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Abstract: The inverse problem of identifying the friction coeffi-
cient in an isothermal semilinear Euler system is considered. Adopt-
ing a Bayesian approach, the goal is to identify the distribution of
the quantity of interest based on a finite number of noisy measure-
ments of the pressure at the boundaries of the domain. First well-
posedness of the underlying non-linear PDE system is shown using
semigroup theory, and then Lipschitz continuity of the solution op-
erator with respect to the friction coefficient is established. Based
on the Lipschitz property, well-posedness of the resulting Bayesian
inverse problem for the identification of the friction coefficient is in-
ferred. Numerical tests for scalar and distributed parameters are
performed to validate the theoretical results.

Keywords: Bayesian inversion, distributed friction coefficient,
gas network/pipeline, hyperbolic PDE system

1. Introduction

In many countries, the turnaround in energy policy is one of the main focus areas
of political decision making and public opinion in the energy sector. In particu-
lar, the shift away from nuclear energy supply will only be possible by exploring
new sustainable resources. It is widely believed that during the transition from
the current energy portfolio to one which has an emphasis on renewable energies
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and other energy carriers such as hydrogen, an optimized use of natural gas will
play a key role. This is in particular plausible when considering the currently
known available gas resources, the transportability of gas over long distances,
its storage capacity, and the fact that it can be traded on markets, which helps
an efficient distribution.

The transport of natural gas is typically achieved through a complex system
of pipelines, originating at production sites or storage facilities and ending at
customer locations. Mathematically and generally speaking, the gas transport
in pipes is described by the compressible Euler equations, a system of hyper-
bolic partial differential equations (PDEs). It provides the dynamics of the
density, momentum and energy of the underlying gas. As in our target appli-
cation the diameter of a pipe is much smaller than the length, the study of a
one-dimensional version of the PDE model is sufficient. Moreover, since the
flow in pipes is usually assumed to start at a stationary state and to evolve
smoothly due to industry regulations (thus preventing shock formation), the
one-dimensional Euler system simplifies to isothermal equations where the un-
knowns are density and momentum. Now, under the assumption that the speed
of the gas is significantly smaller than the speed of sound, we arrive at the
following semi-linear PDE system describing the gas dynamics in a single pipe:

Op(z,t) + *0,q(z,t)
atQ(ZUa t) + awp(‘ru t)

0 in Q x (0,7), W
A)a(p(a, t),qla,t)) in Q x (0,T),

where € is the physical domain, which is — without loss of generality — assumed
to be  := (0,1), T > 0 is some finite time horizon, p(z,t) is the pressure of
the gas in the pipe at location € Q and time ¢ € [0,7], and g(x,t) is the
momentum density. The parameter ¢ > 0 relates to the speed of sound. In (1),
a(+,-) : R x R — R is the friction function and A € L°°(2) denotes the friction
coefficient. Loosely speaking, A describes the roughness of the interior walls of
the pipes and influences the transport in a decisive way. While a scalar value
for A is typically provided for newly produced pipes by manufacturers, its value
and in particular its spatial distribution during operation (over time) is neither
accessible to direct measurements nor known in general. For specific settings
(see Domschke et al., 2007), however, approximation formulas for the scalar A
are known from the engineering literature. Under a regular operating mode
and assuming usual manufacturing and quality conditions in the production of
pipeline tubes, a(,-) can be assumed Lipschitz continuous with respect to each
argument. According to the application in mind, system (1) is completed by
the following initial and boundary conditions:

p(z,0) = po(x),q(x,0) = go(z) Va € Q, (2a)
q(Ovt) = gL(t)a q(lvt) = gR(t) vt > 07 (2b)
where po, qo, g1, and gr are given quantities. Combining (1) and (2) provides

our overall model of gas flow. We refer to Domschke et al. (2007) and LeVeque
(2002) for more on this and further details on the model reduction process.
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Motivated by the simulation or optimization of the aforementioned gas pipeline
network, we are interested in the inverse problem of identifying the friction co-
efficient of a gas pipe from a finite set of noisy observations of the pressure drop
at both ends of the pipe. Here, the pressure drop is given by

5p(t) = ‘Hp(.?t)HL2(O,E) - ||p(';t)||L2(17€11)‘ vt € [OvT]a

for 0 < € < 1, which accommodates the L!-regularity of p with the latter pre-
venting the evaluation of the pressure precisely at the endpoints of the pipe. For
a classical inverse problem relative to the conditional identification of a friction
law for the isothermal Euler equations we refer to the work of Egger, Kugler and
Strogies (2017), which relies on regularity of the solution and differentiability of
the underlying solution operator.

Important questions in the optimization of gas networks are related to ro-
bust control of the system (Assmann, Liers and Stingl, 2017) or the study of
probabilistic constraints (Gonzalez Grandon, Heitsch and Henrion, 2017) both
involving the friction coefficient which, as highlighted above, is uncertain during
operation. The pertinent mathematical formulations indeed depend on statis-
tical properties of the associated uncertain quantities, such as the mean value,
standard deviation or even the entire distribution. As a consequence, this pa-
per addresses the aforementioned inverse problem by employing a Bayesian ap-
proach (Kaipio and Somersalo, 2005; Stuart, 2010; Tarantola, 2005). Here we
consider both, a finite dimensional and an infinite dimensional friction coeffi-
cient, thus necessitating the application of the respectively associated version of
Bayes’ rule. Adapting the infinite dimensional approach (rather than consider-
ing discretized versions of the friction coefficient only) is beneficial as it provides
us with algorithms which are robust with respect to discretization refinements.

For setting up the Bayesian framework in our context, we introduce next
the parameter-to-observation map G, which maps the underlying unknown (i.e.,
the friction coefficient) onto the data y. It is the composition of the solution
operator of the forward problem (1) applied to the friction function A and a data
formation operator. By measuring dp at finitely many time instances ¢; € [0, 7],
j=1,..., K, we obtain here

G(\) = (Op(tr), ..., 0p(tx)) "

As observations are inevitably noisy, we arrive at
y=90) +mn,

where 1 € R¥ represents Gaussian noise with mean zero and associated covari-
ance matrix I'€ REXK_ The pertinent probability density function (PDF) is
denoted by p,(+).

Then, the conditional probability density of obtaining y for a given friction
coefficient A is p,(y —G(A)), which is the likelihood of the data. Moreover, using
Bayes’ theorem, we can incorporate our “prior” knowledge on A and provide its
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conditional probability density given the data y by

PA(AlY) o< py(y — G(A))pa(N)- (3)

Our knowledge on A, i.e., pA(A), is called prior (density) and the conditional
probability density of A given the data y, i.e., pa(A|y), is called posterior (den-
sity). In an infinite dimensional setting, e.g., when A € L°°(), then there is no
density with respect to the Lebesgue measure and Bayes’ rule is understood as
the Radon-Nikodym derivative of the posterior measure p¥(d\) with respect to
the prior measure po(d)\), i.e.,

dpY

d—uom o< py(y = G(A))- (4)

For an overview on the Bayesian approach to statistics in finite dimensions
we refer the reader to Bernardo and Smith (1994). Bayesian inverse problems
with an emphasis on modelling and computation are addressed in Kaipio and
Somersalo (2005). We would also like to mention that the Bayesian inversion
methods that will be used in this paper have been successfully applied to linear
elliptic problems such as Darcy’s flow in Dashti and Stuart (2011) and viscous
incompressible flow on a two-dimensional torus in Cotter et al. (2009).

Uncertainty quantification for inverse problems has become a very active
field of research over the recent years. Adopting, in this context, the Bayesian
viewpoint leads to a complete characterization of the uncertainty via the pos-
terior distribution; see, e.g., Dashti and Stuart (2016), Kaipio and Somersalo
(2005), or Stuart (2010). In a general inverse problem setting, the goal is to
recover unknown parameters from noisy measurements of system quantities.
Bayesian inversion, however, interprets the unknown as a random variable and
computes the conditional distribution of the unknown parameters given noisy
measurements and prior distribution. It is known, see Stuart (2010), that the
latter approach is well defined in the infinite-dimensional setting. Thus, it is
suitable for the identification of parameter functions belonging to some infinite
dimensional Banach space.

Under certain regularity assumptions on the forward problem, describing the
underlying physics, well-posedness and stability results can be established for
the Bayesian problem. In particular, robustness with respect to numerical ap-
proximations of the forward problem is of interest to ensure a stable inversion of
the problem; see Dashti and Stuart (2016). However, computational challenges
arise due to the complex structure of probability measures in high or infinite
dimensional settings. In order to circumvent the curse of dimensionality, there
is substantial interest in the development of dimension independent methods,
i.e., algorithms which are robust with respect to the dimension of the param-
eter space and thus, applicable to high-dimensional real-world problems; see,
e.g., Cotter et al. (2013), Dick et al. (2016), El Moselhy and Marzouk (2012),
Matthies et al. (2016), Scheichl, Stuart and Teckentrup (2017), or Schillings
and Schwab (2013).
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In this paper, we will focus on Markov-Chain-Monte-Carlo (MCMC) meth-
ods formulated in function spaces. For our focus application, the identification
of the friction coefficient in an isothermal Euler system, it represents a suitable
choice due to the low requirements on the regularity of the forward problem. It
is well known that, in general, solutions of hyperbolic systems develop discon-
tinuities in finite time and therefore pose additional difficulties in the efficient
treatment of uncertainties due to the lack of smoothness with respect to uncer-
tain inputs.

As our forward (or state) system is hyperbolic, we mention that the uncer-
tainty quantification for hyperbolic differential equations with random data has
been a very active field of research over the recent past; see Abgrall and Mishra
(2017), Bijl et al. (2013) and the references therein. In the data assimilation
context, especially for weather forecasting applications, efficient methods for
state estimation have received particular attention in recent years (see Apte et
al, 2007; Hayden, Olson and Titi, 2011; Majda and Harlim, 2012). However,
the quantification of uncertainties in the inverse setting has been the subject of
only a very small number of publications; compare Birolleau, Poétte and Lucor
(2014), Cotter et al. (2009). None of these is related to our work.

The rest of this paper is organized as follows. In Section 2 the PDE system
is studied with respect to existence and Lipschitz stability. Prior modelling and
the Bayesian framework are the subjects of Section 3. The numerical realisation
of the forward problem is considered in Section 4, and numerical results are
provided in Section 5.

2. Properties of the underlying PDE system

In order to establish well-posedness of the Bayesian inverse problem, it is suf-
ficient to show that the underlying PDE is well-posed and that the solution
operator is Lipschitz continuous with respect to the friction coefficient.

It is convenient to reformulate the PDE (1) in such a way that the flux
function ¢(x,t) has vanishing traces. For this purpose, let us define ¢ = ¢+ ¢
where ¢(z,t) := zgr(t) + (1 — x)gr(t). Then, since §(0,t) = ¢(1,t) = 0, we
can write the underlying PDE (1) in the following abstract form of a dynamical
system:

w(t) + Au(t) = f(\u(t),t) (t>0), (5)

where u(t) := (p(-,t),4(-,t)) " and ug := (po(-), qo(-) — G(-,0))". Here, A: V —
L is given by

Rl o

where V := H'(Q) x H}(Q), L := L2

w

(Q) x L*(Q2) with the weighted L*-space
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Ly defined by

L2(Q) := {v QSR / ) g oo}.

o ¢

The right-hand side f : X x L x [0,T] — L, where X := L°°(Q), is given by

_ —c*(gL(t) — gr(t))
Fu,t) = ( Xa(p,§+§) — g} (t) — (1 — 2)gr(t) ) ' "

Note that the properties of boundary conditions as well as the friction function
a(+,-) have an impact on f(-,-,-). In the following lemma we state the continuity
properties of f.

LEMMA 1 Let g1(t), gr(t) € C*([0,T]), and suppose that a(-,-) : R x R — R is
Lipschitz continuous with respect to its arguments. Then f: X x Lx [0,T] — L
is continuous in time and Lipschitz continuous in L for a fited A € X. Moreover,
if g7, and g% are Lipschitz continuous on [0,T], then f is Lipschitz continuous
in both variables.

PROOF We first prove Lipschitz continuity with respect to u. Note that for a
fixed time ¢ and A we have

0
v = £ )= ( a0+ s ) )

for all u; = (p1,41) € L and ug = (pa, §2) € L. Therefore we get

[F (A w1, ) = F(A ug, H)| [Aa(p1, ¢1 + @) — alp2, G2 + DlllL2 (o)

< CrlMlezo)llur — uallr,

where C7, is the Lipschitz constant of a(-, -). Similarly, continuity in time follows
from

”f(/\vuvtl) - f(/\vuth)HL
< max(1, Co | Allace)) (l92 (1) = g(t2)| + 195, (1) = 7 (t2)]
+lgr(t1) = grta)| + lgr(ts) — gr(ta)] ).

with t1,t9 € [0,T]. Since g1, and gg are continuously differentiable, we conclude
that f is continuous in time. Finally, if both ¢ (¢) and ¢gj;(¢) are Lipschitz
continuous, then we conclude that f is Lipschitz continuous in both variables.

O

From the definition of the dynamical system in (5), it is natural to look for
solutions w € C'([0,T]; L) N C°([0,T]; V), which are called classical solutions
in the context of semigroup theory; see Pazy (1983, Definition 4.2.1). There
are, however, two other notions of solution associated with (5): strong solutions
(Pazy, 1983, Definition 4.2.8) and mild solutions (Pazy, 1983, Definition 4.2.3).
We will work in this paper with strong solutions of (5):
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DEFINITION 1 (STRONG SOLUTIONS) A function w, which is differentiable al-
most everywhere on [0, T), such that w' € L'(0,T; L) is called a strong solution
of the initial value problem (5) if u(0) = ug and v’ + Au(t) = f(\ u(t),t)
almost everywhere (a.e). on (0,T).

For the moment consider that the right-hand side is fixed, i.e.,

u/(t) + Au(t) = f(¢) (t>0),
(8)
u(0) = o,
for a given f(t). We then seek u(t) € C([0,T]; L) N L'(0,T;V) with u' €
L'(0,T; L) such that (8) is satisfied a.e. in [0, T]. Semigroup theory is used to
establish existence and uniqueness of the solution as A is non-coercive. For this
purpose, recall the following definition (see Ern and Guermond, 2004, Chapter
6.3):

DEFINITION 2 (MONOTONE AND MAXIMAL OPERATOR) The operator A:V —
L is said to be monotone if and only if for all u € V, (Au,u)r, > 0. Moreover,
A is said to be mazximal if and only if for all f € L, there exists u € V such that
u+ Au = f If A is monotone, L is reflexive, and

[AullL = er|ully —callullr Vu eV, (9)
for some c1,co > 0 then we can conclude that A is mazimal.

Note that from the definition of A, as well as the spaces L and V', we have
(Av,v)L = / P02q+q0sp = (pq)loa = 0.
Q

Since A is monotone, L is reflexive and (9) holds trivially, due to the definition
of L and V, we conclude that A is also maximal. For what follows, let D(A)
denote the domain of A. Note that D(A) is a linear subspace of L. Now, if the
operator A : D(A) C L — L is maximal and monotone then it holds that

1. D(A) is dense in L;

2. the graph of A is closed;

3.V >0, I+nAe L(D(A); L) is bijective and [|(I +1nA) " | z(r:1) < 1;
see Ern and Guermond (2004), Lemma 6.51, and the references therein. The
properties 1.-3. enable us to apply the Hille-Yosida theorem to show that A
generates a Cyp-semigroup of contractions T(t), for ¢ > 0. Then the function u €
C([0,T]; L) is a mild solution of (5) for ug € L and f(\ u(t),t) € L*((0,T); L)
if it satisfies

t
u(t) = T(t)uo +/ Tt —s)f(\u(s),s)ds Vit e [0,T]. (10)

0
The following theorem states the existence and uniqueness of a mild solution

which will be used later on to establish the analogous result for strong solutions.
See Pazy (1983), Theorem 1.2, Chapter 6, for a proof.
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THEOREM 1 Let f : X x L x [0,T] — L be continuous in t on [0,T] and
uniformly Lipschitz continuous on L. Then, for every ug € L there exists a
unique mild solution uw € C([0,T]; L) satisfying (10).

We now establish uniqueness and existence of a strong solution to (5) as
well as boundedness and Lipschitz continuity of the solution with respect to the
friction coefficient.

THEOREM 2 Let f : X x L x [0,T] = L be uniformly Lipschitz continuous in
time, and on L for a given A € X, i.e., for some C > 0 depending on A we have

[FN v, t) = F (N v, t2)llL < CUMx) ([t —t2|+|lvi—v2L) Vi1, t2 € [0,T],

for all vi,vo € L. Then, for ug € D(A) there exists a unique strong solution
w e LY0,T;V)NC([0,T); L) and v’ € LY(0,T;L) satisfying (5) a.e. in time
and

lu(®)lle < C(T,uo, A) Vt€[0,T]. (11)

Moreover, if |M|x < ¢ for X € X and f is (locally) Lipschitz continuous
with respect to X\, then we have

1p1(t) = p2(t)[[L2() < ClIA1 — Xol[x  VE€[0,T]. (12)

PROOF Let w € C([0,T];L) be a mild solution of (5), [|T(¢)||r < M and
IF (A w(t), )|l < N for ¢t € [0,T]. For h € [0,t] we obtain

u(t+h) —u(t) = T@E+ h)uo— T(t)uo
+ f(;']l‘(t —9)[Ff(\u(s+h),s+h) — F(\u(s),s)|ds
+ Jo T(t+h —s)f(X u(s), s)ds.

Taking norms on both sides, applying the triangle inequality and estimating
yield

lw(t+ h) — u(t)|L hM || Ao, + MC [ ||u(s + h) — u(s)|| Lds + hMN

C'h+ MC [} |u(s + h) — u(s)||ds,

INIA

where we have used the fact that
t+h
T(t + h)ug — T(t)ug = / T(s)Auods
t
(see Pazy, 1983, Theorem 1.2.4). Then, Gronwall’s inequality implies
lu(t+h) —u()|L < C"exp(T M C)h,
which shows that w(t) is Lipschitz continuous (and it also proves (11)). This,

combined with Lip-schitz continuity of f, implies that ¢t — f(X\, u(¢),t) is Lip-
schitz continuous on [0,T]. Since L is reflexive, ug € D(A), and f(\, u(t),t)
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is Lipschitz continuous, Pazy (1983, Corollary 4.2.11) implies the existence of a
unique strong solution on [0, T] for the following problem

v (t) + Av(t) = FOu(), ) (¢ >0),
v(0) = wuo.

Since a strong solution is a mild solution, we have

o(t) = T(t)uo + /0 T(t — s)F(\ u(s), s)ds = u(t),

and, thus, u(t) is a strong solution to (5). Then, by Pazy (1983), Theorem
4.2.9, we have u € L'(0,T;V) and u’ € L'(0,T; L).

Suppose w1 and us are solutions obtained from two friction coefficients, A\;
and A, respectively. Then, using the definition of mild solutions, we have for
their difference

Jur(t) — w2 (t)]| 2 M [y IO, i (s), ) = F (o, UQ(ST% s)llz ds
MlIAr = Ao xCur(£) +lIA2llx [y llua(s)— ua(s)llLds

el A = allx + ez fi un(s) = wa(s)]ds.

VASVANRVAN

An application of Gronwall inequality yields Lipschitz continuity of the pressure
difference with respect to the friction coefficient, i.e.,

[p1(t) = p2(t)l2(0) < [Jur(t) — w2 ()|l < esl|A — Aal|x,
which completes the proof. 0

From the definition of f in (7), Lemma 1 and Theorem 2, we obtain the
following sufficient conditions on the boundary data gr,gr and the friction
function such that the PDE in (1) admits a unique strong solution and the
Lipschitz continuity result.

COROLLARY 1 Let gr(t),gr(t) € C'([0,T]) and g}, gy be Lipschitz continuous
on [0,T]. Moreover, suppose that a(-,-) is uniformly Lipschitz continuous with
respect to its arguments. Then, for every (po,qo) € V, there exists a unique
strong solution (p,q) € C([0,T]; L) N LY0,T;V) with (p',q') € L'(0,T;L) to
(1). Further, we have

I(p(t),a(t))llL < C(T) Vte[0,T],
and if |A\||x < C' uniformly, then it holds that

Ip1(t) = p2(t)llL2 ) < CllA — Aeflx  VE€[0,T7].

3. Prior modelling and the Bayesian inverse problem
3.1. Prior modelling

Next, we construct probability measures on a function space. It is natural to use
separable Banach spaces to define random functions using a countable infinite
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sequence in a Banach space. For this purpose, let {¢;}22; denote an infinite
sequence in a Banach space X with the norm | - || x associated with a bounded
domain Q C R. The functions are assumed to be normalized, i.e., ||¢;||x = 1.
We then define the randomized function

)\:mo—i-Z)\j(bj, (13)

j=1

where mo € X (not necessarily normalized) and {\;}32, are random numbers
defined by \; = ~v;§;. Here {7;}52; is a deterministic sequence, {{;}32; is
an independent and identically distributed (i.i.d.) random sequence, and we
assume that &; has mean zero for all j € N. For N € N, we also define the
truncated series

N
ANV =mg + Z Ajo;. (14)
j=1
As before, we choose X = L>(Q), v = {7;}72, € ¢!, and & ~ U([-1,1]) for
all 5 € N. Moreover, we assume that there exist positive constants mmin < Mmax
and ¢ > 0 such that

€s8s infzeﬂ mO(I) > Mmin, €SSSUP,cq mO(x) < Mmax, HFYHél = %mmin-

Since X is not separable, we work with the closure of the linear span of functions
(mo,{¢;}32,) with respect to || - || x. The resulting space is denoted by X' in
what follows. The next result, taken from Dashti and Stuart (2016), Theorem
2.1, states that (X, || - || x) is a Banach space.

THEOREM 3 The following holds P-almost surely: The sequence of functions
{ANI2_, given by (14) is Cauchy in X and the limiting function \ given by
(13) satisfies

Mmin < A() < Mmax + ——=Mmin  for almost every x € €.

1+6 1+6

3.2. Bayesian inverse problem

According to our assumptions, we have noisy observations of the pressure drop
at our disposition, here denoted by y = {y; JKzl € RX, for K € N, at times
t; € (0,T) for j = 1,..., K. Now, let Y := R¥ with norm |- |, and X from
above. Then, the uncertainty-to-observation operator G is defined by

G:X =Y, GO\ :=(6p(t),...,op(tx))". (15)
Note that Corollary 1 implies that

IG(A1) = G(A2)| < Cf[A1 = AallLee (- (16)
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Moreover, Theorem 2 and Theorem 3 provide a constant C’ > 0 such that
G| < O K2, (17)
We use an additive linear noise model in our observations, i.e.,
y=60) +mn,

where n = {n; }JKzl is Gaussian observation noise with mean zero and positive
definite covariance matrix I' € RX*X_ In general, the observation operator
is amap G : X — Y, where we consider X either finite-dimensional (X =
RM M € N) or infinite dimensional (X = X), and Y = RX. In the case where
X is finite dimensional, the posterior distribution is obtained from (3).

For infinite-dimensional X the relation (4) between the posterior measure
and the prior measure, based on the Radon-Nikodym derivative, yields

) = g exp (— B ), (152)
2(y) = /X exp (— B(\, 1)) dpo (), (18h)

where Z = Z(y) is a normalization constant, ®(X,y) := $|I~/2(y — g(,\))f,
and | - | is the usual Euclidean norm.

The following, rather general conditions on a function ¥ and the prior ug
are sufficient to guarantee that p¥ is a well-defined probability measure on X if
U replaces ® in (18). The conditions furthermore guarantee well-posedness of
the posterior distribution with respect to perturbations of the data. We first
state the conditions and then check whether they are satisfied by our ®.

ASSUMPTION 1 Let A and Y be Banach spaces. The function ¥ : A XY — R
satisfies the following conditions.
(i) For every € > 0 and r > 0 there is MM = M(e,r) € R, such that for all
A€ A, and for all y € Y with ||y||ly <, it holds that

T(A,y) > M — €| A3

(i1) For every r > 0 there exists & = R(r) > 0 such that for all X € A,y €Y
with max{[|Alla, [lyly} <7

T\ y) <A

(iii) For every r > 0 there exists R = R(r) > 0 such that for all A1, 2 € A
and y € Y with max{|[Ar|a, [|A2lla; [[yly} <7

|\I]()\17y) - \I}()\27y)| S mH)\l - )\2HA'

(iv) For every € > 0 and r > 0, there is € = €(e,r) € R such that for all
y1,y2 € Y with max{||y1lly, [[y2lly } <7 and for every A € A

1WA, 91) — T\ y2)] < exp(el[ A2 + ©)|lyr — vally-
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The first and second condition in Assumption 1 ensures the boundedness of the
normalization constant from above and below away from zero. The Lipschitz
continuity of the potential ¥ in u, i.e. the third condition, ensures the measura-
bility of ¥ w.r.t. the prior measure. The last condition allows to show stability
results w.r.t. the data. We refer the interested reader to Dashti and Stuart
(2011), and Sullivan (2015) for more details.

Using Corollary 1, we show in the following proposition that

XXV SR, with ®(\y) = 307y - GO (19)

indeed satisfies Assumption 1.

PROPOSITION 1 Let u = (p,q) be the strong solution of (5), given ug € V and
A € X such that |A|x < C for some C > 0. Moreover, let the observation
operator G be defined as in (15). Then, the likelihood function ® as defined in
(19) satisfies Assumption 1.

PRrROOF In view of Assumption 1 we set A :=X, Y := ), and ¥ = &. Assump-
tion (i) is satisfied trivially since ®(\,y) > 0. For assumption (ii), using (17),
we have

1o
) < SIT e (lylly + 19N )* < C.

for all y € ¥ and A € X satisfying max{||y||y, [|Allx} < R. Assumption (iii) is
fulfilled by the Lipschitz continuity of the pressure drop, i.e.,

[2(A1,y) — B\, y)] [ (G(M) = G(X2), 2y + G(M) + G(Na))p 1 |
IT" e IGO) = GA2)llyl12y + G(A1) + G(A2)ly
CIT M IG(A) = G(A2)lly

C'ITH 2 A1 = Azllx.

ININIA I

where (-,-)p—: is the Euclidean inner product induced by matrix I'~!. The proof
of assumption (iv) is similar to the one of assumption (iii). O

We remark that in the uniform setting, boundedness of the potential follows
directly from the model (13) and the properties of the forward problem. The
existence and well-posedness results, presented in this section, are not limited to
the uniform case and can be shown for rather general prior distributions provided
that the conditions in Assumption 1 are satisfied. The following theorem asserts
well-posedness of the posterior measure in our setting. It rests on the results
from Dashti and Stuart (2016) and Sullivan (2015).

THEOREM 4 Let u = (p,q) be the strong solution of (5), given ug € V and
the prior measure po according to (13). The uncertainty-to-observation map
G is as in (15). Then, the posterior measure p¥ satisfying (18) with (19) is
a well-defined probability measure on X for each observation y € ) = RE.
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Furthermore, the inference is well-posed with respect to perturbations in the
data, i.e., there exists a constant C > 0 such that

du(p?, 1) < Cly—4gl, Vy,5€ Y,

where

A (¥, ) = [/X( j—f;m - \/j—:f<A>)2duo<A>} v

denotes the Hellinger distance of the measures p¥, 9.

PRrOOF By Proposition 1, the likelihood function ® satisfies Assumption 1. The
local Lipschitz continuity of the potential implies the measurability of ® with
respect to the product measure vo(dy,d\) = p(dy)pe(d)), where p = N(0,T),
i.e., n ~ p. The boundedness of ® further implies that Z(y) > 0. By Dashti and
Stuart (2016), Theorem 3.4, the posterior p¥ is well-defined and fulfills (18).
The boundedness of the potential implies

exp(—M + e AZ) (1 + exp(el|Al[z + C)?) € Ly, (X,R)

for every r,e > 0, with constants M, C given in Assumption 1. Here, Lto (X,R)
denotes the Bochner space of all measurable functions

£:X = R with /X|f()\)|duo(/\) < .

By Dashti and Stuart (2016), Theorem 4.5, the Lipschitz continuity of the pos-
terior follows. O

4. Discretization of the forward problem and sampling
4.1. Discretization

The statistical inverse problem posed in Section 1 is now solved by using a dis-
cretization of the forward problem and the MCMC algorithm. More specifically,
our goal is to reconstruct the friction coefficient A(x) from noisy observations of
the pressure drop.

As motivated above, we model the truncated friction coeflicient according
to (14) yielding

N
AN (z) = mo() + Y Aj(x), (20)
=1

where mo € L>(Q), A\j = v;&, j=1,...,N and ¢9; = sin(2n(j — 1)x), j =
1,...,|[N/2], ¢p2j—1 = cos(2m(j —1)z), j=1,...,|N/2| +1. In order to ensure
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that AN (z) > v > 0 for all x € Q, we choose v, with

dolml<oo, > ml<Ci, (21)

keN kEN,|k|>j

for some C' > 0 and v > 0; see Hoang, Schwab and Stuart (2013) and Schwab and
Stuart (2012). The mean function mg(x) is chosen such that positivity of AV is
ensured. The random variables & are assumed to be i.i.d. with & ~ U([-1,1]).

The truncation AV converges towards A € X at the rate v, i.e. there exists
C > 0 such that for all N and every A € X, there holds

A= AN||x <CN7V.
The Lipschitz continuity of the forward operator then leads to the estimate
GO - GAN)| < ON~

with a possibly different constant C' > 0. Instead of a fixed N-term truncation,
random truncation leads to a variable dimension formulation. We refer to Cotter
et al. (2013) for more details. By choosing a sufficiently large, but finite number
N of terms, the truncated friction coefficient can be represented by using its
degrees of freedoms (DOFs), i.e., we replace AV (x) by

AV = (&1,&,...,6n)T €U.

with U = [-1,1]V.

We seek an algorithm that finds the statistical properties of the components
of AY. In other words, providing a prior distribution for AY (for a fixed N)
and a finite number of observations on the pressure drop, the MCMC algorithm
aims to find a posterior probability distribution for the components of AY. The
method requires to solve the forward problem (1)—(2) frequently.

In order to discretize the forward problem, we first partition the domain
2 into N}, elements of non-overlapping intervals I; := (z;_1/2,%j41/2], where
Tj_1/2 < Tjy1y2 for j = 1,..., Np. Denoting the semi-discrete approximation
of p(x,t) and q(x,t) at time ¢ by

p(t> = (pl(t)aPQ(t)a -3 PNy, (t))v q(t) = (ql(t)a q2(t)7 <5 4Ny, (t))v
respectively, where

1 1 [Tit1/2

Tjt+1/2
p;(t) =~ h_/ p(z,t)dz, q;(t) ~ h_/ q(z,t)dz Vj=1,..., Ny,
J Jxi_10 J S 12

with hj = x;,1/2 —x;_1/2, we utilize the following semi-discrete scheme for the
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forward problem (1):

)= 02010 51 40) + 2 (130 -0
= % (/\jfla(pjfl(t)v gj—1(t)) — Aj—1a(pja(t), Qj+1(t)))7

T35 (50200 + 510) + = (1) = 11 0)

= %(/\j—la(l’j—l(t% g—1(1) + Nj_1a(pj1(t), qjﬂ(t))),

(22)

forall j =1,..., Nn. In order to discretize in time and obtain the full discrete
scheme, we partition the time direction into time slabs ¢, for n € Z,, where
tn < tpt1. For simplicity we assume a uniform time-step, i.e., t,11 — t, = At
for all n € Z, and similarly a uniform mesh-size, i.e., h; = h for all j € Z.
Then, the time derivatives are approximated by

d 1 n+1 n
Piltn) = o [pj —pj}, (23)

and analogously for ¢q. In fact, substituting (23) into (22) provides the well
known Lax-Friedrichs scheme for nonlinear conservation laws (see, e.g., Hajian,
Huntermiiller and Ulbrich, 2017; Hintermiiller and Strogies, 2017a) combined
with a special handling of the source term that, in particular, preserves steady
states of (1) better than the usual techniques like splitting (see Toro, 2009)
or direct incorporation (see Ulbrich, 2001). The exact derivation is based on
the nature of broad solutions to semilinear systems of balance laws and can be
found in Hintermiiller and Strogies (2017b) where also a comparison of different
strategies to incorporate source terms is provided. The initial conditions are
imposed weakly through
0 1 Tjt1/2 1 Tj+1/2 .
b= po(z)dz, ¢ == qo(z)dz Vj=1,...,Np,

J Tj—-1/2 J Tj—1/2

and the boundary conditions are realized through ghost cells yielding

qg = gL(tn)a qu\L[h_H = gR(tn) for all t,,.

Since the boundary conditions merely prescribe g, the boundary values of p have
to be computed. Here, the flow into the ghost cells based on characteristic lines
is utilized again, providing

+1 _ 1 1 n+1 A
pg/Nh,+1 - p?/Nh q: ZqII/Nh :l: qu/Nh‘i’l $ Tt)\l/Nha(q?/Nh7p?/Nh)'

We again refer to Hintermiiller and Strogies (2017b) for details. The discrete
pressure drop at time t,, is defined by

op = |IPkllLz,e) — PR L2 1—e) s
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where pj € L?(Q) and qn € L%(Q) are piecewise approximate solutions of the
form

Np, Np,
pr(@) =Y i), qi(@) =Y q/l(x) YreQ.
j=1 j=1

Here 17, () is the characteristic function of the interval I; = (x;_1/2,%j41/2]-
When discretizing the infinite-dimensional setting, the discrete uncertainty-to-
observation operator G, : R2V+1 — RX is defined by

Gr(AN) := (opp,opp2, ..., opp™).

4.2. Markov Chain Monte Carlo

Following the discretization of the forward problem and representing the friction
function by a truncated series we can use the Bayesian framework (3) and obtain
the posterior density function by

r(A¥[y) = 2 exp (= ly — G OM)R)mo(AY), (24)
where | - |p is the Euclidean norm induced by matrix I'"!, Z > 0 is the norma-
lization constant and g (+) is the prior density function. MCMC is a method to
sample from a given distribution whose normalization constant is unknown or
intractable to compute. In our context, we use the MCMC algorithm as stated
in Algorithm 1.

ALGORITHM 1 (METROPOLIS-HASTINGS) 1: Given Ay € R*N ™1, a proposal
distribution q(N'|\), y € RE and M € N.
2: Define my(\) := exp ( —3ly— gh(/\)@)wo()\).
%: Define an empty list output = [].
4: for 0 <i< M do
5: Draw a proposal X' from the proposal distribution function, i.e., q(N'|Ag))-
6: Compute

Ty (A) a( Aoy |N) }
Ty (M) AN [Ay) b

7: Set Aiv1) ;=\ with probability o and A(i+1) = Ay with probability 1—a.
8: Append A1) into output.
9: 11+ 1.

10: end for

11: return output

a= min{l,

Algorithm 1 generates a Markov chain with stationary distribution w(\|y)
(under additional assumptions on the proposal kernel). The first few sam-
ples are usually discarded for inference and are called burn-in samples. The
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Metropolis—Hastings algorithm will be used in the following with two different
proposal kernels, the Gaussian random walk proposal and the preconditioned
Crank—Nicolson variant. For the Gaussian random walk proposal function and
throughout this paper (when referring to MCMC) we use

1

AN) = s b= = VR /2) (25)

with given symmetric positive definite matrix ¥ € R2VF1x2N+1

4.3. Preconditioned Crank-Nicolson

Since the Gaussian random walk is known not to be robust with respect to the
dimension of the underlying friction coefficient, we use a robust variant of the
Metropolis-Hastings algorithm, called preconditioned Crank-Nicolson (pCN).
Already in its basic form pCN is suitable for centered Gaussian priors, i.e.,
7o ~ N(0,C) where C is the covariance matrix. Algorithm 2 describes this
method; see Chen et al. (2018).

ALGORITHM 2 (PCN WITH GAUSSIAN PRIOR) 1: Given Ay € R*NTL 8 €
(0,1], y € RX and M € N.
2 Define ®(\y) = Ly — G2
%: Define an empty list output = [].
4: for 0 <i< M do
5: Propose ' = (1 — ﬁz)%/\(i) + By with Cy ~ N(0,C).
6: Compute

o = min {1,exp (@A) y) — (N5 y))}

7: Set A\it1) = X' with probability « and AGi+1) = A with probability

1—oa.
8: Append A(;41) into output.
9: 141+ 1.
10: end for

11: return output

In order to use pCN in our setting, i.e., with a uniform prior instead of a
Gaussian prior, we need to rewrite the random representation of A(z) in a way
suitable for Algorithm 2. Recall that the truncated random friction function is
defined in an abstract setting by

N
AV (@) =mo+ > Aig;(x),
j=1
where \; = 7;&;. Here, {;}}_, is a deterministic sequence and {¢;}IL, is
an iid. random sequence where §; ~ U([—1,1]). We now represent &; by



394 S. HAJIAN, M. HINTERMULLER, C. SCHILLINGS AND N. STROGIES

& = G(¢;) with
G(G) =2F(¢) — 1, ¢ "= A(0,1),

and F(z) is the cumulative distribution function of a standard normal distri-
bution. Therefore AV can be represented using random numbers with normal
distribution, i.e.,

N
AN =mo+ ) 7G(¢)d;
j=1
This enables us to define Algorithm 2 using uniform priors which we describe
in Algorithm 3.
ALGORITHM 3 (PCN WITH UNIFORM PRIOR) 1: Given Ay € R*N 1 8 €
(0,1], y € R and M € N.
2: Define ®(X;y) == |y — Gn(N)[P-
%: Define an empty list output = [].
4: for 0 <1 SAM do
5: Define C(i) = (Gil()\(i)yo), ey Gil(A(i)72N+1))T
6 Propose ¢ = (1 — ﬁz)%é(i) + By with Cy ~ N(0,1).
7.
8

Define ' := (G((), - -, G(Gony1))
Compute

o = min {1,exp (@A) y) — (N5 y))}

9: Set Aiy1) = X' with probability o and X1y = M) with probability

1—a.
10: Append A1) into output.
11: 11+ 1.
12: end for

13: return output

5. Numerical experiments
5.1. The setting

In this section we report on numerical experiments using the forward scheme
and the MCMC algorithm as described in Section 4. The forward solver is
implemented in C++ in order to perform fast numerical computation, while
the MCMC algorithm is implemented in Python scripting language with calls
to the C++ code. The software package can be downloaded from http://
github.com/fg8/UQ for academic purposes.

In the first numerical experiment we consider a finite dimensional setting
with only one unknown parameter. As the prior we choose a uniform one, i.e.,

1
To(A) == El[A,X] (A,
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where A = 0.01, A = 0.5 are two fixed constants and Z= X\ — ) is the nor-
malization constant. This corresponds to A!(z) = mo(z) + A1 with mg(z) =
X=XN)/24+ X M =76, & ~ U([=1,1]) and 71 = (X — A)/2. We choose the
boundary conditions for ¢(z,t) on 9 as

q(0,t) = q(1,t) = 10 — sin(27¢),
and the initial conditions as
p(z,0) = q(z,0) = 10 + sin(27x).
The model problem is completed by choosing the friction function a(-,-) as

a(p,q) = —qlql.

We fix the number of cells for the forward solver to be N;, = 200 and measure
the pressure drop at ¢, for £ =1, ..., 20, which are distributed uniformly in the
interval ¢ € [0,5]. We then add a mean zero Gaussian noise € R¥ to y with
covariance I' = I, where I is the identity matrix of size K = 20; see Fig. 1
(left) for the comparison between true and noisy pressure drop. More precisely,
we set ¥ = Gp(Mrue) + 1 With Agrye = 0.075, and use MCMC to sample from
the posterior distribution. We then run the MCMC of Algorithm 1 with 10,000
iterations to generate the Markov chain and we let 1,000 burn-in iterations.
For the proposal function q(A|\), see (25), we choose ¥ = 0.25 to achieve an
acceptance rate of 20 % of the MCMC algorithm.

In Fig. 1 (right) we see that the posterior distribution clusters around the
true friction constant, i.e., Ayue = 0.075, despite the initial sample of MCMC
to be A = 0.45.

(6]

= N N W W
o U O

(6]

=
o

_11 —— true pressure drop
v --%- noisy pressure drop

0 1 2 3 4 090000.075 0.200 0.300 0.400
th A

(6]

normalized frequency

Figure 1. True and noisy pressure drop for a scalar friction coefficient with
Atrue = 0.075 (left) and its corresponding histogram of the samples obtained
from MCMC algorithm (right)

We finish this experiment by numerically checking for posterior consistency,
i.e., the noise level in the observation will be reduced. Further, we increase the
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number of observation points to 100. In Fig. 2, the histogram of the identified
friction constant is plotted for different noise levels, i.e., n = N(0,~% - I ) for
v =0.1,...,0.5. Observe that the posterior concentrates around the true value
Airue = 0.075 as the noise tends to zero.

mm 0=0.1 mm 0=0.2 s 0=0.3 s 0=04 Hm o=05
1504 1 4 1
1001
504 4 J
© ©® (=] © © (=} © © o © [0} =] © © (=}
Q < = b Qe . < < e < o = < < =
(=] (=] (=] (=} (=} (=} (=] (=] (=} (=} (=} (=] (=} (=} (=}
A A A A A

Figure 2. Effect of the noise in the observation on the posterior distribution.

In the next numerical example, we consider A\(x) to be a function of the type
(20) with N = 5. We set the true friction coefficient to be

1 1 1
Arue(z) = 2.0+ Zﬂ“‘e + Z&;’me sin(27z) + §§§“‘e cos(2mx)
1 1
+1—6§Zr“e sin(4mx) + % true cos(4ma)
where g{ruc — ﬁ, ggruc — %O’ ggruc — 110, &tlruc — %, ggruc — ﬁ The pI‘iOI‘
distribution function is defined as
1
7T0()\) = 21{71)1]5()\),

with normalization constant Z > 0. We infer the unknown from 100 observa-
tions with noise n ~ N(0,0.01%2 x I'¢). The computational setting is the same as
in the one-dimensional example. In Fig. 3 (left) we observe the samples drawn
from the posterior via MCMC. In Fig. 3 (right) we observe the pointwise mean
friction coefficient obtained from the samples (compared to the initial one used
as a starting point for the Markov chain).

5.2. A double bump friction function

In this section we perform experiments with a true friction coefficient that can be
approximated only in the limit by the truncated prior model (20). Throughout
this section we use the following double bump friction function:
1 1
Arue () = — + 1%,%](3;)(— - ‘

1 ‘ 3
10 8

x—i‘)—!—élxl[%)%](x)(g— :E—ZD (26)
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== True friction function 2075

2.05 2.050
.00 2.025
2.000

3 1.95 1.975
~ 190 1.950
1.925

1.85 1.900
1.80 1.875

00 02 04 06 08 1.0
X X

Figure 3. True and MCMC samples of the friction coefficient (left) and the
pointwise mean friction function (right)

In Fig. 4 (left) we have plotted its approximation by the prior model (20) for
N=0,...,20.

The discretization settings are defined as in the previous section. The
parametrization is assumed to be of the form

N
AV (z) =024+ N;o;(),

Jj=1

where A; = v;&5, 7 =1,...,N and ¢o; = sin(2n(j — 1)zx), j =1,...,[N/2],
¢2j—1 = cos(2n(j — 1)z), 5 =1,...,|N/2| + 1. The coefficients v; are given
as 1,2 = 0.06,’)/3)4 = 0.001,’)/5 = 0.06,’)/6 = 0-03777,8 = 0.001,’)/9)10 = 0.01
and v; = 0.001-1/42, j > 10. We choose at first N = 11 and set the prior
distribution function to

Wo()\) = %1[_171]11(>\),
where Z > 0 is the normalization constant.

We consider 40 observations and add noise to the observation, i.e., we con-
sider y = G(\) + n where 7 is a Gaussian noise centered at zero with standard
deviation 0.1. Therefore, I' = 0.12 x I. Algorithm 1 is used for sampling from
the posterior distribution with 50,000 iterations. The mean is compared to the
MAP, i.e. the minimizer of the negative log posterior, and to the underlying
true parameter. The result is depicted in Fig. 5.

Both estimates lead to a satisfactory approximation of the observed data.
Note that we considered in this example a specific prior distribution tailored
to the problem. The prior distribution plays a crucial role in the accuracy of
the estimates and the definition of the prior is in general a nontrivial task for
real-world applications. We mention the hierarchical approach, which allows to
learn additional parameters in the prior distribution from data and has the
potential to significantly improve the accuracy of the estimates in practice.
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Figure 4. Best prior approximations of (26)
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Figure 5. Observed pressure drop compared to the pressure drop computed by
the conditional mean and the MAP (left) and true value of A compared to the

conditional mean and MAP (right)
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Table 1. Number of accepted proposals for different N (the total number of
samples is 10 000)
N 1 3 5 7 9 11 13 15
MCMC | 2236 | 70 6 1 0 0 0 0
pCN 2011 | 1922 | 1860 | 1872 | 1930 | 1874 | 1846 | 1746

We refer, for example, to Kaipio and Somersalo (2005) for more details on
the hierarchical setting. Furthermore, please note that we cannot expect to
recover the true function from 40 noisy data points. Both estimates reflect
the influence of the prior regularization, see Fig. 5. The concentration of the
posterior distribution to the true parameter is a very interesting problem, both
theoretically and numerically. The concentration is a highly desirable situation
in practice, since it relates to informative or large data. However, it can pose
a computational challenge for numerical methods based on the prior measure.
See, e.g., Schillings, Sprungk and Wacker (2019) for more details.

5.3. Increasing the truncation parameter

We now increase the truncation parameter IV in the prior model to investigate
the dimension robust behavior of the pCN (in comparison to the Gaussian ran-
dom walk). The setting is as follows: I' = 0.12 x I, 40 observations and 10 000
proposals, N = 0,...,7, C = I, ¥ = ¢2I. The stepsizes of MCMC and pCN,
i.e. o, B are chosen such that the initial experiment shows approximately an ac-
ceptance rate of 20 %. We fix those parameters to observe the dimension robust
behavior of the pCN. Observe that the acceptance rate for the Gaussian random
walk decreases as N grows while pCN is robust with respect to N. We refer
to Cotter et al. (2013) for a detailed discussion on the dimension robustness of
pCN.

6. Conclusion and outlook

In this paper we considered a semi-linear isothermal Euler equation for the
modelling of the gas flow in pipes and showed well-posedness of the underly-
ing PDE as well as continuous dependence of the unknowns with respect to
the friction function. More precisely, provided that the friction function is of
Lipschitz class, the underlying PDE has a strong solution (Definition 1) and is
Lipschitz continuous with respect to the friction function. We then focused on
the Bayesian inverse problem of the identification of the friction coefficient using
finite (noisy) observations of the pressure drop along the pipe. We showed that
the underlying Bayesian inverse problem is well-posed. This enabled us to have
a well-posed formulation of the MCMC algorithm both at the continuous and
the discrete level. We then discretized the underlying friction coefficient and
the PDE in order to identify numerically the friction function using MCMC.
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The results of this paper build a foundation for problems arising from gas net-
works. As a natural extension of this work, we are working towards Bayesian
inverse problems related to leakage detection in gas pipes. Moreover, our re-
sults will be used to provide a robust friction function as an input parameter
for gas pipe models within the collaborative research center SFB-TRR 154 on
Modelling, Simulation and Optimization at the Example of Gas Networks (see
https://trrl54.fau.de/index.php/en/) for projects which relate to real ap-
plications. ~ We would like to finish this conclusion by mentioning that the
convergence of the overall numerical method, i.e., discretization of the forward
problem, friction coefficient and MCMC, is an interesting question on its own.
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