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Abstract: Optimal control problems governed by a transport
equation are investigated that are motivated by optical flow
problems. The control is given by the velocity field, corresponding
to the optical flow, while the state corresponds to the brightness of
image points. The problem is studied in the setting of spatially BV-
regular vector fields under very low regularity requirements. Existing
stability results for the control-to-state operator are improved and
based on this the existence of minimizers for several classes of
optimal control problems is proved under mild assumptions on the
admissible sets.
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1. Introduction

In this paper, we investigate optimal control problems governed by transport
equations, where the control is the velocity field. The main focus lies in the
analysis of the problem, in particular – existence of optimal controls, under
very low regularity requirements on the velocity field and also on the state. The
problem class considered is motivated by optical flow based image sequence
interpolation. Optical flow basically describes the vector field of velocities of
apparent points in the 2D image plane. Assuming that image points of a scene do
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not change their brightness over time while moving, the brightness u : (0, T )×Ω,
with Ω ⊂ R2 denoting the image domain, satisfies a transport equation, where
the velocity field is given by the optical flow b : (0, T ) × Ω → R

2. The goal
of the optical flow problem is to recover b from image data that correspond
to snapshots Yk of u(tk, ·) at time instances tk. Classical approaches usually
compute a steady optical flow between two images. The well-known method by
Horn and Schunck (1981), e.g., obtains approximations δtY , δx1Y , and δx2Y of
∂tu, ∂x1u and, ∂x2u, respectively, from two given images via finite differences
and then computes b = (b1, b2)

T—often on a pixel grid—by minimizing

J(b) =

∫

Ω

(δtY + b1δx1Y + b2δx2Y )2 dx1dx2 +λ

∫

Ω

(|∇b1|
2 + |∇b2|

2) dx1dx2.

This function is a weighted sum of a least-squares term, expressing the linearized
brightness constancy assumption and an H1-regularization. Since the 1980s,
this and other approaches (e.g. Lucas and Kanade, 1981) were further explored
in numerous papers, see Baker et al. (2011) for an overview.

The problem class studied in this paper arises in a different approach, where
an unsteady optical flow, as well as the corresponding brightness, are computed
from a given sequence of images by solving an optimal control problem of the
following form (see Hinterberger and Scherzer, 2001; Borz̀ı, Ito and Kunisch,
2002):

min
u,b

J(u, b) :=

K
∑

k=2

Υk

(

‖u(tk, ·)− Yk‖
2
L2(Ω)

)

+ R(b), (P)

s.t. ∂tu+∇u · b = 0 in (0, T )× Ω,

u(0, ·) = Y1 in Ω.

Formulations of this kind were first studied in Hinterberger and Scherzer
(2001) and Borz̀ı, Ito and Kunisch (2002). The optimization variables are the
image brightness u, which is the state, and the optical flow b, which is the
control. Both are defined on the spatio–temporal domain (0, T )× Ω with Ω ⊂
R

N . The data Yk, k ∈ {1, . . . ,K}, are a given image sequence, corresponding
to time instances tk ∈ [0, T ]. The brightness constancy assumption leads to
the transport equation, which constitutes a constraint of the problem. The
objective function consists of a term, measuring the misfit between Yk and u at
the time instances, and a regularization term R for b. In this case, a solution u
of the transport equation can be seen as a continuous interpolation in time of
the image sequence and b is the corresponding optical flow field.

The current paper focuses on the investigation of the optimal control
problem (P) for vector fields b with spatial BV -regularity. This low regularity
requirement allows for consideration of the practically important situation, in
which b contains spatial discontinuities. We will use the results by Ambrosio
and followers (Ambrosio, 2004; Crippa, 2007; Crippa, Donadello and Spinolo,
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2014a,b); De Lellis, 2006/7) concerning the existence and uniqueness of solutions
for the underlying transport equation. All these results build on the concept
of renormalized solutions of transport equations, developed and applied by
DiPerna and Lions for Sobolev-regular vector fields in DiPerna and Lions (1989).
A function u is called a renormalized solution if it satisfies the weak formulation
of the transport equation and if every composition β(u) of u with a C1-function
β is again a weak solution of the same equation.

DiPerna and Lions proved that any weak solution of the transport
equation with Sobolev-regular vector fields is a renormalized solution. This
renormalization property then yields uniqueness of weak solutions for the
transport equation. In 2004, Ambrosio extended this theory to vector fields with
BV -regularity in space and absolutely continuous divergence. Some refinements
and extensions were developed in later work by Ambrosio, Crippa, De Lellis
and others (Crippa, 2007; De Lellis, 2006/7; Crippa, Donadello and Spinolo;
2014a,b).

A crucial step in the theory of renormalized solutions is the proof of
convergence to zero of the so-called commutator

rε = b · ∇(u ∗ ρε)− (b · ∇u) ∗ ρε

as ε → 0, where b denotes some vector field, u the corresponding solution and
ρε some mollifier. In contrast to L1-convergence to zero of the commutator
in the Sobolev regular case, the commutator only converges weakly∗ to some
measure σ for general BV -regular vector fields. Therefore, Ambrosio had to
develop various new techniques to give an upper bound for σ, which then turns
out to be zero. This problem appears again in our second improved theorem
of existing stability results for the control-to-state operator: in the proofs to
this theorem, a similar term as the commutator appears and we use the same
techniques that Ambrosio had developed to prove convergence to zero of this
term as ε → 0. Due to these improvements in the results for stability, we are
able to show the existence of minimizing points of the optimization problem (P)
under quite mild regularity assumptions.

Borz̀ı, Ito and Kunisch (2002) discussed well-posedness of the transport
equation in a setting with Sobolev regularity, but did not study the existence of
solutions to the optimal control problem. In 2011, Chen (2011) and Chen and
Lorenz (2011) developed further the theory for a specific version of (P). For
vector fields b with Sobolev regularity in space and vanishing divergence, they
showed existence of minimizing points for their optimal control problem. Their
theoretical results are based on results of DiPerna and Lions (1989), related to
the well-posedness of solutions for the transport equation with Sobolev regular
vector fields.

The goal of this paper is to show the following result about the existence of
optimal solutions of (P) in spaces of minimal regularity:
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Theorem 1.1 Let

b ∈ V2 =

=
{

b ∈ L∞((0, T )× Ω)N ∩ L2((0, T ), BV (Ω))N | div b ∈ L2((0, T ), L∞(Ω))
}

with

b(t) ∈Wε,δ(Ω) :=
{

w ∈ L1(Ω)| |w(x)| ≤ δ dist(x, ∂Ω)

for almost all x ∈ Ω with dist(x, ∂Ω) ≤ ε}

for almost all t ∈ (0, T ) and for some fixed chosen ε > 0 and δ ≥ 0. Then, if

‖b‖L∞((0,T )×Ω))N + ‖div b‖L2((0,T ),L∞(Ω)) ≤M

holds for some M > 0, there exist optimal solutions for the problem (P) in the
admissible sets.

The regularization term R is of the form

R(b) =
α

2

T
∫

0

Γ1

(

‖Db(t, ·)‖2M(Ω)N×N

)

dt+Ri(b),

where we consider the following options for Ri:

(i) R1(b) ≡ 0,

(ii) R2(b) = β
2

T
∫

0

Γ2

(

‖∂tb(t, ·)‖
2
L2(Ω)N

)

dt,

(iii) R3(b) = γ
2

T
∫

0

Γ3

(

‖div b(t, ·)‖2L2(Ω)

)

dt,

(iv) R4(b) = R2(b) +R3(b)

and we will add some further constraints on b for some of these terms. The
precise setting is presented in Section 8.

The paper is structured in the following way: Section 2 summarizes the
required existence and uniqueness theory. For later use in stability results
for transport equations, it is essential to study the weak limit of products
of weakly convergent sequences of functions. Section 3 develops the required
result of compensated compactness type. Since the available stability results
for transport equations are not sufficient for our purposes, suitable extensions
are developed in Sections 4 and 5. As Bochner integrability is not well suited
for non-separable image spaces such as BV , Gelfand integrability is used in this
case. Hence, Section 6 studies the predual of BV (Ω) in order to interpret the
weak∗-topology on BV (Ω) as the true weak∗-topology on dual spaces. Section
7 provides some required prerequisites concerning the closedness properties of
certain sets of functions bounded in Lq((0, T ), BV (Ω)N ). The main result of
this paper, the existence of solutions to the considered class of optimal control
problems, is proven in Section 8.
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Notation

Throughout, T > 0 denotes the length of the time interval (0, T ) and Ω ⊂ RN

is a bounded domain with Lipschitz boundary ∂Ω. We distinguish two cases for
functions f : (0, T ) → X with values in a Banach space X : If X is separable,
we assume that the functions f are Bochner integrable. Otherwise, if X = Y ′

is a non-separable dual space, we assume that the considered functions are
Gelfand integrable, i.e., that the function t 7→ 〈f(t), y〉 is Lebesgue integrable
for any y ∈ Y . Further information on Bochner and Gelfand integrability can
be found in Aliprantis and Border (2006), Emmrich (2004), Okada, Ricker and
Pérez (2008), and Schweizer (2013). For the Banach space BV (Ω) we define the
subspace

BV0(Ω) := {g ∈ BV (Ω)| T g = 0},

where T denotes the trace operator (see, e.g., Ambrosio, Fusco and Pallara,
2000). Further information on BV -functions and their properties can be found
in Ambrosio, Fusco and Pallara (2000) and Attouch, Buttazzo and Michaille
(2014). In the following, for any q ∈ [1,∞] we set q′ ∈ [1,∞] as the value such
that 1

q + 1
q′ = 1 is satisfied.

2. Existence and uniqueness of transport equation

In this section, we consider the transport equation

∂tu+ b · ∇u = 0 in (0, T )× Ω,

u(0, ·) = u0 in Ω
(1)

for some given initial value u0 ∈ L∞(Ω) and b ∈ L1((0, T ) × Ω)N . As
mentioned in the introduction, we are interested in vector fields b with spatial
BV -regularity. For this vector field regularity, Ambrosio (2004) proved the
uniqueness of weak solutions of (1) using the concept of renormalized solutions
of DiPerna and Lions (see, e.g., DiPerna and Lions, 1989): a weak solution u of
the transport equation (1) is called a renormalized solution if for any β ∈ C1(R)
the composition β ◦ u is again a weak solution of the same equation with the
initial value β(u0). Furthermore, the vector field b of the transport equation has
the renormalization property if any solution of the equation is a renormalized
solution.

Ambrosio’s theory was refined in further works (see, e.g., Crippa, 2007;
Crippa, Donadello and Spinolo, 2014a,b; DeLellis, 2006/7) by several authors.
We will use these results to obtain a well-defined control-to-state operator for
our optimal control problem (P).

Before we start, we first need to clarify what is meant by b · ∇u when the
vector field b is not smooth: if u ∈ L∞((0, T ) × Ω), b ∈ L1((0, T ) × Ω)N and
div b ∈ L1((0, T )× Ω), then we define the distribution b · ∇u ∈ D′(R× Ω) by

〈b · ∇u, ϕ〉 = −〈bu,∇ϕ〉 − 〈u div b, ϕ〉 ∀ ϕ ∈ C∞
c ([0, T )× Ω).
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This leads us to the following general definition of weak solution for the transport
equation (1):

Definition 2.1 (Weak solution) Let u0 ∈ L∞(Ω), b ∈ L1((0, T )×Ω)N with
div b ∈ L1((0, T ) × Ω). Then, we call a function u ∈ C([0, T ], L∞(Ω) − w∗) a
weak solution of (1), if the following equation is satisfied

T
∫

0

∫

Ω

u (∂tϕ+ b · ∇ϕ+ ϕdiv b) dxdt = −

∫

Ω

u0ϕ(0, ·) dx

for all ϕ ∈ C∞
c ([0, T )× Ω).

The following theorem states the existence and uniqueness of solutions for
the transport equation (1) on bounded spatial domains. This result can be
easily concluded from Theorem 1.1 in Crippa, Donadello and Spinolo (2014a),
Theorem 1.1 in Crippa, Donadello and Spinolo (2014b) and Remark 2.2.2 in
Crippa (2007).

Theorem 2.1 (Existence and uniqueness of solutions) Let u0 ∈ L∞(Ω)
and b ∈ L∞((0, T )×Ω)N ∩L1((0, T ), BV0(Ω))N with div b ∈ L1((0, T ), L∞(Ω)).
Then, the transport equation (1) has a unique weak renormalized solution
u ∈ C([0, T ], L∞(Ω)− w∗). Furthermore,

‖u(t, ·)‖L∞(Ω) ≤ ‖u0‖L∞(Ω)

for any t ∈ [0, T ] and the vector field b has the renormalization property.

For the subsequent sections, we define for q ∈ [1,∞) the sets of vector fields

Vq :=
{

b ∈ Lq((0, T ), BV (Ω))N ∩ L∞((0, T )× Ω)N | div b ∈ Lq((0, T ), L∞(Ω))
}

(2)

and

Vq
0 :=

{

b ∈ Vq| b ∈ Lq((0, T ), BV0(Ω))N
}

.

Then, due to Theorem 2.1, the solution operator S, given by

S : L∞(Ω)×V1
0 → C([0, T ], L∞(Ω)− w∗),

(u0, b) 7→ S(u0, b) = u,
(3)

is well-defined.



Minimizers for optical flow based optimal control problems 267

3. A compensated compactness result for weakly

convergent sequences

In this section, we prove a result, which is reminiscent of the compensated
compactness results of Tartar (1979) and Murat (2005): the product of two
weakly convergent sequences converges to the product of their weak limits if
the sequences satisfy some regularity assumptions. The theorem we present is
a generalization of Proposition 1 in Moussa (2016) to the case, in which one of
the sequences has codomain BV (Ω), instead of Sobolev regularity, as in Moussa
(2016). We will use this statement in the proofs for the stability theorems in
the subsequent sections, where we will be faced with the situation that we have
to specify the limit of the product of weakly convergent vector fields with their
weakly convergent solutions. We start with two auxiliary lemmas.

Lemma 3.1 Let q ∈ [1,∞] and let (fn) ⊂ Lq((0, T ), BV0(Ω)) be a bounded
sequence. Then

fn(·, ·+ h)− fn → 0 in Lq((0, T ), L1(Ω)) as h→ 0

uniformly in n ∈ N.

Proof: We take the standard mollifier ρε for ε > 0 and set gn,k := fn ∗ ρ1/k,
where we extend fn by zero to the entire RN in the spatial variable. Then, we
estimate for almost all t ∈ (0, T ) and for h ∈ RN

∫

R

N

|gn,k(t, x+ h)− gn,k(t, x)| dx =

∫

R

N

∣

∣

∣

∣

∣

∣

1
∫

0

∇gn,k(t, x+ rh)⊤h dr

∣

∣

∣

∣

∣

∣

dx

≤ |h|∞

1
∫

0

∫

R

N

|∇gn,k(t, x)|1 dxdr

≤ |h|∞ ‖∇fn(t, ·)‖M(Ω)N ,

where we use Theorem 2.1 (b) from Ambrosio, Dusco and Pallara (2000) for the
last inequality. Integrating over (0, T ) yields





T
∫

0

‖gn,k(t, ·+ h)− gn,k(t, ·)‖qL1(Ω) dt





1/q

≤ |h|∞ ‖fn‖Lq((0,T ),BV (Ω)) ≤ C |h|∞ ,

where C > 0 denotes an upper bound for the sequence (fn). With the following
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estimate

‖fn(·, ·+ h)− fn‖Lq((0,T ),L1(Ω)) ≤ ‖fn(·, ·+ h)− fn‖Lq((0,T ),L1(RN ))

≤ ‖fn(·, ·+ h)− gn,k(·, ·+ h)‖Lq((0,T ),L1(RN ))

+ ‖fn − gn,k‖Lq((0,T ),L1(RN ))

+ ‖gn,k(·, ·+ h)− gn,k‖Lq((0,T ),L1(RN ))

≤ 2 ‖fn − gn,k‖Lq((0,T ),L1(RN ))

+ ‖gn,k(·, ·+ h)− gn,k‖Lq((0,T ),L1(RN )) ,

we deduce the statement: For any given ε > 0, we choose k(n) ∈ N for each
n ∈ N such that

‖fn − gn,k‖Lq((0,T,L1(RN )) ≤
ε

4

for all k ≥ k(n) and δ = ε/2C, where C is the constant in the proof. Then, for
|h|∞ ≤ δ

‖fn(·, ·+ h)− fn‖Lq((0,T,L1(Ω)) ≤
ε
2 + C |h|∞ ≤ ε. �

Lemma 3.2 Let q ∈ [1,∞], ρ ∈ C∞
c

(

R

N
)

be some mollifier for the spatial

variable and let (fn) ⊂ Lq((0, T ), BV0(Ω)) and (gn) ⊂ Lq
′

((0, T ), L∞(Ω)) be
bounded sequences. Then, the commutator

Sn,k := fn(gn ∗ ρ1/k)− (fngn) ∗ ρ1/k

converges uniformly in n ∈ N to zero in L1((0, T )× Ω) as k →∞.

Proof: For t ∈ (0, T ) and x ∈ Ω we have

Sn,k(t, x) =

∫

R

N

(fn(t, x) − fn(t, x− y)) gn(t, x− y)ρ1/k(y) dy

and thus, integrating over (0, T )× Ω yields

T
∫

0

∫

Ω

|Sn,k(t, x)| dxdt

≤ ‖gn‖Lq′ ((0,T ),L∞(Ω))

∫

R

N

ρ1/k(y) ‖fn − fn(·, · − y)‖Lq((0,T ),L1(Ω)) dy

≤ C

∫

{y| |y|≤1/k}

ρ1/k(y) ‖fn − fn(·, · − y)‖Lq((0,T ),L1(Ω)) dy,
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where C > 0 denotes an upper bound for (gn) in Lq
′

((0, T ), L∞(Ω)). Then,
Lemma 3.1 yields the statement. �

Now, we turn to the main statement of this section. The proof of this theorem
is a reproduction of the proof of Proposition 1 in Moussa (2016), adjusted
and extended to functions fn, f ∈ Lq((0, T ), BV0(Ω)) and weak convergence
in L1((0, T )× Ω).

Theorem 3.1 Let q ∈ (1,∞]. Furthermore, let (gn) ⊂ Lq
′

((0, T ), L∞(Ω)) ∩
L∞((0, T )× Ω) and (fn) ⊂ Lq((0, T ), BV0(Ω)) be bounded sequences in each of
these spaces, such that

fn ⇀ f in L1((0, T )× Ω) and gn ⇀ g in Lq
′

((0, T )× Ω),

where f ∈ Lq((0, T ), BV0(Ω)) and g ∈ Lq
′

((0, T ), L∞(Ω)) ∩ L∞((0, T )× Ω). If
(∂tgn) is a bounded sequence in L1((0, T ), (Wm,2(Ω))′) for some m ∈ N, then

fngn
∗
⇀ fg in M((0, T )× Ω).

Proof: We perform the same steps as in the previously mentioned proof. With
Lebesgue’s dominated convergence theorem we obtain

f(g ∗ ρ1/k)→ fg in L1((0, T )× Ω) as k→∞. (4)

Furthermore, since (gn) ⊂ Lq
′

((0, T ), L∞(Ω)) is bounded, we obtain for a
fixed k ∈ N that

(gn ∗ ρ1/k)n and
(

∇(gn ∗ ρ1/k)
)

n
=
(

gn ∗ ∇ρ1/k
)

n

are bounded in L1((0, T )×Ω) and L1((0, T )×Ω)N , respectively. In addition, if
we consider ∂tgn(t, ·) as a distribution on RN for almost all t ∈ (0, T ), i.e. if we
define its application on ρ1/k ∈ C

∞
c (RN ) as ∂tgn(t, ·)(ϕ|Ω), then the convolution

is defined as

(∂tgn(t, ·) ∗ ρ1/k)(x) = ∂tgn(t, ·)(ρ1/k(x− ·)|Ω).

Hence, we conclude for ϕ ∈ C0((0, T )× Ω) that

∣

∣

∣

∣

∣

∣

T
∫

0

∫

Ω

(∂tgn(t, ·) ∗ ρ1/k)(x)ϕ(t, x) dxdt

∣

∣

∣

∣

∣

∣

≤ ‖ϕ‖C((0,T )×Ω)

T
∫

0

∫

Ω

∥

∥ρ1/k(x− ·)
∥

∥

Wm,2(Ω)
‖∂tgn(t, ·)‖(Wm,2(Ω))′ dxdt

≤ |Ω| ‖ϕ‖C((0,T )×Ω)

∥

∥ρ1/k
∥

∥

Wm,2(RN )
‖∂tgn‖L1((0,T ),(Wm,2(Ω))′)

≤ Ck ‖ϕ‖C((0,T )×Ω) ,
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where Ck > 0 denotes a bound depending on k ∈ N. Thus,
(

∂t(gn ∗ ρ1/k)
)

is a
bounded sequence inM((0, T )×Ω). Summing up, we obtain that (gn∗ρ1/k)n is
a bounded sequence in BV ((0, T )× Ω) for any k ∈ N. As a consequence, there
exists a subsequence (gnl

∗ ρ1/k)l being convergent to some hk in L1((0, T )×Ω)

for a fixed k ∈ N. Since gn ⇀ g in Lq
′

((0, T ) × Ω), we easily obtain that
gn ∗ ρ1/k ⇀ g ∗ ρ1/k in L1((0, T )×Ω) as n→∞ and thus hk = g ∗ ρ1/k. With a
proof by contradiction we deduce that the whole sequence gn ∗ ρ1/k → g ∗ ρ1/k
in L1((0, T )×Ω) as n→∞. Now, using a standard diagonal argument, we can
find a subsequence (labeled by n again) such that

gn∗ρ1/k(t, x)→ g∗ρ1/k(t, x) for almost all (t, x) ∈ (0, T )×Ω and for all k ∈ N

as n → ∞. In addition, we have that (gn ∗ ρ1/k)n is a bounded subset of
L∞((0, T )×Ω) for each k ∈ N, due to the boundedness of (gn) in L∞((0, T )×Ω).
Thus, gn ∗ ρ1/k → g ∗ ρ1/k in Lp((0, T )× Ω) for any p <∞. Furthermore, (fn)
is bounded in Lr((0, T )× Ω) for r = min(q,N/(N − 1)) and we obtain for any
ϕ ∈ L∞((0, T )× Ω) and k ∈ N

∣

∣〈fn(gn ∗ ρ1/k)− f(g ∗ ρ1/k), ϕ〉
∣

∣ ≤ ‖ϕ‖L∞((0,T )×Ω) ‖fn‖Lr((0,T )×Ω)

·
∥

∥gn ∗ ρ1/k − g ∗ ρ1/k
∥

∥

Lr′ ((0,T )×Ω)

+
∣

∣〈fn − f, (g ∗ ρ1/k)ϕ〉
∣

∣→ 0

(5)

as n → ∞, i.e. fn(gn ∗ ρ1/k) ⇀ f(g ∗ ρ1/k) in L1((0, T ) × Ω). Since (fn) is
bounded in L1((0, T ) × Ω) and (gn) is bounded in L∞((0, T ) × Ω), we obtain
that (fngn) is bounded in L1((0, T )×Ω). Finally, we deduce that for any fixed
ϕ ∈ C0((0, T )× Ω)

∣

∣〈(fngn) ∗ ρ1/k − fngn, ϕ〉
∣

∣ =
∣

∣〈fngn, ϕ ∗ ρ1/k − ϕ〉
∣

∣

≤ ‖fngn‖L1((0,T )×Ω)

∥

∥ϕ ∗ ρ1/k − ϕ
∥

∥

C((0,T )×Ω)

≤ C
∥

∥ϕ ∗ ρ1/k − ϕ
∥

∥

C((0,T )×Ω)
→ 0

(6)

since ϕ is uniformly continuous in (0, T ) × Ω. Summing up, we conclude, for
any ϕ ∈ C0((0, T )× Ω) that:

|〈fg − fngn, ϕ〉| ≤
∣

∣〈fg − f(g ∗ ρ1/k), ϕ〉
∣

∣

+
∣

∣〈f(g ∗ ρ1/k)− fn(gn ∗ ρ1/k), ϕ〉
∣

∣

+
∣

∣〈fn(gn ∗ ρ1/k)− (fngn) ∗ ρ1/k, ϕ〉
∣

∣

+
∣

∣〈(fngn) ∗ ρ1/k − fngn, ϕ〉
∣

∣ .

Then, the first, third and fourth terms on the right hand side converge
uniformly in n ∈ N as k →∞ due to Lemma 3.2 and the estimates (4) and (6).
Therefore, for any ε we choose k(ε) ∈ N such that the sum of the first, third
and fourth term is smaller than ε for any k ≥ k(ε). Then, for fixed k(ε), we can
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choose n(ε) ∈ N such that the second term is smaller than ε for all n ≥ n(ε)
due to the estimate (5). Consequently,

|〈fg − fngn, ϕ〉| ≤ 2ε ∀ n ≥ n(ε)

which proves the statement. �

4. Stability of the solution operator: first improvement

In Crippa (2007) and DiPerna and Lions (1989) it is mentioned (and proven)
that solutions of the transport equation are elements of C

(

[0, T ], Lploc
(

R

N
))

for
any p ∈ [1,∞). This can be easily deduced from the renormalization property
of vector fields. In DiPerna and Lions (1989) it is additionally shown that
sequences of solutions are strongly convergent in C

(

[0, T ], Lploc
(

R

N
))

if the
sequences of vector fields and initial data satisfy some convergence assumptions.
For the proof, arguments of Arzelà-Ascoli type are used. Arzelà-Ascoli is also
used by Crippa (2007), but it is just shown that sequences of solutions are
convergent in C

(

[0, T ], Lp
(

R

N
)

− w
)

. In the first stability theorem we present
the proof for convergence in C([0, T ], Lp(Ω) − w), based on the theorem of
Arzelà-Ascoli in locally convex spaces. In contrast to Crippa, where strong
convergence of the vector fields is required, our assumptions only demand weak
convergence of the vector fields in L1((0, T ) × Ω)N . In DiPerna and Lions
(1989) it is shown that weak convergence of the vector fields is sufficient if
the uniform convergence of the translation relation appearing in Lemma 3.1
is satisfied by the sequence of vector fields. In addition, it is also mentioned
that this condition is fulfilled if the vector fields are a bounded sequence in
Lq((0, T ), X)N , where X is a Banach space embedding compactly into L1(Ω).
In Lemma 3.1, we have shown this for the special case of X = BV0(Ω). These
results were sufficient for DiPerna and Lions to prove weak convergence of
bnun to bu in L1((0, T ) × Ω)N , which we summed up to the compensated
compactness result in the previous section. With the aid of some auxiliary
statements building on renormalization arguments, we additionally show strong
convergence of solutions in C([0, T ], Lp(Ω)) for any p ∈ [1,∞). Again, we start
this section with two auxiliary lemmas.

Lemma 4.1 Let g, g2 ∈ C([0, T ], L2(Ω)− w). Then g ∈ C([0, T ], L2(Ω)).

Proof: For ϕ ≡ 1 ∈ L2(Ω) we deduce that

‖g(t, ·)‖2L2(Ω) =

∫

Ω

g2(t, x)ϕ dx→

∫

Ω

g2(s, x)ϕ dx = ‖g(s, ·)‖2L2(Ω)

as t→ s in [0, T ].

Since, in addition, g(t, ·) ⇀ g(s, ·) in L2(Ω) as t→ s, the statement is proven. �
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Lemma 4.2 Let (gn), (g2n) ⊂ C([0, T ], L2(Ω)− w) be two sequences such that

gn → g and g2n → g2 in C([0, T ], L2(Ω)− w),

with limits g, g2 ∈ C([0, T ], L2(Ω)− w). Then,

gn, g ∈ C([0, T ], L2(Ω)) for all n ∈ N and gn → g in C([0, T ], L2(Ω)).

Proof: Due to Lemma 4.1 we know that gn, g ∈ C([0, T ], L2(Ω)) for all n ∈ N.
Furthermore, considering that g2n → g2 in C([0, T ], L2(Ω) − w) and choosing
ϕ ≡ 1 ∈ L2(Ω), we conclude that

sup
t∈[0,T ]

∣

∣

∣
‖gn(t, ·)‖2L2(Ω) − ‖g(t, ·)‖2L2(Ω)

∣

∣

∣
→ 0 as n→∞. (7)

In addition, we estimate

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∫

Ω

(gn(t, x)− g(t, x))
2
dx

∣

∣

∣

∣

∣

∣

≤ sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∫

Ω

(

gn(t, x)2 − g(t, x)2
)

dx

∣

∣

∣

∣

∣

∣

(8)

+ 2 sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∫

Ω

g(t, x)(g(t, x) − gn(t, x))dx

∣

∣

∣

∣

∣

∣

. (9)

Obviously, term (8) tends to zero as n → ∞. For the second term, (9), we
introduce the functions

Ln : L2(Ω)→ R, ϕ 7→ sup
t∈[0,T ]

|hn,ϕ(t)|

with hn,ϕ(t) :=

∫

Ω

ϕ(x)(g(t, x) − gn(t, x)) dx.

These functions are Lipschitz continuous: obviously, hn,ϕ ∈ C([0, T ]) for any
ϕ ∈ L2(Ω) and n ∈ N and we estimate

|Ln(ϕ)− Ln(ψ)| =
∣

∣

∣‖hn,ϕ‖C([0,T ]) − ‖hn,ψ‖C([0,T ])

∣

∣

∣ ≤ ‖hn,ϕ − hn,ψ‖C([0,T ])

≤ C ‖ϕ− ψ‖L2(Ω) .

The constant C > 0 is independent of n ∈ N due to the uniform boundedness
of sup

t∈[0,T ]

‖gn(t, ·)‖L2(Ω) with respect to n ∈ N, shown in (7). We define the set

A := {g(t, ·)|t ∈ [0, T ]} ⊂ L2(Ω). This set is compact, since it is the image of
a compact set under a continuous function. Hence, for each function Ln, there
exists an element ϕn ∈ A such that

Ln(ϕn) = max
ψ∈A

Ln(ψ).
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Since (ϕn) ⊂ A, there exists a subsequence (ϕnk
), converging to some ϕ ∈ A

in L2(Ω). Furthermore, for any n ∈ N, we have the estimate
∣

∣hn,g(t,·)(t)
∣

∣ ≤

sup
s

∣

∣hn,g(t,·)(s)
∣

∣ ≤ Ln(ϕn). Thus, we conclude that

sup
t∈[0,T ]

∣

∣hnk,g(t,·)(t)
∣

∣ ≤ sup
t∈[0,T ]

∣

∣

∣hnk,ϕnk
−ϕ(t)

∣

∣

∣ + sup
t∈[0,T ]

|hnk,ϕ(t)|

≤ C ‖ϕnk
− ϕ‖L2(Ω) + sup

t∈[0,T ]

|hnk,ϕ(t)| .

Both terms on the right hand side tend to zero as k → ∞. Summing up,
the term in (9) converges to 0 for n = nk, k → ∞ and, therefore, gnk

→ g in
C([0, T ], L2(Ω)). Now, a standard proof by contradiction yields that the whole
sequence (gn) converges to g in C([0, T ], L2(Ω)). �

With the aid of these two lemmas we can prove the first (improved) stability
theorem for the solution operator S.

Theorem 4.1 (First stability theorem) Let b ∈ V1
0 and let the initial

value satisfy u0 ∈ L∞(Ω). Furthermore, let (bn) ⊂ V1
0 and (u0,n) ⊂ L∞(Ω)

be two sequences with the following properties:
(i) (u0,n) is bounded in L∞(Ω) and converges to u0 in L1(Ω),
(ii) (a) (bn) converges strongly to b in L1((0, T )× Ω)N or

(b) (bn) is bounded in Lq((0, T ), BV0(Ω))N for some q > 1 and bn ⇀ b
in L1((0, T )× Ω)N .

(iii) (div bn) converges strongly to div b in L1((0, T )× Ω).

Then, for any 1 ≤ p < ∞, the sequence of unique solutions (un) ⊂
C([0, T ], L∞(Ω)−w∗) of (1) with vector fields bn and initial data u0,n is a subset
of C([0, T ], Lp(Ω)) and converges in C([0, T ], Lp(Ω)) to the unique solution
u ∈ C([0, T ], Lp(Ω)) of (1) with vector field b and initial value u0.

Proof: We first prove the theorem for the special case of p = 2 and then
derive the general statement from this.
Let (bn) ⊂ V1

0 and (u0,n) be sequences with limits b ∈ V1
0 and u0 ∈ L∞(Ω) as

assumed in the theorem. Then, ‖un(t, ·)‖L∞(Ω) ≤ C1 < ∞ for any t ∈ [0, T ]

and any n ∈ N, due to Theorem 2.1. Therefore, (un(t, ·)) ⊂ L2(Ω) represents
a relatively compact subset with respect to the weak topology in L2(Ω) for all
t ∈ [0, T ]. In addition, we set gn,ϕ := 〈un(t, ·), ϕ〉 for ϕ ∈ C∞

c (Ω) and we
conclude with ψ ∈ C∞

c ((0, T )) that

T
∫

0

ψ(t)
d

dt
〈un(t, ·), ϕ〉dt = −

T
∫

0

ψ′(t)〈un(t, ·), ϕ〉dt

=

T
∫

0

ψ(t) [〈un(t, ·)bn(t, ·),∇ϕ〉 + 〈un(t, ·) div bn(t, ·), ϕ〉] dt,
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i.e. (gn,ϕ) is weakly differentiable with derivative

g′n,ϕ(t) = 〈un(t, ·)bn(t, ·),∇ϕ〉 + 〈un(t, ·) div bn(t, ·), ϕ〉.

We estimate for r, s ∈ [0, T ] with s < r

r
∫

s

∣

∣g′n,ϕ(t)
∣

∣ dt ≤

r
∫

s

hn(t)dt,

where hn(t) = C1 · C(ϕ)
[

‖bn(t, ·)‖L1(Ω)N + ‖div bn(t, ·)‖L1(Ω)

]

and C(ϕ) > 0 is

a bound, depending on ϕ. The set of functions (hn) form a uniformly integrable
set in both cases: due to the strong convergence of (div bn) in L1((0, T ) × Ω)
and in case (a) due to the strong convergence of (bn) to b in L1((0, T ) × Ω)N

and in case (b) due to the estimate

r
∫

s

‖bn(t, ·)‖L1(Ω)N dt ≤ ‖bn‖Lq((0,T ),L1(Ω))N |r − s|
1/q′ ≤ C2 |r − s|

1/q′
.

Hence, the set of functions
(∣

∣g′n,ϕ
∣

∣

)

is also uniformly integrable for fixed
ϕ ∈ C∞

c (Ω) and thus, we deduce equicontinuity for the sequence (gn,ϕ) for any
ϕ ∈ L2(Ω) in the following: let (ϕk) ⊂ C∞

c (Ω) be a sequence converging to ϕ in
L2(Ω) and let 0 ≤ s < r ≤ T . Then, we obtain

|gn,ϕ(r) − gn,ϕ(s)|

≤
(

‖un(r, ·)‖L2(Ω) + ‖un(s, ·)‖L2(Ω)

)

‖ϕk − ϕ‖L2(Ω) +

r
∫

s

∣

∣g′n,ϕk
(t)
∣

∣ dt.

Now, for ε > 0, we find kε ∈ N and δ(ε) > 0 such that ‖ϕkε − ϕ‖L2(Ω) ≤ ε

and
∫ r

s

∣

∣

∣g′n,ϕkε
(t)
∣

∣

∣ dt ≤ ε hold if |r − s| ≤ δ(ε). Then, |gn,ϕ(r) − gn,ϕ(s)| ≤

(C3 + 1)ε, where C3 = 2 |Ω|1/2 C1. Consequently, Arzelà-Ascoli yields that
there exists a subsequence (unk

) and some v ∈ C([0, T ], L2(Ω) − w) such that
unk

→ v in C([0, T ], L2(Ω) − w). Using Lebesgue’s dominated convergence
theorem and some simple calculations yield in case (a) that v satisfies the weak
formulation with vector field b and initial data u0. Hence, v is a weak solution
of the transport equation with vector field b and the initial value u0, and thus
is unique, i.e. u = v. In case (b), the same calculations yield that for any
ψ ∈ C∞

c ([0, T )× Ω)

∫

Ω

u0,nψ(0, ·) dx+

T
∫

0

∫

Ω

un∂tψ + unψ div bn dxdt

→

∫

Ω

u0ψ(0, ·) dx

T
∫

0

∫

Ω

v∂tψ + vψ div b dxdt.
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It remains to show that

T
∫

0

∫

Ω

unbn · ∇ψ dxdt→

T
∫

0

∫

Ω

vb · ∇ψ dxdt

is satisfied. Our aim is to use Theorem 3.1. Therefore, we have to show that
(∂tun) is a bounded subset of L1((0, T ), (Wm,2(Ω))′). We choose m so large
that Wm,2(Ω) →֒ C1(Ω). We know from above that for any ϕ ∈ Wm,2(Ω) and
for almost all t ∈ (0, T )

〈∂tun(t, ·), ϕ〉 = 〈un(t, ·)bn(t, ·),∇ϕ〉 + 〈un(t, ·) div bn(t, ·), ϕ〉,

i.e. ∂tun(t, ·) ∈ (Wm,2(Ω))′ and thus, we estimate for ϑ ∈ L∞((0, T ),Wm,2(Ω))

|〈∂tun, ϑ〉| ≤ C4 ‖ϑ‖L∞((0,T ),Wm,2(Ω))

for some C4 > 0 independent of n ∈ N. The principle of uniform boundedness
now yields that (∂tun) is a bounded sequence in L1((0, T ), (Wm,2(Ω))′), and we
can apply Theorem 3.1, leading to

T
∫

0

∫

Ω

unbn · ∇ψ dxdt→

T
∫

0

∫

Ω

vb · ∇ψ dxdt

for any ψ ∈ C∞
c ((0, T ) × Ω). The general case, i.e. for test functions in

C∞
c ([0, T ) × Ω), can be deduced using smooth cut-off functions in time, i.e.

(ηk) ⊂ C∞
c ((0, T )) with 0 ≤ ηk(t) ≤ 1, ηk(t) → χ(0,T )(t) and η′k

∗
⇀ δ0 − δT for

all t ∈ (0, T ), k ∈ N as k → ∞. Thus, v satisfies the weak formulation and, as
above, we deduce that v = u. Finally, by a standard proof of contradiction, we
obtain that the whole sequence (un) converges to u in C([0, T ], L2(Ω)− w).

Furthermore, following the previous argumentation, we obtain that (un)2

converges to u2 in C([0, T ], L2(Ω)−w) due to the renormalization property of b.
Then, Lemma 4.2 yields that un, u ∈ C([0, T ], L2(Ω)) for all n ∈ N and un → u
in C([0, T ], L2(Ω)).

It remains to show the result for general p < ∞. The case 1 ≤ p ≤ 2 is
obviously satisfied, due to the continuous embedding of C([0, T ], L2(Ω)) into
C([0, T ], Lp(Ω)) for p ≤ 2. Therefore, we only have to show the statement for
the case of 2 < p < ∞. So, let 2 < p < ∞ and let t, s ∈ [0, T ]. Then, we
estimate

‖un(t, ·)− un(s, ·)‖pLp(Ω) ≤ C
p−2
5 ‖un(t, ·)− un(s, ·)‖2L2(Ω) → 0

as t→ s. Obviously, the estimate also works for u. In the same way we estimate
for t ∈ [0, T ]

‖un(t, ·)− u(t, ·)‖pLp(Ω) ≤ C
p−2
6 ‖un(t, ·)− u(t, ·)‖2L2(Ω)

and taking the supremum over [0, T ] yields the statement. �
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5. Stability of the solution operator: second improvement

In this section, we improve over the previous stability result. The improvement
consists in replacing the strong convergence of (div bn) to some div b in
L1((0, T )× Ω) with boundedness of (div bn) in L1((0, T ), L∞(Ω)). This refined
result will be needed in the proof of existence of minimizing points for the
optimal control problems in the last section. In DiPerna and Lions (1989), this
result is shown in Theorem II.5 for vector fields with spatial Sobolev regularity
under stronger assumptions on the convergence of the vector fields than we
require. The idea of DiPerna and Lions’ proof is the following: they convolve
the unique solution u, corresponding to the vector field b, with some mollifier
ρε and obtain uε := u ∗ ρε. Then, they show that the function uε satisfies the
same transport equation, but with some inhomogeneity rε. This inhomogeneity
converges strongly to zero in some Lebesgue space as ε → 0 (Theorem II.1 in
DiPerna and Lions, 1989). As a next step, they consider the difference un − uε
of the unique weak solutions un, corresponding to the vector fields bn and the
smoothed uε. For this difference, they can show that it is uniformly bounded
in n by two terms: by the L1-norm of the difference u−uε and by the L1-norm
of rε. Taking the limit in ε yields their statement in the end.

We take the same route to show our results for vector fields with spatial
BV -regularity. Unfortunately, the proof is much more complicated and we
are confronted with the same problem as Ambrosio had with the commutator
rε = (div(bu)) ∗ ρε − div(b(u ∗ ρε)): DiPerna and Lions had the case that
their commutator converged strongly to zero in some Lebesgue space as ε→ 0,
whereas Ambrosio’s commutator can only be split into a strongly convergent
part r1,ε and some weakly∗-convergent part r2,ε. Then, Ambrosio had to show
carefully that this second term also vanishes as ε → 0. The same problem
appears here with the inhomogeneity rε, appearing in the transport equation,
satisfied by the convolved solution uε. This inhomogeneity can only be split
into a

”
good“ part r1,ε, being convergent in some Lebesgue space, and a

”
bad“

part, for which we have some estimate for the limit as ε → 0. Therefore, most
of this section resembles the approach of Crippa in his thesis Crippa (2007) and
we use the same techniques to tackle the problems. We start with some lemma
that is a reproduction, with some modifications, of Proposition 3.2 in DeLellis
(2006/7). An incomplete proof of the statement is given in DeLellis (2006/7)
and a complete, but longer proof is given in Lemma 3.1.11 in Jarde (2018).

Lemma 5.1 Let 1 ≤ q < ∞, let g ∈ Lq
(

(0, T ), BV (RN )
)N

and let z, w ∈ RN .
Then, the difference quotient

w⊤(g(t, x+ δz)− g(t, x))

δ

can be written down as w⊤g1,δ,z + w⊤g2,δ,z, where
(i) w⊤g1,δ,z → w⊤Jgz in Lq

(

(0, T ), L1(RN )
)

as δ → 0, where Jg denotes the
Radon-Nikodym derivative of the absolutely continuous part Dag of Dg
with respect to LN .
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(ii) For any compact set K ⊂ RN and for almost all t ∈ (0, T ) we have

lim sup
δ→0

∫

K

∣

∣w⊤g2,δ,z(t, x)
∣

∣ dx ≤
∣

∣(w⊤Dsgz)(t, ·)
∣

∣ (K)

where Dsg denotes the singular part of the measure Dg with respect to
LN . Furthermore, for any measurable set I ⊂ (0, T ) we have

lim sup
δ→0

∫

I

(∫

K

∣

∣w⊤g2,δ,z(t, x)
∣

∣ dx

)q

dt ≤

∫

I

(∣

∣(w⊤Dsgz)(t, ·)
∣

∣ (K)
)q

dt.

(iii) For every compact set K ⊂ RN , for almost all t ∈ (0, T ) and ε > 0, we
have

sup
δ∈(0,ε)

∫

K

(∣

∣w⊤g1,δ,z(t, x)
∣

∣ +
∣

∣w⊤g2,δ,z(t, x)
∣

∣

)

dx ≤ |w||z||Dg(t, ·)|(Kε),

where Kε = {x ∈ RN | dist(x,K) ≤ ε}. Furthermore, for any measurable
set I ⊂ (0, T ) we have

sup
δ∈(0,ε)

∫

I

(∫

K

(∣

∣w⊤g1,δ,z(t, x)
∣

∣ +
∣

∣w⊤g2,δ,z(t, x)
∣

∣

)

dx

)q

dt

≤

∫

I

(|w||z||Dg(t, ·)|(Kε))
q dt.

The next theorem is an adaptation of Theorem II.1 in DiPerna and Lions (1989)
for vector fields with spatialBV -regularity instead of Sobolev regularity. It plays
an important role in the proof for the second (improved) stability theorem.
Before we present the theorem, we first need to introduce some definition.

Definition 5.1 For any ρ ∈ C∞
c

(

R

N
)

and any N ×N -matrix M we define

Λ(M,ρ) =

∫

R

N

|(∇ρ(z))⊤Mz| dz.

Theorem 5.1 Let 1 ≤ q < ∞ and b ∈ Lq((0, T ), BV0(Ω))N with div b ∈
Lq((0, T ), L∞(Ω)) and denote by u the unique weak solution of the transport
equation with initial data u0 ∈ L∞(Ω). We set uε := u ∗ ρε, where ρ denotes
an even mollifier for the spatial variable with supp(ρ) ⊂ B1(0) and where we
extended u (by zero) to (0, T )×RN . Then, uε satisfies

∂tuε + div(buε)− uε div b = rε in (0, T )×RN ,

uε(0, ·) = u0 ∗ ρε on RN ,

where

rε = r1,ε + r2,ε with r1,ε, r2,ε ∈ L
q
(

(0, T ), L1(RN )
)

and r1,ε, r2,ε having the following properties:
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(i) There exists some compact set K ⊂ RN independent of ρ, such that

r1,ε|(0,T )×(RN\K) ≡ 0 and r2,ε|(0,T )×(RN\K) ≡ 0

for any 1 ≥ ε > 0.
(ii) r1,ε → 0 in Lq

(

(0, T ), L1(RN )
)

as ε→ 0 and
(iii) for any measurable set I ⊂ (0, T ) and any compact set W ⊂ RN we have

lim sup
ε→0

∫

I

(∫

W

|r2,ε(t, x)| dx

)q

dt ≤ C

∫

I

(∫

W

Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)

)q

dt.

Here, Mb denotes the matrix valued Borel function such that Dsb = Mb |Dsb|
and C > 0 is a constant depending only on u.

Proof: We have

0 = [∂tu+ div(bu)− u div b] ∗ ρε

= ∂t(u ∗ ρε) + div(b(u ∗ ρε))− u ∗ ρε div b+ div(bu) ∗ ρε

− (u div b) ∗ ρε − div(b(u ∗ ρε)) + u ∗ ρε div b

and thus

∂t(uε) + div(b(uε))− uε div b = rε,

where rε is given by

rε = (u div b) ∗ ρε − u ∗ ρε div b+ div(b(u ∗ ρε))− div(bu) ∗ ρε.

Obviously, the term (u div b) ∗ ρε − u ∗ ρε div b converges to zero in
Lq
(

(0, T ), L1(RN )
)

. Thus, we have a closer look at the commutator

Rε := div(bu) ∗ ρε − div(b(u ∗ ρε)).

We can rewrite Rε using Lemma 5.1 as

Rε(t, x)

= −

∫

R

N

u(t, x+ εz)b1,ε,z(t, x)⊤∇ρ(z) dz − (u ∗ ρε)(t, x) div b(t, x) (10)

−

∫

R

N

u(t, x+ εz)b2,ε,z(t, x)⊤∇ρ(z) dz. (11)

Then, we define s1,ε as the function given in (5) and s2,ε as the function given
in (11). We set

K :=
{

x ∈ RN | dist(x,Ω) ≤ 2
}

.
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Then, since u is zero outside of Ω, we immediately obtain that

r1,ε|(0,T )×(RN\K) ≡ 0 and r2,ε|(0,T )×(RN\K) ≡ 0,

where we define r1,ε := (u div b) ∗ ρε − u ∗ ρε div b − s1,ε and r2,ε = −s2,ε. The
functions s1,ε and s2,ε are elements of Lq

(

(0, T ), L1(RN )
)

, due to the following
reason: we set i = 1, 2 and estimate

T
∫

0

(∫

R

N

∣

∣

∣

∣

∫

R

N

u(t, x+ εz)bi,ε,z(t, x)⊤∇ρ(z) dz

∣

∣

∣

∣

dx

)q

dt

≤ ‖u‖L∞((0,T )×Ω)

T
∫

0

(

∫

B1(0)

∫

K

∣

∣bi,ε,z(t, x)⊤∇ρ(z)
∣

∣ dxdz

)q

dt

≤ ‖u‖L∞((0,T )×Ω) |B1(0)|q−1
∫

B1(0)

T
∫

0

(|∇ρ(z)| |z| |Db(t, ·)| (Kε))
q
dtdz <∞,

where we used point (iii) of Lemma 5.1. To finish the proof of point (ii) it
remains to show that s1,ε → 0 in Lq

(

(0, T ), L1(RN )
)

. For almost all t ∈ (0, T )
we deduce that

∫

R

N

∫

R

N

u(t, x+ εz)b1,ε,z(t, x)⊤∇ρ(z) dzdx

→

∫

R

N

u(t, x)

N
∑

i,j=1

e⊤i Jb(t, x)ej

∫

R

N

zj∂ziρ(z) dzdx

= −

∫

R

N

u(t, x) div b(t, x) dx

as ε → 0. Using Lebesgue’s dominated convergence theorem and point (iii) of
Lemma 5.1 we then obtain that

s1,ε → 0 in Lq
(

(0, T ), L1(RN )
)

as ε → 0. It remains to show the property of s2,ε. Due to point (ii) in Lemma
5.1 we know that for almost all t ∈ (0, T ) and for any compact set W ⊂ RN

lim sup
ε→0

∫

W

∣

∣b2,ε,z(t, x)⊤∇ρ(z)
∣

∣ dx ≤
∣

∣(∇ρ(z))⊤Dsb(t, ·)z
∣

∣ (W ).

Moreover, since the support of ρ is a subset of B1(0), we obtain with Fatou’s
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Lemma for a measurable set I ⊂ (0, T )

lim sup
ε→0

∫

I

(∫

R

N

∫

W

∣

∣b2,ε,z(t, x)⊤∇ρ(z)
∣

∣ dxdz

)q

dt

≤

∫

I

(∫

R

N

∣

∣(∇ρ(z))⊤Dsb(t, ·)z
∣

∣ (W ) dz

)q

dt.

The last term can be rewritten as
∫

I

(∫

R

N

∣

∣(∇ρ(z))⊤Dsb(t, ·)z
∣

∣ (W ) dz

)q

dt

=

∫

I

(∫

W

Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)

)q

dt.

Thus, we conclude that

lim sup
ε→0

∫

I

(∫

W

|s2,ε(t, x)| dx

)q

dt

≤ lim sup
ε→0

∫

I

(∫

W

∫

R

N

∣

∣u(t, x+ εz)b2,ε,z(t, x)⊤∇ρ(z)
∣

∣ dzdx

)q

dt

≤ ‖u‖qL∞((0,T )×RN )

∫

I

(∫

W

Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)

)q

dt.

�

Now, we are prepared for the main result of this section, which is a generalization
of Theorem II.5 from DiPerna and Lions (1989) to vector fields with spatial BV -
regularity.

Theorem 5.2 (Second stability theorem) Let q ∈ (1,∞), u0 ∈ L∞(Ω)
and let b∈L∞((0, T )×Ω)N∩Lq((0, T ), BV0(Ω))N with div b ∈ Lq((0, T ), L∞(Ω)).
Furthermore, let (bn) ⊂ V1

0 and (u0,n) ⊂ L∞(Ω) be two sequences with the
following properties:
(i) (u0,n) is bounded in L∞(Ω) and converges to u0 in L1(Ω),
(ii) (bn) ⊂ Lq((0, T ), BV0(Ω))N is bounded and converges weakly to b in

L1((0, T )× Ω)N ,
(iii) (div bn) ⊂ Lq((0, T ), L∞(Ω)) and is bounded in L1((0, T ), L∞(Ω)).
Then, for any 1 ≤ p < ∞, the sequence of unique solutions (un) ⊂
C([0, T ], L∞(Ω)−w∗) of (1) with vector fields bn and initial data u0,n is a subset
of C([0, T ], Lp(Ω)) and converges in C([0, T ], Lp(Ω)) to the unique solution
u ∈ C([0, T ], Lp(Ω)) of (1) with vector field b and initial value u0.

We prepare the proof of the Theorem in several steps (Lemmas 5.2–5.5). In the
following, if some Lebesgue function is just defined on a proper subset of RN
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in the spatial variable, then we extend this function by zero to the whole RN if
we consider the function as some function defined on RN in our calculations.

We take some even mollifier ρ ∈ C∞
c (B1(0)) and we set uε := u ∗ ρε for the

unique solution u of the transport equation with vector field b and initial value
u0. We will prove the theorem in several consecutive lemmas. In the first lemma
we obtain an expression for the difference of un − uε.

Lemma 5.2 Under the assumptions of Theorem 5.2 the following expression for
the difference un − uε holds:

∂t

∫

K

(un − uε)
2 dx−

∫

K

(un − uε)
2 div bn dx

= 2

∫

K

(un − uε) (−r1,ε − r2,ε + (b− bn) · ∇uε) dx, (12)

where K ⊂ RN denotes the compact set of Theorem 5.1.

Proof Due to Theorem 5.1 we deduce that uε satisfies

∂tuε + div(buε)− uε div b = r1,ε + r2,ε in (0, T )×RN ,

uε(0, ·) = u0 ∗ ρε on RN .

We first assume that u0,l ∈ C∞
c (Ω) and bl ∈ C∞

c ((0, T ) × Ω). Then, the
corresponding solution ul of the transport equation is also smooth with zero
spatial boundary value. These functions can be obviously extended in a smooth
way to RN in the spatial domain. We take β ∈ C1(R) such that β(0) = 0.
Then, we write

∂tβ(ul − uε) + div(blβ(ul − uε))− β(ul − uε) div bl (13)

= β′(ul − uε) (∂t(ul − uε) + div(bl(ul − uε))− (ul − uε) div bl)

= β′(ul − uε) (−r1,ε − r2,ε + (b − bl) · ∇uε) . (14)

For the initial value we have that β(ul(0, ·)− uε(0, ·)) = β(u0,l− u0 ∗ ρε). In
the following, we denote by K the compact set given in point (i) in Theorem
5.1 and we know that Ω ⊂ K. Now, integrating over K yields

∂t

∫

K

β(ul − uε) dx−

∫

K

β(ul − uε) div bl dx

=

∫

K

β′(ul − uε) (−r1,ε − r2,ε + (b− bl) · ∇uε) dx.

The choice of β(t) = t2 for t ∈ R yields that

∂t

∫

K

(ul − uε)
2 dx−

∫

K

(ul − uε)
2 div bl dx

= 2

∫

K

(ul − uε) (−r1,ε − r2,ε + (b− bl) · ∇uε) dx.
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Our first assumption was that ul, bl and u0,l are smooth functions. Therefore,
we take a sequence of smooth functions (bn,k)k such that

bn,k → bn in L1((0, T )× Ω)N and div bn,k → div bn

in L1((0, T )× Ω) as k →∞.

In addition, we take a sequence of smooth and bounded functions (u0,n,k)k ⊂
C∞
c (Ω), converging to u0,n in L1(Ω). Then, the above equation is valid for bn,k

and un,k and Theorem 4.1 yields for k →∞

∂t

∫

K

(un − uε)
2 dx−

∫

K

(un − uε)
2 div bn dx

= 2

∫

K

(un − uε) (−r1,ε − r2,ε + (b− bn) · ∇uε) dx.

�

Lemma 5.3 Under the assumptions of Theorem 5.2 the following estimate
holds:
∫

K

((un − uε)(t, ·))
2 dx

≤ (C2 + 1) ·



C1

T
∫

0

∫

K

|r1,ε| dxds +

∫

K

((u0,n − u0,ε)
2 dx





+2

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(un − uε)r2,ε dxds

∣

∣

∣

∣

∣

∣

+2C2 max
s∈[0,T ]

∣

∣

∣

∣

∣

∣

s
∫

0

∫

K

(un − uε)r2,ε dxdr

∣

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(un − uε)(b− bn) · ∇uε dxds

∣

∣

∣

∣

∣

∣

+2C3

t
∫

0

‖div bn(s, ·)‖L∞(Ω)

∣

∣

∣

∣

∣

∣

s
∫

0

∫

K

(un − uε)(b− bn) · ∇uε dxdr

∣

∣

∣

∣

∣

∣

ds (15)

for some constants C3, C2, C1 > 0 and any t ∈ [0, T ].
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Proof: We use expression (12) of Lemma 5.2 and estimate:

∂t

∫

K

((un − uε))
2 dx

≤ ‖div bn(t, ·)‖L∞(Ω)

∫

K

(un − uε)
2
dx+ C1

∫

K

|r1,ε| dx

− 2

∫

K

(un − uε)r2,ε dx

+ 2

∫

K

(un − uε)(b − bn) · ∇uε dx,

where C1 > 0 can be chosen as C1 := 2 sup
n
‖u0,n‖L∞(Ω) + 2 ‖u0‖L∞(Ω). By

integrating in time, we get

∫

K

((un − uε)(t, ·))
2 dx

≤

t
∫

0

‖div bn(s, ·)‖L∞(Ω)

∫

K

((un − uε))
2 dxds

+ 2

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(un − uε)(b − bn) · ∇uε dxds

∣

∣

∣

∣

∣

∣

+ C1

T
∫

0

∫

K

|r1,ε| dxds+ 2

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(un − uε)r2,ε dxds

∣

∣

∣

∣

∣

∣

+

∫

K

((u0,n − u0,ε)
2 dx.

Using Grönwall’s Lemma we obtain

∫

K

((un − uε)(t, ·))
2 dx ≤



C1

T
∫

0

∫

K

|r1,ε| dxds+

∫

K

((u0,n − u0,ε)
2 dx





·



1 +

t
∫

0

‖div bn(s, ·)‖L∞(Ω) e
∫

t

s
‖div bn(r,·)‖L∞(Ω)dr ds



+
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+2

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(un − uε)r2,ε dxds

∣

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(un − uε)(b− bn) · ∇uε dxds

∣

∣

∣

∣

∣

∣

+2

t
∫

0

∣

∣

∣

∣

∣

∣

s
∫

0

∫

K

(un − uε)r2,ε dxdr

∣

∣

∣

∣

∣

∣

‖div bn(s, ·)‖L∞(Ω) e
∫

t

s
‖div bn(r,·)‖L∞(Ω)dr ds

+2

t
∫

0

∣

∣

∣

∣

∣

∣

s
∫

0

∫

K

(un − uε)(b − bn) · ∇uε dxdr

∣

∣

∣

∣

∣

∣

×

×‖div bn(s, ·)‖L∞(Ω) e
∫

t

s
‖div bn(r,·)‖L∞(Ω)dr ds.

Setting

C2 := esupn

∫
T

0
‖div bn(t,·)‖L∞(Ω)dt sup

n

T
∫

0

‖div bn(t, ·)‖L∞(Ω) dt

and C3 := esupn

∫
T

0
‖div bn(t,·)‖L∞(Ω)dt

yields the statement of the lemma. �

Lemma 5.4 Under the assumptions of Theorem 5.2 we have

lim sup
n→∞





∫

K

|un(t, ·)− u(t, ·)| dx





2

≤ C5

∫

K

|uε(t, ·)− u(t, ·)| dx+ C4

∫

K

(uε(t, ·)− u(t, ·))2 dx + 2CC1Rε(s
∗)

+ C4C1(C1 + 1)

T
∫

0

∫

K

|r1,ε| dxds + C4(C2 + 1)

∫

K

((u0 − u0,ε)
2 dx

+ 2C4

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(w1 − uε)r2,ε dxds

∣

∣

∣

∣

∣

∣

(16)

for some specific w1 ∈ L∞((0, T ) × Ω), s∗ ∈ [0, T ] and some function Rε ∈
C([0, T ]).

Proof: The proof of Theorem 4.1 shows that there are subsequences
(un), (u2n)∈C([0, T ], L∞(Ω)−w∗) and (un div bn), (u2n div bn)∈L1((0, T ), L∞(Ω))
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(labeled by n again) and w1, w2 ∈ L∞((0, T )× Ω) and w3, w4 ∈ L1((0, T )× Ω)

such that un
∗
⇀ w1 in L∞((0, T )× Ω) and

un ⇀ w1 and u2n ⇀ w2 in C([0, T ], L2(Ω)− w),

un div bn ⇀ w3 and u2n div bn ⇀ w4 in L1((0, T )× Ω).

In particular, w1(0, ·) = u0 and w2(0, ·) = u20. We restrict ourselves to these
subsequences. Furthermore, the mappings Rn,ε : [0, T ] → R, defined by s 7→
Rn,ε(s) :=

∣

∣

∫ s

0

∫

K(un − uε)r2,ε dxdr
∣

∣, are equicontinuous in n: for 0 ≤ s ≤ t ≤
T we obtain that

|Rn,ε(t)−Rn,ε(s)| ≤

∣

∣

∣

∣

∣

∣

t
∫

s

∫

K

(un − uε)r2,ε dxdr

∣

∣

∣

∣

∣

∣

≤ C1

t
∫

s

∫

K

|r2,ε| dxdr.

We set Rε : [0, T ]→ R, s 7→ Rε(s) :=
∣

∣

∫ s

0

∫

K
(w1 − uε)r2,ε dxdr

∣

∣ and obtain
that Rn,ε(s)→ Rε(s) for all s ∈ [0, T ]. As Rn,ε are continuous functions for all
n ∈ N, we find sn ∈ [0, T ] such that

Rn,ε(sn) := max
s∈[0,T ]

Rn,ε(s).

Then, (sn) represents a bounded sequence and thus, there is a convergent
subsequence (sn) (which is labeled by n again) with limit s∗ ∈ [0, T ]. We restrict
our considerations to this subsequence. We conclude for the subsequence that

|Rn,ε(sn)−Rε(s
∗)| ≤ |Rn,ε(sn)−Rn,ε(s

∗)|+ |Rn,ε(s
∗)−Rε(s

∗)| → 0 (17)

as n→∞, since Rn,ε are equicontinuous. Now, we estimate





∫

K

|un − u| dx





2

≤





∫

K

|un − uε| dx





2

+





∫

K

|uε − u| dx





2

+ 2

∫

K

|un − uε| dx

∫

K

|uε − u| dx

≤ C4

∫

K

(un − uε)
2 dx + C4

∫

K

(uε − u)2 dx + C5

∫

K

|uε − u| dx (18)

with C4 = |K|1/2. As in the proof of Theorem 4.1, we obtain as a
consequence of Theorem 3.1 that

unbn
∗
⇀ w1b in M((0, T )× Ω)N . (19)
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Since (un) is bounded in L∞((0, T )×Ω) and (bn) is bounded in Lp((0, T )×
Ω)N for p = min(q,N/(N−1)), we obtain that (unbn) is bounded in Lp((0, T )×
Ω)N and thus with (19) we deduce that unbn ⇀ w1b in Lp((0, T ) × Ω)N .
Consequently, we obtain that

∣

∣

∣

∣

∣

∣

s
∫

0

∫

K

(un − uε)(b− bn) · ∇uε dxdr

∣

∣

∣

∣

∣

∣

→ 0 as n→ 0

for any s ∈ [0, T ] and with Lebesgue’s dominated convergence theorem we
conclude that

t
∫

0

‖div bn(s, ·)‖L∞(Ω)

∣

∣

∣

∣

∣

∣

s
∫

0

∫

K

(un − uε)(b − bn) · ∇uε dxdr

∣

∣

∣

∣

∣

∣

ds→ 0

as n → ∞ for any t ∈ [0, T ]. Taking the limes superior over n and using
estimates (5.3), (18), as well as relation (17), we obtain

lim sup
n→∞





∫

K

|un(t, ·)− u(t, ·)| dx





2

≤ C5

∫

K

|uε(t, ·)− u(t, ·)| dx+ C4

∫

K

(uε(t, ·)− u(t, ·))2 dx

+2C4C2Rε(s
∗) + C4C1(C2 + 1)

T
∫

0

∫

K

|r1,ε| dxds

+C4(C2 + 1)

∫

K

((u0 − u0,ε)
2 dx+ 2C4

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(w1 − uε)r2,ε dxds

∣

∣

∣

∣

∣

∣

.

�

Lemma 5.5 Under the assumptions of Theorem 5.2 there exists a sequence (εm)
with 0 < εm ≤ 1 for all m ∈ N and εm → 0 as m→∞ such that

2(w1 − uεm)r2,εm
∗
⇀ σ in M([0, T ]×K) as m→∞.

The measure σ ∈M([0, T ]×K) is independent of the mollifier ρ.

Proof: We know that

2 sup
0<ε≤1

T
∫

0

∫

K

|w1(t, x)− uε(t, x)| |r2,ε(t, x)| dxdt <∞
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and thus, there exists a sequence (εm) with 0 < εm ≤ 1 for all m ∈ N and
εm → 0 such that 2(w1 − uεm)r2,εm converges to some σρ ∈ M([0, T ] × K).
This limit measure σρ is not depending on ρ:
for t ∈ (0, T ) we take the following sequence (ηt,k) ⊂ C∞

c ([0, T )), such that

0 ≤ ηt,k(s) ≤ 1 ∀ s ∈ (0, T ), ηt,k(s)→ χ[0,t](s) ∀ s ∈ [0, T ) and η′t,k → δ0−δt

in the distributional sense. Lebesgue’s dominated convergence theorem then
yields that ηt,k → χ[0,t] in Lr((0, T )) for all 1 ≤ r < ∞ and for any t ∈ [0, T ).
Hence, from the equation given by lines (13) and (14) we deduce, by setting
β(t) = t2 for all t ∈ R and integrating over [0, T ] × K with test functions
ϕ ∈ C∞

c ([0, T ]×K) and fixed s ∈ [0, T ), that

0 =

T
∫

0

η′s,k

∫

K

(un − uεm)2ϕ dxdt +

∫

K

ηs,k(0)ϕ(0, ·)(un(0, ·)− uεm(0, ·))2 dx

+

T
∫

0

∫

K

(un − uεm)2ηs,k(∂tϕ+ bn · ∇ϕ+ ϕdiv bn)

+2(un − uεm)ϕηs,k(−r1,εm − r2,εm + (b− bn) · ∇uεm) dxdt.

where un and bn denote the above solutions and vector fields. Now, taking the
limit in n yields, with the same argument as in the proof of the previous lemma
for products of weakly convergent sequences,

0 =

T
∫

0

∫

K

(w2 − 2w1uεm + u2εm)(ϕη′s,k + ηs,k(∂tϕ+ b · ∇ϕ))dxdt

+

T
∫

0

∫

K

ϕηs,k(w4 − 2w3uεm + u2εm div b) dxdt

+

∫

K

ηs,k(0)ϕ(0, ·)
(

u20 − 2uεm(0, ·)u0 + (uεm(0, ·))2
)

dx

− 2

T
∫

0

∫

K

(w1 − uεm)ϕηs,k(r1,εm + r2,εm) dxdt.

(20)
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For the last term in (20), we have

2

∣

∣

∣

∣

∣

∣

T
∫

0

∫

K

(ηs,k − χ[0,s])(w1 − uεm)ϕ(r1,εm + r2,εm) dxdt

∣

∣

∣

∣

∣

∣

≤ 2





T
∫

0

∣

∣ηs,k − χ[0,s]

∣

∣

q′

dt





1/q′

×





T
∫

0





∫

K

|(w1 − uεm)ϕ(r1,εm + r2,εm)| dx





q

dt





1/q

≤ 2C





T
∫

0

∣

∣ηs,k − χ[0,s]

∣

∣

q′

dt





1/q′

→ 0 as k →∞,

where C > 0 is an upper bound for

sup
m∈N

(

∫ T

0

(∫

K

|(w1 − uεm)ϕ(r1,εm + r2,εm)| dx

)q

dt

)1/q

.

Thus, we can switch the limiting processes of k → ∞ and m → ∞ and we
obtain, using r1,εm → 0 in L1((0, T )×K) as m→∞

lim
k→∞

〈σρ, ϕηs,k〉 = lim
m→∞

lim
k→∞

2

T
∫

0

∫

K

(w1 − uεm)r2,εmϕηs,k dxdt

= lim
m→∞

lim
k→∞

T
∫

0

∫

K

(w2 − 2w1uεm + u2εm)(ϕη′s,k + ηs,k(∂tϕ+ b · ∇ϕ)) dxdt

+ lim
m→∞

lim
k→∞

∫

K

ηs,k(0)ϕ(0, ·)
(

u20 − 2uεm(0, ·)u0 + (uεm(0, ·))2
)

dx

+ lim
m→∞

lim
k→∞

T
∫

0

ηs,k

∫

K

ϕ(w4 − 2w3uεm + u2εm div b) dxdt
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= lim
m→∞





∫

K

ϕ(0, ·)
(

u20 − 2u0uεm(0, ·) + (uεm(0, ·))2 + w2(0, ·)

−2w1(0, ·)uεm(0, ·) + (uεm(0, ·))2
)

dx

−

∫

K

ϕ(s, ·)
(

w2(s, ·)− 2w1(s, ·)uεm(s, ·) + (uεm(s, ·))2
)

dx





+ lim
m→∞





s
∫

0

∫

K

(w2 − 2w1uεm + u2εm)(∂tϕ+ b · ∇ϕ) dxdt

+ϕ(w4 − 2w3uεm + u2εm div b) dxdt
]

=

s
∫

0

∫

K

(w2 − 2w1u+ u2)(∂tϕ+ b · ∇ϕ) + ϕ(w4 − 2w3u+ u2 div b) dxdt

−

∫

K

ϕ(s, ·)
(

w2(s, ·)− 2w1(s, ·)u + u(s, ·)2
)

dx

since

w2(0, ·)− 2w1(0, ·)uεm(0, ·) + (uεm(0, ·))2

= u20 − 2u0uεm(0, ·) + (uεm(0, ·))2 ⇀ 0 in L2(Ω).

From the above equation and the preceding estimates and equations we obtain
the following information: if we omit ηs,k at the beginning and just test with
ϕ, we see that the measure σρ is given by

σρ = −∂t(w2− 2w1u+u2)−div(b(w2− 2w1u+u2)) + (w4− 2w3u+u2 div b)

and thus, it is independent of the mollifier ρ. Therefore, we call σρ just σ in
the following. Furthermore, if we restrict σ to the set [0, s]×K and denote the
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restriction σs, we obtain from the above equation for any ϕ ∈ Cc([0, T ]×K):

∫

[0,s]

∫

K

ϕ dσs =

∫

[0,T ]

∫

K

χ[0,s]ϕ dσ

= lim
k→∞

∫

[0,T ]

∫

K

ϕ(χ[0,s] − ηs,k) dσ + lim
k→∞

∫

[0,T ]

∫

K

ϕηs,k dσ

= −

∫

K

ϕ(s, ·)(w2(s, ·)− 2w1(s, ·)u + (u(s, ·))2) dx

+

s
∫

0

∫

K

(w2 − 2w1u+ u2)(∂tϕ+ b · ∇ϕ)

+ ϕ(w4 − 2w3u+ u2 div b) dxdt,

i.e. the restriction 2[(w1 − uεm)r2,εm ]|[0,s]×KL
1 ⊗ LN converges weakly∗ to

σs = −∂t
(

(w2 − 2w1u+ u2)|[0,s]×K
)

− div
(

b(w2 − 2w1u+ u2)|[0,s]×K
)

+ (w4 − 2w3u+ u2 div b)|[0,s]×K .

�

Proof of Theorem 5.2: We first introduce the set

K :=

{

ρ ∈ C∞
c (B1(0)) such that ρ ≥ 0 is even, and

∫

B1(0)

ρ(x) dx = 1

}

.

So far, we have shown that our limits do not depend on the specific mollifier
and we go back to estimate (16). Taking the supremum over m ∈ N with
t ∈ [0, T ] and ϕ ≡ 1 on [0,max(t, s∗)]×K yields:

lim sup
n→∞





∫

K

|un(t, x)− u(t, x)| dx





2

≤ 2C sup
m∈N

∣

∣

∣

∣

∣

∣

t
∫

0

∫

K

(w1(s, x)− uεm(s, x))r2,εm (s, x) dxds

∣

∣

∣

∣

∣

∣

+ CC1 sup
m∈N

Rεm(s∗)

= C |σt([0, t]×K)|+ CC1 |σs∗([0, s∗]×K)| .

Now, in the remaining part, we show that σ = 0. This will work in the
same way as it is shown that the limit measure of the commutator is zero in
Crippa (2007). The sequence (|(w1 − uεm)r2,εm |) is bounded in L1((0, T )×K)
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and thus, a subsequence converges weakly∗ to some measure λ ∈ M([0, T ]×K).
Due to Proposition 1.62 in Ambrosio, Fusco and Pallara (2000) we have that
|σ| ≤ λ. Hence, restricting to this subsequence we obtain for ϕ ∈ Cc([0, T ]×K)

∫

[0,T ]

∫

K

|ϕ(t, x)| d |σ| (t, x)

≤ lim sup
m→∞

T
∫

0

∫

K

|ϕ(t, x)| |(w1(t, x) − uεm(t, x))r2,εm (t, x)| dxdt

≤ C lim sup
m→∞

T
∫

0

∫

K

|ϕ(t, x)|

∫

R

N

|b2,εm,z(t, x) · ∇ρ(z)| dzdxdt. (21)

Now, upon setting S := ‖ϕ‖C([0,T ]×K) and

Wt,y := {x ∈ K| |ϕ| (t, x) > y}

we rewrite (21) and obtain

C lim sup
m→∞

T
∫

0

S
∫

0

∫

Wt,y

∫

R

N

|b2,εm,z(t, x) · ∇ρ(z)| dzdxdydt

≤ C

T
∫

0

S
∫

0

∫

R

N

lim sup
m→∞

∫

Wt,y

|b2,εm,z(t, x) · ∇ρ(z)| dxdzdydt

≤ C

T
∫

0

S
∫

0

∫

R

N

∣

∣(∇ρ(z))⊤(Dsb)(t, ·)z
∣

∣ (Wt,y) dzdydt

= C

T
∫

0

∫

K

|ϕ(t, x)|Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)dt.

Thus, |σ| ≤ CΛ(Mb, ρ) |Dsb|, and hence there exists a Borel function f such
that |σ| = f |Dsb| and

|f(t, x)| ≤ CΛ(Mb(t, x), ρ) for |Dsb| -a.e. (t, x).

Since |σ| does not depend on the mollifier ρ, we deduce with the same
argumentation as in Crippa (2007) that

|f(t, x)| ≤ inf
ρ∈K′

CΛ(Mb(t, x), ρ) = inf
ρ∈K

CΛ(Mb(t, x), ρ) for |Dsb| -a.e. (t, x),

where K′ ⊂ K denotes a countable dense subset. Then, the Lemma of Alberti
(see Lemma 2.6.6 in Crippa, 2007) yields that

|f(t, x)| ≤ C |trace(Mb(t, x))| = 0 for |Dsb| -a.e. (t, x),
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since the singular part of div b is zero. Therefore, we obtain that σ = 0 and
thus for t ∈ [0, T )

lim sup
n→∞

(∫

R

N

|un(t, x)− u(t, x)| dx

)2

= 0.

For the subsequence (un) being convergent to w1 in C([0, T ], L2(Ω) − w), we
conclude that w1(t, ·) = u(t, ·) for all t ∈ [0, T ]. Analogously, we obtain that
w2(t, ·) = u2(t, ·) for all t ∈ [0, T ]. Using a proof by contradiction as in the
case of Theorem 4.1, we obtain that the whole sequence (un) converges to u in
C([0, T ], L2(Ω)) and using the boundedness of (un) in L∞((0, T ) × Ω), we get
that the convergence is valid in C([0, T ], Lp(Ω)) for any 1 ≤ p <∞. �

6. Predual of the space BV (Ω)

In the space BV (Ω) an often used topology is the so-called weak–topology. The
name of the topology is misleading, since this topology is not the standard
weak–topology in functional analysis if BV (Ω) is seen as a dual space of a
separable Banach space. In Remark 3.12 in Ambrosio, Fusco and Pallara (2000)
it is mentioned that these two topologies coincide if the domain is sufficiently
regular. We will show that Lipschitz regularity for the domain is sufficient.
With this result we do not need to distinguish between these two topologies in
the subsequent parts, in particular in the case when we consider vector fields
as Gelfand integrable functions, where BV (Ω) is regarded as a dual space with
(dual) weak–topology. We also refer to Pe lczyński and Wojciechowski (2003)
for a related characterization of the predual of BV (Ω).

In Remark 3.12 in Ambrosio, Fusco and Pallara (2000), a sketch for
constructing the predual of BV (Ω) is given. In the following, we call Γ(Ω)
the predual of BV (Ω) and we give a precise construction of Γ(Ω): we set
X := C0(Ω)N+1 and

E :=
{

Φ = (Φ0, . . . ,ΦN) ∈ X,ϕ = (Φ1, . . . ,ΦN ) ∈ C∞
c (Ω)N

such that divϕ = Φ0} .

Then, E is a subspace of X and we set Y as the closure of E with respect
to ‖·‖C(Ω)N+1. Now, Remark 3.12 in Ambrosio, Fusco and Pallara (2000) yields
that the map T given by

T : BV (Ω)→M(Ω)N+1, u 7→ (uLN , ∂x1u, . . . , ∂xN
u)

is an isomorphism between BV (Ω) and T (BV (Ω)) with

‖u‖BV (Ω) ≤ 2 ‖T (u)‖M(Ω)N+1 ≤ 2 ‖u‖BV (Ω) .
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Furthermore, for all Φ ∈ E and u ∈ BV (Ω) we have that

(T (u),Φ)(M(Ω)N+1,C0(Ω)N+1)

=
(

uLN ,Φ0

)

(M(Ω),C0(Ω))
+

N
∑

k=1

(∂xk
u,Φk)(M(Ω),C0(Ω))

=
(

uLN , divϕ
)

(M(Ω),C0(Ω))
+

N
∑

k=1

(∂xk
u,Φk)(M(Ω),C0(Ω))

=
(

uLN , divϕ
)

(M(Ω),C0(Ω))
−
(

uLN , divϕ
)

(M(Ω),C0(Ω))
= 0.

(22)

Hence, we obtain that (T (u), y) = 0 for all u ∈ BV (Ω) and all y ∈ Y . This
means that T (BV (Ω)) ⊂ Y ◦, the annihilator of Y , which is the set of linear
functionals L ∈ X ′ such that Y lies in the kernel of L. By using the following
result we conclude that Y ◦ = T (BV (Ω)).

Lemma 6.1 Let Ω ⊂ RN be an open set and µ, νi ∈ M(Ω) for i = 1, . . . , N
such that

∫

Ω

∂xi
ϕ(x) dµ(x) = −

∫

Ω

ϕ(x) dνi(x) ∀ ϕ ∈ C1
c (Ω), i = 1, . . . , N.

Then, there exists a unique u ∈ BV (Ω) such that µ = uLN .

Proof: The proof can be found in Lemma 4.1.1 in Jarde (2018). �

Hence, Theorem III.1.10 from Werner (2011) yields that Y ◦ ≃ (X/Y )
′

and
an isomorphism is given by

T1 : Y ◦ → (X/Y )
′
, y 7→ T1(y)

with

T1(y) : X/Y → R, [w] 7→ 〈T1(y), [w]〉((X/Y )′,X/Y ) = 〈y, w〉(X′,X)

which is well-defined, due to (22). Hence, BV (Ω) is isomorphic to (X/Y )
′

via T1 ◦ T and we can identify the predual Γ(Ω) with X/Y . Now, for some
u ∈ BV (Ω), we define

〈u, [w]〉(BV (Ω),Γ(Ω)) =
(

uLN , w0

)

(M(Ω),C0(Ω))
+

N
∑

k=1

(∂xk
u,wk)(M(Ω),C0(Ω)) (23)

for all [w] ∈ Γ(Ω) with w ∈ X and w = (w0, w1, . . . , wN ). Therefore, we
conclude for a sequence (un) ⊂ BV (Ω) and some u ∈ BV (Ω) (we use the



294 Ph. Jarde and M. Ulbrich

notation
∗
⇀ for the standard weak–topology in functional analysis and

∗∗
⇀ for

the usually used weak–topology in BV (Ω)) that

un
∗
⇀ u⇔ 〈un − u, [w]〉(BV (Ω),Γ(Ω)) ∀ [w] ∈ Γ(Ω)

⇔ unL
N ∗
⇀ uLN in M(Ω) and

∂xi
un

∗
⇀ ∂xi

u in M(Ω) ∀ i ∈ {1, . . . , N}

⇔ un → u in L1(Ω) and

∂xi
un

∗
⇀ ∂xi

u in M(Ω) ∀ i ∈ {1, . . . , N}

⇔ un
∗∗
⇀ u.

In the third equivalence relation we used the fact that for domains with compact
Lipschitz boundary BV (Ω) is compactly embedded in L1(Ω) (see Proposition
3.21 and Corollary 3.49 in Ambrosio, Fusco and Pallara, 2000). Hence, for
Lipschitz regular and bounded domains, these two topologies coincide and in
the following we will use the term weak∗ and the notation

∗
⇀ for both topologies.

7. Closedness of bounded sets of time dependent vector

fields

In this section, we take a closer look at the norm bounded sets of vector fields. In
the main theorem we will prove that sequences (bn) ⊂ Vq, which are bounded
with respect to some norm, contain subsequences, which are convergent in a
weak sense and whose limits are again vector fields with the same temporal and
spatial regularities. The statement will play a crucial role in the next section:
in the proof of existence of minima, the result of this section will give us a limit,
for which it can be shown that it represents a minimum. We start with the
definition of K-convergence for vector-valued functions.

Definition 7.1 (Komlós convergence (K-convergence)) Let X be a
separable Banach space. A sequence of functions fn : (0, T ) → X ′ is said to
be K-convergent to a mapping f : (0, T )→ X ′ if for every subsequence (nk) of
(n)

1

n

n
∑

k=1

fnk
(t)

∗
⇀ f(t)

for almost all t ∈ (0, T ).

This type of convergence plays an important role in the proof of the following
main result of this section, which is based on results of Cornet and Martins da
Rocha (2004).

Theorem 7.1 Let q ∈ (1,∞) and let (bn) ⊂ Vq be a sequence. If (bn) is
bounded, i.e.

sup
n∈N
‖bn‖Lq((0,T ),BV (Ω))N ≤ C <∞
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for some C > 0, then there exists a subsequence (bnk
) and a function b ∈ Vq

such that the following properties are satisfied:

(i) b(t) ∈ conv({bn(t)|n ∈ N}
w

∗

)
w

∗

for almost all t ∈ (0, T ),
(ii) for any measurable set B ∈ B((0, T ))

∫

B

bn(t, ·)dt
∗
⇀

∫

B

b(t, ·)dt in BV (Ω)N ,

(iii) for any measurable set B ∈ B((0, T )) and any monotonically increasing,
convex function g : R+

0 → R
+
0 with g(x) ∈ O(|x|) (for |x| → ∞)

∫

B

g
(

‖Db(t, ·)‖qM(Ω)N×N

)

dt ≤ lim inf
n→∞

∫

B

g
(

‖Dbn(t, ·)‖qM(Ω)N×N

)

dt,

(iv) bn ⇀ b in Lp((0, T )×Ω)N as n→∞ for any p ∈ [1,min(q,N/(N − 1))).

Proof: We first show that for any [w] ∈ Γ(Ω)N the set of functions

t 7→ 〈bn(t, ·), [w]〉(BV (Ω)N ,Γ(Ω)N ) (24)

is uniformly integrable in n ∈ N. Then, results from Cornet and Martins da
Rocha (2004) will yield most of our statements. Let [w] ∈ Γ(Ω)N . We take
a fixed representative w ∈ C0(Ω)N×(N+1) and estimate for any measurable set
B ⊂ (0, T )

∫

B

∣

∣

∣〈bn(r, ·), [w]〉(BV (Ω)N ,Γ(Ω)N )

∣

∣

∣ dr ≤
N
∑

i=1

∫

B

∣

∣〈bi,n(r, ·)LN , wi,1〉
∣

∣ dr (25)

+

N
∑

i=1

N
∑

j=1

∫

B

∣

∣〈∂xj
bi,n(r, ·), wi,j+1〉

∣

∣ dr.

(26)

Now, we have a closer look at the terms (25) and (26). For term (25) we obtain

N
∑

i=1

∫

B

∣

∣〈bi,n(r, ·)LN , wi,1〉
∣

∣ dr ≤ |B|1/q
′

C1

N
∑

i=1

‖wi,1‖C(Ω) (27)

for some C1 > 0 independent of n ∈ N. For the second term, (26), we estimate

N
∑

i=1

N
∑

j=1

∫

B

∣

∣〈∂xj
bi,n(r, ·), wi,j+1〉

∣

∣ dr ≤ |B|1/q
′

C2

N
∑

i=1

N
∑

j=1

‖wi,j+1‖C(Ω) (28)

for some C2 > 0 independent of n ∈ N. The uniform integrability of the
functions in (24) follows directly from estimates (25)-(28). Now, Theorem 3.1
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(b) in Cornet and Martins da Rocha (2004) yields that there exists a subsequence
(labeled by n again) and a Gelfand integrable function b ∈ L1((0, T ), BV (Ω))N

such that
〈

∫

B

b(t, ·)dt, [w]

〉

=

∫

B

〈b(t, ·), [w]〉 dt ≤ lim inf
n→∞

∫

B

〈bn(t, ·), [w]〉 dt

= lim inf
n→∞

〈

∫

B

bn(t, ·)dt, [w]

〉

for any [w] ∈ Γ(Ω)N and for any measurable B ∈ B((0, T )). Since the above
inequality is satisfied both for [w] and −[w], we conclude that

∫

B

bn(t, ·)dt
∗
⇀

∫

B

b(t, ·)dt in BV (Ω)N (29)

for any B ∈ B((0, T )). Due to Proposition 3.1 in Cornet and Martins da Rocha
(2004) we can choose the subsequence (bn) such that it is K-convergent to b.
Furthermore, part (c) of Theorem 3.1 in Cornet and Martins da Rocha (2004)
yields point (i). Since BV (Ω) is compactly embedded in Lp(Ω) for any p <
N/(N − 1), (29) yields that

∫

B

bn(t, ·)dt→

∫

B

b(t, ·)dt in Lp(Ω)N

for any B∈B((0, T )) and any p<N/(N−1). Now, Theorem 10.4 (i) in Schweizer
(2013) yields that for p ∈ (1,min(q,N/(N − 1))) and for h ∈ Lp

′

((0, T ) × Ω)N

with 1/p′+1/p= 1, there is a sequence (hk) ⊂ Lp
′

((0, T ), Lp
′

((Ω))N of simple
functions such that hk → h in Lp

′

((0, T ), Lp
′

(Ω))N . Denote by Ak,i ⊂ (0, T ),
i = 1, . . . ,K(k) the different measurable subsets where hk is constant with value
hk,i ∈ Lp

′

(Ω). Then, we conclude that

|〈h, bn − b〉| ≤

K(k)
∑

i=1

∣

∣

∣

∣

∣

∣

∣

〈hk,i,

∫

Ak,i

bn(t, ·)− b(t, ·)dt〉

∣

∣

∣

∣

∣

∣

∣

+C ‖hk − h‖Lp′((0,T ),Lp′(Ω))N

for some C > 0, since (bn) is bounded in Lp((0, T ) × Ω)N . This yields that
|〈h, bn − b〉| → 0 as n → ∞. Thus, bn ⇀ b in Lp((0, T ) × Ω)N and hence
in L1((0, T ) × Ω)N . It remains to show that b ∈ Lq((0, T ), BV (Ω))N and
point (iii) holds. We consider the sequence (Dbn) ⊂ Lq((0, T ),M(Ω)N×N).
For this sequence we do the same steps as in the proof of Theorem 3.1 (a) in
Cornet and Martins da Rocha (2004), but with some differences: due to the

boundedness of
(

∫ T

0 ‖Dbn(t, ·)‖qM(Ω)N×N dt
)

and g(x) ∈ O(|x|), we obtain that
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supn∈N
∫ T

0 g
(

‖Dbn(t, ·)‖qM(Ω)N×N

)

dt <∞. Thus,

A := lim inf
n→∞

T
∫

0

g
(

‖Dbn(t, ·)‖qM(Ω)N×N

)

dt <∞

and we choose a convergent subsequence (labeled by n again), such that

A = lim
n→∞

T
∫

0

g
(

‖Dbn(t, ·)‖qM(Ω)N×N

)

dt.

Then, as in the above mentioned proof we construct a subsequence (Dbnk
),

which is K-convergent to some f ∈ L1((0, T ),M(Ω)N×N). On the other hand,
we already know that the whole sequence (Dbn) is K-convergent to Db. Thus,
we conclude that Db = f and we have, as in Cornet and Martins da Rocha
(2004):

‖Db(t, ·)‖M(Ω)N×N ≤ lim inf
n→∞

∥

∥

∥

∥

∥

1

n

n
∑

i=1

Dbi(t, ·)

∥

∥

∥

∥

∥

M(Ω)N×N

≤ lim inf
n→∞

1

n

n
∑

i=1

‖Dbi(t, ·)‖M(Ω)N×N

for almost all t ∈ (0, T ). Since x 7→ |x|q is convex and continuous, while g is
monotonically increasing and convex, we deduce that

g
(

‖Db(t, ·)‖qM(Ω)N×N

)

≤ lim inf
n→∞

1

n

n
∑

i=1

g
(

‖Dbi(t, ·)‖
q
M(Ω)N×N

)

for almost all t ∈ (0, T ). In addition, due to g(x) ∈ O(|x|), the above expressions
are integrable over measurable sets B ⊂ (0, T ). Fatou’s lemma for positive
functions then yields

∫

B

g
(

‖Db(t, ·)‖qM(Ω)N×N

)

dt ≤ lim inf
n→∞

1

n

n
∑

i=1

∫

B

g
(

‖Dbi(t, ·)‖
q
M(Ω)N×N

)

dt

= lim inf
n→∞

∫

B

g
(

‖Dbn(t, ·)‖qM(Ω)N×N

)

dt

for any B ∈ B((0, T )). The boundedness of (bn) in Lq((0, T ), BV (Ω))N and the
choice of g(x) = x finally yields that b ∈ Lq((0, T ), BV (Ω))N . �

In addition to this result for Gelfand integrable functions, we need the
following result for Bochner integrable functions in the subsequent section.
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Lemma 7.1 Let l ∈ N, g : R → R

+
0 be a monotonically increasing and convex

function with g ∈ O(x) and let (fn) ⊂ L2((0, T ), L2(Ω))l be a bounded sequence.
Then, there exists a subsequence (fnk

) and some f ∈ L2((0, T ), L2(Ω))l such
that

T
∫

0

g
(

‖f(t, ·)‖2L2(Ω)l

)

dt ≤ lim inf
n→∞

T
∫

0

g
(

‖fn(t, ·)‖2L2(Ω)l

)

dt.

Proof: Due to the boundedness of (fn) in L2((0, T ), L2(Ω))l, there exists a
subsequence (labeled by n again) and some f ∈ L2((0, T ), L2(Ω))l such that
fn ⇀ f in L2((0, T ), L2(Ω))l. Furthermore, due to the properties of g, we have

sup
n∈N

T
∫

0

g
(

‖fn(t, ·)‖2L2(Ω)l

)

dt <∞

and thus, we can choose a subsequence (fn) (labeled by n again) such that

lim inf
n→∞

T
∫

0

g
(

‖fn(t, ·)‖2L2(Ω)l

)

dt = lim
n→∞

T
∫

0

g
(

‖fn(t, ·)‖2L2(Ω)l

)

dt

holds. By applying Theorem 2.1 from Diestel, Ruess and Schachermeyer (1993),
we then obtain that there is a sequence (hn) ⊂ L2((0, T ), L2(Ω))l with hn ∈
conv({fk| k ≥ n}) for n ∈ N such that (hn(t, ·)) is convergent to some h(t, ·) ∈
L2(Ω)l for almost all t ∈ (0, T ), i.e.

hn =

N(n)
∑

i=n

λn,ifi with 0 ≤ λn,i ≤ 1 for n ≤ i ≤ N(n) ∈ N and

N(n)
∑

i=n

λn,i = 1

for all n ∈ N. We assume that h(t, ·) 6= f(t, ·) for t ∈ B ⊂ (0, T ) with L1(B) > 0.
Then, we have for ϕ ∈ L2(Ω)l

T
∫

0

|〈hn(t, ·), ϕ〉|2 dt ≤ ‖ϕ‖2L2(Ω)l sup
n∈N

T
∫

0

‖fn(t, ·)‖2L2(Ω)l dt <∞.

Due to Theorem 1.35 from Ambrosio, Fusco and Pallara (2000) we obtain that

[t 7→ 〈hn(t, ·), ϕ〉] ⇀ [t 7→ 〈h(t, ·), ϕ〉] in L2((0, T )).

Hence, we conclude for ψ ∈ L2(B) that
∫

B

∫

Ω

ψ(t)ϕ(x)h(t, x) dxdt←

∫

B

∫

Ω

ψ(t)hn(t, x)ϕ(x) dxdt

→

∫

B

∫

Ω

ψ(t)ϕ(x)f(t, x) dxdt,
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i.e. 〈h(t, ·), ϕ〉 = 〈f(t, ·), ϕ〉 for almost all t ∈ B. Since ϕ ∈ L2(Ω)l can
be arbitrarily chosen, we obtain that h(t, ·) = f(t, ·) in L2(Ω)l for almost all
t ∈ B. But this is a contradiction to our assumption, and thus h = f in
L2((0, T ), L2(Ω))l. Consequently, we obtain

g
(

‖f(t, ·)‖2L2(Ω)l

)

= lim
n→∞

g
(

‖hn(t, ·)‖2L2(Ω)l

)

≤ lim inf
n→∞

N(n)
∑

i=n

λn,ig
(

‖fi(t, ·)‖
2
L2(Ω)l

)

for almost all t ∈ (0, T ). Thus, Fatou’s lemma finally yields

T
∫

0

g
(

‖f(t, ·)‖2L2(Ω)l

)

dt ≤ lim inf
n→∞

N(n)
∑

i=n

λn,i

T
∫

0

g
(

‖fi(t, ·)‖
2
L2(Ω)l

)

dt

= lim inf
n→∞

T
∫

0

g
(

‖fn(t, ·)‖2L2(Ω)l

)

dt.

�

8. Existence of minima of the optimal control problems

In this last section, we apply the results of the previous sections to prove the
existence of minimizing points for optimal control problems with the transport
equation as a constraint. We start with the optimal control problems and the
admissible sets and finish the section with the existence result.

8.1. Optimal control problems

We consider the following type of optimal control problems

min
u,b

J(u, b)

=
1

2

K
∑

k=2

Υk

(

‖u(tk, ·)− Yk‖
2
L2(Ω)

)

+
α

2

T
∫

0

Γ1

(

‖Db(t, ·)‖2M(Ω)N×N

)

dt (30)

+R(b) (31)

with regularization parameter α > 0, functions Υk,Γ1 : R → R, k = 2, . . . ,K
and constraints

ut + div(bu)− u div(b) = 0 in (0, T ]× Ω, (32)

u(0, ·) = Y1 in Ω, (33)

b = 0 on (0, T )× ∂Ω, (34)
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where Yk ∈ L∞(Ω), k = 1, . . . ,K are given. The term R denotes additional
regularization terms and we will cover the following ones in our investigations:

(i) R1(b) ≡ 0,

(ii) R2(b) = β
2

T
∫

0

Γ2

(

‖∂tb(t, ·)‖
2
L2(Ω)N

)

dt,

(iii) R3(b) = γ
2

T
∫

0

Γ3

(

‖div b(t, ·)‖2L2(Ω)

)

dt,

(iv) R4(b) = R2(b) +R3(b),

where β, γ > 0 are regularization parameters and Γ2,Γ3 : R → R are given
functions. In the first two cases, we will additionally distinguish between two
further subcases: the set of constraints given by (32)-(34) and the same set plus
the additional constraint

div b = 0 in (0, T )× Ω. (35)

For the functions Υk, k = 2, . . . ,K and Γi, i = 1, 2, 3 we assume the following:
(a) the functions Υk : R→ R+

0 are lower semi-continuous,
(b) the functions Γi : R→ R+

0 are convex, monotonically increasing, in O(x)
and lim

x→∞
Γi(x) =∞.

In this case, the regularization terms in (8.1) and in (ii)-(iv) are well-defined.

8.2. Admissible sets

Before we can introduce a setting for an admissible set, we have a closer look at
the BV -regularity for our considered vector fields. So far, we have the obvious
setting

b ∈ V2

=
{

b ∈ L∞((0, T )× Ω)N ∩ L2((0, T ), BV (Ω))N | div b ∈ L2((0, T ), L∞(Ω))
}

.

For the existence and uniqueness of solutions we need vector fields b, which
have zero trace at the boundary of the spatial domain. The demand of
b ∈ L2((0, T ), BV0(Ω)) would not be enough, since the trace operator is not
continuous with respect to the weak∗-convergence, but with respect to the
strict convergence in BV (Ω). As we will get at best weak∗-convergence for
a subsequence of a minimizing sequence, the weak∗-limit would not need to
have zero trace at ∂Ω for almost all t ∈ (0, T ). This means that we need some
control of behavior of our BV -functions close to the boundary in order to ensure
that limits of weakly∗-convergent sequences of BV -functions with zero boundary
trace do have zero boundary trace. Therefore, we introduce the following setting.
Given some ε > 0, we define for an open bounded set O ⊂ RN with Lipschitz
boundary

Oε = {x ∈ O| dist(x, ∂O) ≤ ε} .
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Then, we set for δ ≥ 0 and ε > 0

Wε,δ(O) :=
{

w ∈ L1(O)| |w(x)| ≤ δ dist(x, ∂O) for almost all x ∈ Oε
}

, (36)

and obtain the following result:

Lemma 8.1 Let O ⊂ RN be open and bounded with Lipschitz boundary ∂O and
let ε > 0 and δ ≥ 0. Then, any f ∈ BV (O), satisfying f ∈ Wε,δ(O), lies in
BV0(O).

Proof: The proof can be easily deduced by using properties of BV -functions
and is presented in Lemma 4.2.1 in Jarde (2018). �

Lemma 8.2 Let O ⊂ RN be an open and bounded set with Lipschitz boundary
∂O and let ε > 0 and δ ≥ 0. Furthermore, let (fn) ⊂ L1(O) be convergent to
f ∈ L1(O) with fn ∈Wε,δ(O) for all n ∈ N. Then f ∈Wε,δ(O).

Proof: The proof can be found in Lemma 4.2.2 in Jarde (2018). �

With this technical assumption we define the set of admissible vector fields Sad
for the various optimal control problems. We take fixed M > 0, δ ≥ 0 and ε > 0
and we consider vector fields b : (0, T )× Ω→ RN with

b ∈ Sε,δad :=
{

b ∈ V2| b(t, ·) ∈Wε,δ(Ω) for almost all t ∈ (0, T )
}

and define the admissible set for M , ε and δ

SM,ε,δ
ad :=

{

b ∈ Sε,δad | ‖b‖L∞((0,T )×Ω))N + ‖div b‖L2((0,T ),L∞(Ω)) ≤M
}

. (37)

Obviously, we have that Sε,δad ⊂ V2
0. Furthermore, for the case of the additional

constraint div b ≡ 0, we define the set

SM,ε,δ
ad,0 :=

{

b ∈ SM,ε,δ
ad | div b ≡ 0

}

(38)

and in the case of time regularization

SM,ε,δ
ad,∂t

:=
{

b ∈ SM,ε,δ
ad | ∂tb ∈ L

2((0, T )× Ω)N
}

. (39)

The previous sections yield that there is a well-defined solution operator

S : L∞(Ω)×V1
0 → C([0, T ], L∞(Ω)− w∗), (u0, b) 7→ S(u0, b).

Based on this solution operator we define the control-to-state operator LY1 as

LY1 : V1
0 → C([0, T ], L∞(Ω)− w∗), b 7→ LY1(b) = S(Y1, b) (40)
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and its restriction to SM,ε,δ
ad as LY1,ad. We abbreviate the terms SM,ε,δ

ad , SM,ε,δ
ad,0

and SM,ε,δ
ad,∂t

to Sad, Sad,0 and Sad,∂t , respectively, if it is clear which constants
M , ε and δ are used in the current setting. Incorporating these control-to-
state mappings into the objective function J leads to various reduced objective
functions Fi for our considered cases: we define

in the case the reduced objective function
J(LY1,ad(·), ·) as

with admissible set

R = R1 F1 Sad
R = R1 F1,0 Sad,0
R = R2 F2 Sad,∂t
R = R2 F2,0 Sad,0 ∩ Sad,∂t
R = R3 F3 Sad
R = R4 F4 Sad,∂t

For these reduced objective functions we show in the subsequent theorem that
they attain their infima on their admissible sets, i.e. there are minima within
the admissible sets for each optimal control problem.

8.3. Existence of minima

Theorem 8.1 (Existence of minima of the optimal control problems) Let
M > 0, ε > 0 and δ ≥ 0 be fixed chosen. Then, the reduced objective functions
Fi, i ∈ {1, . . . , 4} and Fj,0, j = 1, 2 attain their minima on their admissible
sets.

Proof: We just show the statement for the objective function F4, since the
proof works in the same way for the other problems.

The objective function F4 has a finite infimum in Sad,∂t since F4(b) ≥ 0 for
all b ∈ Sad,∂t . Now, let (bn) ⊂ Sad,∂t be a minimizing sequence, i.e.

F4(bn) ≥ F4(bn+1) ∀ n ∈ N and lim
n→∞

F4(bn) = inf
b̃∈Sad,∂t

F4(b̃).

The sequence (bn) is bounded in L2((0, T ), BV (Ω))N :

F4(b1) ≥ F4(bn) ≥
Tα

2
Γ1





1

T

T
∫

0

‖Dbn(t, ·)‖2M(Ω)N×N dt



 ∀ n ∈ N

and thus,

sup
n∈N

T
∫

0

‖Dbn(t, ·)‖2M(Ω)N×N dt <∞.
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In addition, ‖bn‖L∞((0,T )×Ω)N ≤M for all n ∈ N, and hence (bn) is also bounded

in L2((0, T ), L1(Ω))N . Using Theorem 7.1, we obtain that there exists a
subsequence (bn) (which is labeled by n again) and some b ∈ L2((0, T ), BV (Ω))N

such that

T
∫

0

Γ1

(

‖Db(t, ·)‖2M(Ω)N×N

)

dt ≤ lim inf
n→∞

T
∫

0

Γ1

(

‖Dbn(t, ·)‖2M(Ω)N×N

)

dt (41)

and bn ⇀ b in L1((0, T )× Ω)N . For the limit b we have that b(t, ·) ∈ Wε,γ(Ω)
for almost all t ∈ (0, T ): denote

Nn := {t ∈ (0, T ), bn(t, ·) /∈ BV (Ω)N} ∪ {t ∈ (0, T ), bn(t, ·) /∈Wε,δ(Ω)N}

and

N := {t ∈ (0, T ), b(t, ·) /∈ BV (Ω)N}.

Then, Nn and N are null sets and

W = N ∪
⋃

n∈N

Nn

is also a null set as a countable union of null sets. Furthermore, due to Lemma
8.2 we conclude that for any t ∈ (0, T )\W

g ∈ {bn(t, ·)| n ∈ N}
w∗

⇒ g ∈Wε,δ(Ω)N

is satisfied. Consequently, in the same way we conclude that for any t ∈
(0, T )\W

g ∈ conv
(

{bn(t, ·)| n ∈ N}
w∗
)w∗

⇒ g ∈Wε,δ(Ω)N

is also satisfied. Thus, b(t, ·) ∈Wε,δ(Ω)N for almost all t ∈ (0, T ). In addition,
since (bn), (∂tbn) and (div bn) are bounded sequences in L∞((0, T ) × Ω)N ,
in L2((0, T ) × Ω)N and in L2((0, T ), L∞(Ω)), respectively, we conclude, using

standard arguments, that bn
∗
⇀ b in L∞((0, T )×Ω)N , ∂tbn ⇀ ∂tb in L2((0, T )×

Ω)N and div bn ⇀ div b in L2((0, T )×Ω) with div b ∈ L2((0, T ), L∞(Ω)) for some
subsequences. Due to Lemma 7.1, we know that each of these subsequences
contains a subsequence (labeled by n again) such that

T
∫

0

Γ2

(

‖∂tb(t, ·)‖
2
L2(Ω)N

)

dt ≤ lim inf
n→∞

T
∫

0

Γ2

(

‖∂tbn(t, ·)‖2L2(Ω)N

)

dt

and

T
∫

0

Γ3

(

‖div b(t, ·)‖2L2(Ω)

)

dt ≤ lim inf
n→∞

T
∫

0

Γ3

(

‖div bn(t, ·)‖2L2(Ω)

)

dt
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hold. We restrict ourselves to those subsequences. Summing up, we have shown
that b ∈ Sad,∂t . Finally, using Theorem 5.2, we obtain that

LY1,ad(bn)→ LY1,ad(b) in C([0, T ], Lr(Ω)) for 1 ≤ r <∞

and thus we get for all 2 ≤ k ≤ K

LY1,ad(bn)(tk, ·)− Yk → LY1,ad(b)(tk, ·)− Yk in L2(Ω) as n→∞.

In total, we obtain with estimate (41):

F4(b)

=
1

2

K
∑

k=2

Υk

(

‖LY1,ad(b)(tk, ·)− Yk‖
2
L2(Ω)

)

+
α

2

T
∫

0

Γ1

(

‖Db(t, ·)‖2M(Ω)N×N

)

dt

+
β

2

T
∫

0

Γ2

(

‖∂tb(t, ·)‖
2
L2(Ω)

)

dt+
γ

2

T
∫

0

Γ3

(

‖div b(t, ·)‖2L2(Ω)

)

dt

≤ lim inf
n→∞

[

1

2

K
∑

k=2

Υk

(

‖LY1,ad(bn)(tk, ·)− Yk‖
2
L2(Ω)

)

+
α

2

T
∫

0

Γ1

(

‖Dbn(t, ·)‖2M(Ω)N×N

)

dt

+
β

2

T
∫

0

Γ2

(

‖∂tbn(t, ·)‖2L2(Ω)

)

dt+
γ

2

T
∫

0

Γ3

(

‖div bn(t, ·)‖2L2(Ω)

)

dt





= lim inf
n→∞

F4(bn) = inf
b̃∈Sad,∂t

F4(b̃).

Thus, the infimum is attained and F4 has a minimum in Sad,∂t . �
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