1) = 1
))

+E











N(n)
∑

i=1

KiRi







I
(

N (n−1) > 1
)





= (n− 1)E
(

R1I
(

N (n−1) = 1
))

+ E
(

YnI
(

N (n−1) = 1
))

+E











N(n)
∑

i=1

KiRi







I
(

N (n−1) > 1
)



 . (28)

Lemma 2, provided below, gives the exact values of E
(

R1I
(

N (n−1)
))

and

E
(

YnI
(

N (n−1) = 1
))

, while Tables 1 and 2 present simulated values of
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σ−1E
({

∑N(n)

i=1 KiRi

}

I
(

N (n−1) > 1
)

)

and σ−1E
({

∑N(n)

i=1 KiRi

})

for some selected

values of n and α. The simulation study has been conducted 104 times using
the mathematical package MATLAB version 6.0.

Lemma 2 Let {R1,K1, · · · , Rm,Km} be records coming from a random sample
Y1, · · · , Yn with the common W (α, σ)-distribution. Then

E(R1I
(

N (n−1) = 1
)

) = σ(n− 1)−(1+1/α)Γ

(

1

α
+ 1

)

, (29)

and

E
(

YnI
(

N (n−1) = 1
))

=
σ

(n− 1)
Γ

(

1

α
+ 1

)

. (30)

Proof By definition, R1 = Y1. Thus,

E(R1I
(

N (n−1) = 1
)

) =

∫ +∞

0

E
(

R1I
(

N (n−1) = 1
)

|R1 = x
)

fR1(x)dx

=

∫ +∞

0

xE
(

I
(

N (n−1) = 1
)

|R1 = x
)

f(x)dx

=

∫ +∞

0

xP
(

N (n−1) = 1|R1 = x
)

f(x)dx

=

∫ +∞

0

xP (Y1 = x, Y1 < min {Y2, · · · , Yn−1} |R1 = x) f(x)dx

=

∫ +∞

0

xP (x < min {Y2, · · · , Yn−1}) f(x)dx

=

∫ +∞

0

x[F̄ (x)]n−2f(x)dx, (31)

where F̄ (x) = 1 − F (x) is the survival function of the parent population. Sub-
stituting Equations (1) and (2) into Equation (31), implies

E
(

R1I
(

N (n−1) = 1
))

=

∫ +∞

0

xe−(n−1)( x

σ )
α αxα−1

σα
dx

=
1

n− 1

∫ +∞

0

x
(n− 1)αxα−1

σα
e−(n−1)( x

σ )
α

dx

=
1

n− 1
E(U),

where U ∼ W (α, σ(n− 1)−1/α). Equation (13) with k = 1 concludes

E(R1I
(

N (n−1) = 1
)

) =
1

n− 1
σ(n− 1)−1/αΓ

(

1

α
+ 1

)

= σ(n− 1)−(1+1/α)Γ

(

1

α
+ 1

)

,
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Table 1. Values of σ−1a(n) (upper figures) and σ−1b(n) (lower figures) for
n = 5(5)20 and α = 0.1, 0.3, 0.5, 0.7, 0.9 and 1.

α
n 0.1 0.3 0.5 0.7 0.9 1
5 1773163.6579 11.3305 2.9091 2.2834 2.2439 2.2746

800520.6334 8.7172 2.1749 1.6566 1.5955 1.6023

10 1444736.7741 11.5008 3.1307 2.6388 2.8038 2.8954
1337331.7079 10.3527 2.8458 2.3586 2.4722 2.5414

15 1283326.3400 10.6061 3.1473 2.7577 3.1118 3.3071
1198194.4427 10.0727 2.9681 2.5872 2.9071 3.0654

20 1645772.2623 10.6459 3.1411 2.9189 3.3271 3.6366
1471068.8908 10.1423 3.0035 2.7841 3.1586 3.4473

50 1325350.7229 10.4230 3.3048 3.2061 3.9906 4.4744
1280857.5155 10.1978 3.2599 3.1607 3.9327 4.3969

100 1865200.6225 10.9559 3.2288 3.3781 4.4025 5.1181
1653056.0640 10.6648 3.2101 3.3522 4.3723 5.0828

which is the desired result in Equation (29). Since I
(

N (n−1) = 1
)

is a function

of Y1, · · · , Yn−1, the random variables Yn and I
(

N (n−1) = 1
)

are independent.
Thus, Equations (13) and (26) yield

E
(

YnI
(

N (n−1) = 1
))

= E(Yn)E
(

I
(

N (n−1) = 1
))

= σΓ

(

1

α
+ 1

)

P
(

N (n−1) = 1
)

=
σ

(n− 1)
Γ

(

1

α
+ 1

)

,

and the proof of Equation (30) is completed. ✷

From Equations (20), (21) and (28) and Lemma 2, the following proposition is
derived:

Proposition 2 Expectations of TTTs under US and NS schemes are

E(TUS) = a(n), (32)

E(TNS) = σ(n− 1)−(1/α)Γ

(

1

α
+ 1

)

+
σ

(n− 1)
Γ

(

1

α
+ 1

)

+ b(n), (33)
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Table 2. Values of σ−1a(n) (upper figures) and σ−1b(n) (lower figures) for
n = 5(5)20 and α = 1.5, 2, 5, 7, 10 and 15.

α
n 1.5 2 5 7 10 15
5 2.5671 2.8789 3.8110 4.0827 4.3251 4.5328

1.7301 1.8984 2.3728 2.5034 2.6371 2.7233

10 3.7142 4.4043 6.8450 7.5668 8.1988 8.7411
3.2088 3.7297 5.6023 6.1377 6.6702 7.0901

15 4.5582 5.6951 9.5699 10.8230 11.8786 12.8145
4.1598 5.1654 8.4461 9.5178 10.3703 11.1971

20 5.2007 6.7375 12.1833 13.9196 15.4488 16.7911
4.8859 6.3025 11.0533 12.6806 13.9961 15.1754

50 7.7985 11.2630 25.8260 30.8771 35.4840 39.6962
7.6342 11.0039 25.0102 29.8400 34.2171 38.3013

100 10.3482 16.3389 45.1733 56.1652 66.4266 75.9091
10.2558 16.1647 44.4356 55.1937 65.3455 74.6648

where

a(n) = E











N(n)
∑

i=1

KiRi











and

b(n) = E











N(n)
∑

i=1

KiRi







I
(

N (n−1) > 1
)



 .

From Equations (22), (23), (24), (27), (29), (30) and Proposition 2, the
expectations of the total cost under US and NS schemes are derived as

ETCUS = CtE(TUS) + CuE(N (n))

= Cta(n) + Cu

(

1 +
1

2
+ · · ·+

1

n

)

,
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and

ETCNS = CtE(TNS) + CuE(N
(n)
⋆ )

= Ct

{

σ(n− 1)−(1/α)Γ

(

1

α
+ 1

)

+
σ

(n− 1)
Γ

(

1

α
+ 1

)

+ b(n)

}

+Cu

(

1 +
1

2
+ · · ·+

1

n
+

1

n

)

,

respectively. The difference between the costs of the two schemes is

D := ETCNS − ETCUS

= Ct

{

σ(n− 1)−1/αΓ

(

1

α
+ 1

)

+
σ

(n− 1)
Γ

(

1

α
+ 1

)

+ b(n)− a(n)

}

+
Cu

n

= Ct

{

σΓ

(

1

α
+ 1

)[

(n− 1)−1/α +
1

(n− 1)

]

+ b(n)− a(n)

}

+
Cu

n

= Ct(b(n)− a(n)− h(α, σ, n)) +
Cu

n
, (34)

where

h(α, σ, n) = σΓ

(

1

α
+ 1

)[

(n− 1)−1/α +
1

(n− 1)

]

.

Lemma 2 and Equation (34) imply that

D =

−Ct[(n− 1)E(R1I(N
(n−1) = 1)+E(YnI(N

(n−1) = 1)))+h(α, σ, n)]+
Cu

n
,

= −Ct[−h(α, σ, n) + h(α, σ, n)] +
Cu

n

=
Cu

n
> 0. (35)

On the basis of records arising from a random sample of size n under the
W (α, σ)-distribution, Equation (35) states that the proposed new scheme is
always more costly (on average) than the usual one, while in the preceding
section it was proved that the usual scheme with probability 1/n does not give
the estimate value of the shape parameter α. This shows the additional price
for having the estimates of both parameters α and σ.

Remark 3 For α = 1, i.e. in the exponential case, since (Samaniego and

Whitaker, 1986)
∑N(n)

i=1 KiRi|(N
(n) = m), there follows the gamma distribution
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with the shape parameter m and the scale parameter σ. Thus

a(n) =

n
∑

m=1

E





N(n)
∑

i=1

KiRi|N
(n) = m



P
(

N (n) = m
)

= σ

n
∑

m=1

mP
(

N (n) = m
)

= σE
(

N (n)
)

= σ

(

1 +
1

2
+ · · ·+

1

n

)

.

For this case, a comparison between complete data and record has been carried
out and some special cases are discussed in more details by Doostparast and
Balakrishnan (2010).

5. Discussion

Record schemes are used to reduce the TTT of an experiment when the costs
of time and/or units are high. Usually, records are rare, especially when the
sample sizes are small (Glick, 1978). In this paper, it is demonstrated that
the ML estimates of the parameters of the Weibull distributions do not exist
if N (n) = 1. To overcome this problem, a new scheme was proposed and the
ML estimates of the parameters of interest were derived. Equation (35) indi-
cates that the proposed new scheme is always more costly (on average) than
the usual one. It was also proved that the usual scheme with probability 1/n
does not give the estimate value of the shape parameter α. This shows the ad-
ditional price for having the estimates of both parameters α and σ. Therefore,
the proposed scheme in this paper can be used successfully in small-sample size
lifetime testing experiments when the test units or time are prohibitively ex-
pensive as in some statistical process controls. Note that Equation (26) implies

that lim
n→+∞

P
(

N (n−1) = 1
)

= 0, this leading to the conclusion that US and NS

schemes are identical asymptotically. Also by Equation (35), one can see that
lim

n→+∞
D = 0, as expected. Various schemes might be defined to overcome the

above mentioned problem. For example, one may define the termination time
of the experiment as T ⋆ := max{Tj, n}, where Tj is the j-th record time and
j ≥ 2. Investigations in this direction are currently carried out by the author.
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