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4Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de
Ciências, Departamento de Computação, Avenida Luiz Edmundo Carrijo

Coube, Caixa Postal 473, CEP 17033-360, Bauru, SP, Brasil
ferasoli@fc.unesp.br

Abstract: This paper analyses a trajectory tracking control
problem for a wheeled mobile robot, using integration of a kinematic
neural controller (KNC) and a torque neural controller (TNC), in
which both the kinematic and dynamic models contain uncertainties
and disturbances. The proposed adaptive neural controller (PANC)
is composed of the KNC and the TNC and is designed with use of
a modeling technique of Gaussian radial basis function neural net-
works (RBFNNs). The KNC is a variable structure controller, based
on the sliding mode theory and is applied to compensate for the dis-
turbances of the wheeled mobile robot kinematics. The TNC is
an inertia-based controller composed of a dynamic neural controller
(DNC) and a robust neural compensator (RNC) applied to com-
pensate for the wheeled mobile robot dynamics, bounded unknown
disturbances, and neural network modeling errors. To minimize the
problems found in practical implementations of the classical variable
structure controllers (VSC) and sliding mode controllers (SMC), and
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to eliminate the chattering phenomenon, the nonlinear and continu-
ous KNC and RNC of the TNC are applied in lieu of the discontin-
uous components of the control signals that are present in classical
forms. Additionally, the PANC neither requires the knowledge of
the wheeled mobile robot kinematics and dynamics nor the time-
consuming training process. Stability analysis, convergence of the
tracking errors to zero, and the learning algorithms for the weights
are guaranteed based on the Lyapunov method. Simulation results
are provided to demonstrate the effectiveness of the proposed ap-
proach.

Keywords: wheeled mobile robot, trajectory tracking, kine-
matic control, variable structure control, dynamic control, sliding
mode theory, neural networks, Lyapunov theory

1. Introduction

A wheeled mobile robot of type (2,0) is frequently used in the literature as a
test platform due to its mechanical simplicity and adequate representation of
the challenges of the control problem, which is treated in this paper (Campion
and Chung, 2008). However, considering the practical applications of this non-
holonomic system, the difficulty in exact modeling of practical systems, and the
unavoidable disturbances in control, effective tracking control design of uncer-
tain nonholonomic systems requires further study.

In addition to the stabilization problem in nonholonomic systems, the track-
ing control problem appears to be at least as interesting in practice. Based on
whether the system is described by a kinematic model or a dynamic model, the
tracking control problem is classified as either a kinematic or a dynamic tracking
control problem. The kinematic tracking control problem has been studied over
the last two decades (Morin and Samson, 2008). The dynamic tracking con-
trol problem of the nonholonomic system has received attention because most
practical nonholonomic mechanical systems are dynamic systems and contain
uncertainties and disturbances (Coelho and Nunes, 2005; Dong and Kuhnert,
2005). The motion of a wheeled mobile robot is eventually driven by force or
torque; thus, it is more suitable to design a controller that integrates the non-
holonomic kinematics controller with the dynamic model of the wheeled mobile
robot (Oh et al., 2004). Moreover, it is impossible to obtain the exact kinematics
and the dynamics of a wheeled mobile robot in reality. The design of a non-
holonomic kinematic controller and dynamic controller under these conditions
is still an open question. In the literature, most of the results on the dynamic
tracking control problem for nonholonomic systems have been proposed based
on the assumption that the kinematics of the system are exactly known and
uncertainties and disturbances exist only in the dynamics of the system. How-
ever, in practice, uncertainties and disturbances exist in both the kinematics
and dynamics.

This paper describes the adaptive neural controller, PANC, which addresses
the problem of integration of the KNC (based on the VSC) and the TNC (based
on the inertia-related control and SMC) and considers the presence of distur-
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bances in the kinematic and dynamic models, as well as the unknown dynamic
parameters.

The VSC and SMC designs use a high-speed switching control law to drive
the nonlinear predefined state trajectories onto a specified surface (known as
the sliding or switching surface) to attain the conventional goals of control, i.e.,
stabilization and tracking.

Due to robustness properties against uncertainties, modeling imprecision,
and disturbances, the VSC and SMC have become quite popular and are used
in many application areas (Utkin et al., 2009). However, this control scheme
contains important drawbacks that limit its practical applicability, such as high
frequency switching (chattering) and large authority control, which deteriorate
the system performance (Shuwen et al., 2000). The first drawback mentioned
is due to control actions that are discontinuous on the sliding surfaces and
cause high frequency switching in a boundary of the sliding surfaces. This high
frequency switching might excite unmodeled dynamics and impose undue wear
on the actuators, such that the control law will not be deemed acceptable. The
second drawback mentioned is based on the requirement of a priori knowledge of
the boundary of uncertainty in the compensators. If the boundary is unknown,
a large value must be applied to the gain of the discontinuous component of
the control signal, and this large control gain may intensify the high frequency
switching on the sliding surfaces.

There are studies, which have introduced the application of soft computing
methodologies, such as artificial neural networks, to improve performance and
reduce problems found in practical implementations of VSC and SMC, as men-
tioned in Yu and Kaynak (2009). In this paper, radial basis function neural
networks (RBFNNs) are applied to avoid chattering and compensate for un-
certainties and disturbances, because the structure of an RBFNN is simpler
than that of a multi-layer perceptron (MLP), the learning rate of an RBFNN is
generally faster than that of an MLP, and an RBFNN is easily mathematically
tractable (Haykin, 2008). Moreover, it should be emphasized at this point that
RBFNNs and fuzzy rule systems are functionally equivalent under certain mild
conditions (Jin and Sendhoff, 2003; Ciftcioglu, 2003).

In contrast with other works that consider the kinematics of wheeled mobile
robots without disturbances and applying the VSC and SMC theories to the
wheeled mobile robots (Liu et al., 2011; Elyoussef et al., 2010; Solea et al.,
2009; Kunpeng et al., 2009; Li et al., 2009; Lee et al., 2009; Park et al., 2009;
Defoort et al., 2007; Chwa, 2004; Chwa et al., 2002; Yang and Kim, 1999a, b;
Shim et al., 1995; Guldner and Utkin, 1994), the contributions of this paper are
as follows:

• The PANC (KNC plus TNC) is implemented based on partitioning of the
RBFNNs into several smaller subnets to obtain more efficient computa-
tion;

• The KNC is used to replace the discontinuous portion of the classical VSC,
thus avoiding chattering as well as suppressing the kinematic disturbances
without the need for prior knowledge of their boundaries;
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• The DNC of the TNC is used to compensate for the wheeled mobile robot
dynamics or unknown dynamic parameters (parametric uncertainties);

• The RNC of the TNC is used in the replacement of the discontinuous
components of the classical SMC to avoid chattering and to suppress the
bounded unknown disturbances without the need for any prior knowledge
of their boundaries;

• The stability analysis, convergence of the wheeled mobile robot control
system, and the learning algorithms for the weights are proven using Lya-
punov theory;

• The PANC neither requires the knowledge of the wheeled mobile robot
kinematics and dynamics nor the time-consuming training process.

This paper is organized as follows. Section 2 presents the kinematic and
dynamic models for wheeled mobile robots with disturbances, the GL (Ge-Lee)
matrix and operator, RBFNNs, neural networks modeling via RBFNNs, the
trajectory tracking control problem, and the corresponding error dynamics. The
PANC (KNC plus TNC) for reference trajectory tracking and stability analysis
are described in Section 3. Section 4 shows the simulation results, and Section
5 presents the conclusions.

2. Problem formulation

This section describes the kinematic and dynamic models, GL (Ge-Lee) ma-
trix and operator, RBFNNs, neural networks modeling by RBFNNs, trajectory
tracking control problem, and error dynamics for a wheeled mobile robot.

2.1. Kinematics and dynamics of a wheeled mobile robot

A typical example of a wheeled mobile robot is shown in Fig. 1. The wheeled
mobile robot contains two driving wheels, mounted on the same axis, and a free
front wheel. The two driving wheels are independently driven by two actuators
to achieve motion and orientation.

In addition, the position of the wheeled mobile robot in the Cartesian inertial

frame {Xo, O, Yo} can be described by a vector
−−−→
OCM , the orientation θ between

the wheeled mobile robot base frame {Xc, CM , Yc}, and the Cartesian inertial
frame, where CM identifies the center of mass coordinates (guidance point), with
PM , d, r, and 2R representing the intersection of the axis of symmetry with the
driven wheel axis, the distance from the point CM to the point PM , the radius
of the wheels, and the distance between the driven wheels, respectively.

The posture vector q ∈ ℜ3 of the wheeled mobile robot is described by three
generalized coordinates in the form of q = [xc yc θ]

T , where xc and yc are the
coordinates of CM .

Under the conditions of pure rolling and non-slipping, considering d = 0,
and taking into account the measurement noise, modeling uncertainties, and
disturbances, a kinematic model of the wheeled mobile robot can described by
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CM

PM

Figure 1. Wheeled mobile robot and coordinate systems

the following:

q̇ = S(q) (v(t) + dv(t)) , S(q) =





cos(θ)
sin(θ)
0

0
0
1



 , (1)

where q̇ are the constrained velocities in Cartesian coordinates, S(q) is a Ja-

cobian matrix, v(t) = [vl ωa]
T

represents the linear and angular velocities of

the wheeled mobile robot at point CM , and dv(t) = [δvl δωa
]
T

represents the
disturbances in v(t) only, which are assumed to have the following upper bounds:

|δvl | < εvl , |δωa
| < εωa

, (2)

with εvl and εωa
being positive bounded constants. Thus, the kinematic model

of a wheeled mobile robot (1) may be subject to the so-called matched distur-
bance (Martins et al., 2012).

In Fierro and Lewis (1998), if the surface friction F (q̇) and gravitational
torques G(q) are disregarded, the wheeled mobile robot dynamics for control
purposes are described as follows:

H̄(q)v̇ + C̄(q, q̇)v + τ̄cp = D̄(q)τ = τ̄ , (3)

where:

H̄(q) = ST (q)H(q)S(q) is the symmetric positive definite inertia matrix,

C̄(q, q̇) = ST (q)
(

H(q)Ṡ(q, q̇) + C(q, q̇)S(q)
)

is the centripetal and Coriolis

matrix,

τ̄ = D̄(q)τ = ST (q)D(q)τ is the input vector,

and
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τ̄cp = ST (q)
(

H(q)S(q)ḋv +H(q)Ṡ(q, q̇)dv + C(q, q̇)S(q)dv + τp

)

denotes the

bounded unknown disturbances, including the unstructured and unmodeled dy-
namics.

It is necessary to emphasize that the pattern properties of the boundedness
of H̄(q), the bounded norm of the C̄(q, q̇) and τ̄cp, and the skew-symmetry
˙̄H(q, q̇) − 2C̄(q, q̇) must be considered in the stability analysis of the control
system.

2.2. GL matrix and operator

This section briefly discusses the definition of GL matrix, which is denoted by
{.}, and its product operator by “•”. Readers are referred to Ge (1996) for a
detailed discussion on the motivation for using the GL matrix. To avoid any
possible confusion, [ . ] is used to denote the ordinary vector and matrix.

Assume that I0 is the set of integers and ∂kj , ζkj ∈ Rnkj , where nkj ∈ I0,

k = 1, 2, . . . , n, j = 1, 2, . . . , n. The GL row vector {∂k} and its transpose {∂k}T
are defined in the following manner:

{∂k} = {∂k1 ∂k2 ... ∂kn} , {∂k}T =
{
∂Tk1 ∂

T
k2 ... ∂

T
kn

}
. (4)

The GL matrix {Θ} and its transpose {Θ}T are defined, accordingly, as follows:

{Θ} =







∂11 ∂12 . ∂1n
∂21 ∂22 . ∂2n
. . . .
∂n1 ∂n2 . ∂nn







=







{∂1}
{∂2}
{.}
{∂n}







, (5)

{Θ}T =







∂T11 ∂T12 . ∂T1n
∂T21 ∂T22 . ∂T2n
. . . .
∂Tn1 ∂Tn2 . ∂Tnn







. (6)

For a given GL matrix {Ξ}

{Ξ} =







ζ11 ζ12 . ζ1n
ζ21 ζ22 . ζ2n
. . . .
ζn1 ζn2 . ζnn







=







{ζ1}
{ζ2}
{.}
{ζn}







, (7)

and the GL product of {Θ}T and {Ξ} is an n x n matrix defined as follows:

[

{Θ}T • {Ξ}
]

=







∂T11ζ11 ∂T12ζ12 . ∂T1nζ1n
∂T21ζ21 ∂T22ζ22 . ∂T2nζ2n
. . . .

∂Tn1ζn1 ∂Tn2ζn2 . ∂Tnnζnn







. (8)
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The GL product of a square matrix and a GL row vector is defined as follows.
Let Λk = ΛT

k = [πk1 πk2 . . . πkn ] , πkj ∈ Rm×nkj ,m =
∑n

j=1 nkj , then one
obtains the following:

Λk • {ζk} = {Λk} • {ζk} = [πk1ζk1 πk2ζk2 . . . πknζkn ] ∈ Rm×n. (9)

Note that the GL product should be computed first in a mixed matrix product.
For instance, in {A} • {B}C, the matrix [{A} • {B}] should be computed first,
followed by the multiplication of [{A} • {B}] with matrix C.

2.3. Radial basis function neural networks (RBFNNs)

In the field of control engineering, neural networks are often used to approximate
a given nonlinear function f(yent) up to a small error tolerance. The function
approximation problem can be stated formally as follows.

Definition 1: Given that f(yent) : ℜn → ℜm is a continuous function defined

on the set yent ∈ ℜn, and f̂(W, yent) : ℜl×m × ℜn → ℜm is an approximating
function that depends continuously on the parameter matrix W and yent, the
approximation problem is designed to determine the optimal parameter W ∗

such that, for a certain metric (or distance function) df ,

df (f̂(W
∗, yent), f(yent)) 6 εNN , (10)

for an acceptably small εNN (Haykin, 2008).

 

Figure 2. Schematic diagram of a RBFNN

In this paper, the Gaussian RBFNN is considered, which is a particular
network architecture that uses l Gaussian functions of the following form:

ai(yent) = exp

(

− (yent −mi)
T (yent −mi)

2σ2
v

)

, i = 1, 2, · · · , l, (11)
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where mi ∈ ℜn is the vector of centers, and σ2
v ∈ ℜ is the variance. As shown

in Fig. 2, each Gaussian RBFNN consists of three layers: the input layer, the
hidden layer that contains the Gaussian function, and the output layer. At the
input layer, the input space is divided into grids with a basis function at each
node defining a receptive field in ℜn. The output of the network, f̂(W, yent), is
given by the following:

f̂(W, yent) =WTa(yent), (12)

where a(yent) = [a1(yent) a2(yent) . . . al(yent) ]
T is the vector of the basis func-

tion. Note that only the connections from the hidden layer to the output are
weighted.

The Gaussian RBFNN has been quite successful in representing the complex
nonlinear function. It has been shown that a linear superposition of Gaussian
radial basis function (GRBF) gives an optimal mean square approximation to
an unknown function that is infinitely differentiable, the values of which are
specified by a finite set of points in ℜn. Furthermore, it has been proven that
any continuous functions (not necessary infinitely smooth) can be uniformly
approximated by a linear combination of Gaussians (Haykin, 2008).

2.4. Neural networks modeling by RBFNNs

Based on (3), it can be verified that H̄(q), and P.(.) are functions of q and
any variable expressed by “.” only; thus, static neural networks are sufficient
to model them. Assuming that h̄kj(q) (see Fig. 3), p

k
(.) (see Fig. 4) can be

modeled as follows:

h̄
kj
(q) =

∑

l

Wh̄
kjl
ξh̄

kjl
(q) + εh̄

kj
(q) =WT

h̄
kj

ξh̄
kj
(q) + εh̄

kj
(q), (13)

p
k
(.) =

∑

l

Wpkl
ξpkl

(.) + εpk
(.) =WT

pk
ξpk

(.) + εpk
(.), (14)

whereWh̄kjl
,Wpkl

∈ ℜ are the weights of the neural networks; ξh̄kjl
(q), ξpkl

(.) ∈
ℜ are the GRBFs with their respective input vectors q and “.” only; and εh̄kj

(q),

εpk
(.) ∈ ℜ are the modeling errors of h̄kj(q) and pk(.), respectively, and are

assumed to be bounded.
In Figs. 3 and 4, Wh̄kj

, and Wpk
are the vectors of the weights of RBFNNs;

ξh̄kj
(q), and ξpk

(.) are the vectors of GRBFs, expressed similarly as in (11), and
the l-th element is defined as follows:

ξh̄kjl
(q) = exp






−
∥
∥
∥q −mh̄kjl

∥
∥
∥

2

2σ2
h̄kjl




 = exp

(

−(q −mh̄kjl
)T (q −mh̄kjl

)

2σ2
h̄kjl

)

, (15)

ξpkl
(.) = exp

(−(.−mpkl
)T (.−mpkl

)

2σ2
pkl

)

, (16)
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Figure 3. Implementation of h̄kj(q)

where mh̄kjl
, mpkl

∈ ℜn are the vectors of centers, and σ2
h̄kjl

, σ2
pkl

∈ ℜ are the

variances, respectively.

Bearing in mind that C̄(q, q̇), as used in (3), is a dynamic neural network,
because it is a function of q and q̇, its modeling is required. Assume that c̄kj(q, q̇)
(see Fig. 5) can be modeled as follows:

c̄kj(q, q̇) =
∑

l

Wc̄kjl
ξc̄kjl

(z) + εc̄kj
(z) =WT

c̄kj
ξc̄kj

(z) + εc̄kj
(z), (17)

where z =
[
qT q̇T

]T ∈ R2n, Wc̄kjl
∈ ℜ is the weight of the neural network,

ξc̄kjl
(z) ∈ ℜ is a GRBF with the respective input vector z, and εc̄kj

(z) ∈ ℜ is
the modeling error of c̄kj(q, q̇) and is also assumed to be bounded.

In Fig. 5, Wc̄kj
is the vector of weights of RBFNNs, ξc̄kj

(q) is the vector of
GRBFs expressed similarly as in (11), and the l-th element is defined as follows:

ξc̄kjl
(z) = exp






−
∥
∥
∥z −mc̄

kjl

∥
∥
∥

2

2σ2
c̄
kjl




 = exp

(
−(z −mc̄

kjl
)T (z −mc̄

kjl
)

2σ2
c̄
kjl

)

, (18)

where mc̄
kjl

∈ ℜn is the vector of centers, and σ2
c̄
kjl

∈ ℜ is the variance.

Previously grounded in (3), the matrices H̄(q) and C̄(q, q̇) of the wheeled
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Figure 4. Implementation of pk (.)

mobile robot dynamics can be expressed by the following:

H̄(q) =
[

{WH̄}T • {ξH̄(q)}
]

+ EH̄(q),

C̄(q, q̇) = C̄(z) =
[

{WC̄}T • {ξC̄(z)}
]

+ EC̄(z), (19)

where {WH̄}, {ξH̄(q)}, {WC̄}, and {ξC̄(z)} are GL matrices, and their respective
elements areWh̄kj

, ξh̄kj
(q), Wc̄kj , and ξc̄kj(z). The EH̄(q) ∈ Rn×n and EC̄(z) ∈

Rn×n are matrices, and their modeling error elements are εh̄kj
(q) and εc̄kj

(z),
respectively.

It is important to emphasize that a vector P.(.) can be modeled with static
neural networks because it is a function of a variable only. Thus, P.(.) results
from the following equation:

P.(.) =
[

{WP }T • {ξP (.)}
]

+ EP (.), (20)

where {WP } and {ξP (.)} are GL vectors with their respective elements being
Wp

k
and ξp

k
(.), and EP (.) ∈ Rn is a vector with the modeling error elements

being εp
k
(.). Based on (20), Pv(σ

∗) and Ps(s) will be declared later.

2.5. Error dynamics for a wheeled mobile robot

To formulate the trajectory tracking control problem, a reference trajectory is
generated by the following reference kinematic model:

q̇r = S(qr)vr, ẋr = vlr cos(θr), ẏr = vlr sin(θr), θ̇r = ωar
, (21)
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Figure 5. Implementation of c̄kj(q, q̇)

where qr = [xr yr θr ]T ∈ ℜ3 denotes the reference posture of the wheeled mobile

robot, the structure of S(qr) is defined as in (1), and vr = [vlr ωar
]
T
denotes the

reference linear and angular velocities of the wheeled mobile robot, respectively.
With respect to (21), it is assumed that the signal vr(t) is chosen to produce the
desired motion and that vr(t), v̇r(t), qr(t), and q̇r(t) are bounded for all time.

The trajectory tracking control problem of a wheeled mobile robot is solved
by designing a control input v(t) = vc(t) = [vl ωa ]

T
such that the system (1)

follows reference (21) despite disturbances. In fact, the aim is to converge the
posture tracking errors (ex = xr − xc, ey = yr − yc, eθ = θr − θ) to zero while
respecting the following constraints:

|vl| 6 vlmax
, |ωa| 6 ωamax

. (22)

Converting the tracking errors in the inertial frame to the wheeled mobile robot
frame, the posture error equation of the wheeled mobile robot can be denoted
as follows:

z̃ =





x̃
ỹ

θ̃



 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0
0 0 1









ex
ey
eθ



 . (23)

The error dynamics can be obtained from the time derivative of (8) as follows:

˙̃z =






˙̃x
˙̃y
˙̃
θ




 =





vlr cos(θ̃)

vlr sin(θ̃)
ωar



+





−1
0
0

ỹ
−x̃
−1









vl + δvl

ωa + δωa



 . (24)
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3. Control design for trajectory tracking

In this section, the PANC (KNC plus TNC) is designed for kinematic and
dynamic models with uncertainties and disturbances. The KNC is based on
VSC theory, and the TNC consists of a DNC and a RNC, which are based
on the inertia-related control and SMC theories. In the KNC and RNC, the
RBFNNs are used as replacements for the discontinuous components of the
classical VSC and SMC to avoid chattering and to suppress uncertainties and
disturbances. For such a development, the selection for the sliding surfaces and
a brief description of the generic modeling of nonlinear systems for the VSC and
SMC designs are required (Utkin et al., 2009).

3.1. Choice of sliding surfaces

The VSC provides feedback control with high-speed switching, whose action
takes place in two phases: the reaching phase and the sliding phase. In the
reaching phase, the state trajectories of the system (linear or nonlinear) are led
to a location in the state space chosen by the designer. In general, this location
is defined by the linear surfaces of the control errors (z̃ = [x̃ ỹ θ̃]T ), known as
the switching or sliding surfaces (σ), and each one of them is described by the
following:

σi(z̃, t) = cTi z̃i = 0, i = 1, 2, (25)

In the sliding phase, the state trajectories are forced to remain on the sliding
surfaces. By choosing the appropriate constants cTi in (25), the errors will tend
exponentially to zero, according to the standard determined by these constants
during the sliding phase.

Thus, to control the kinematic model (1), the sliding surfaces are selected
as follows:

σ(z̃, t) =

[
σ1
σ2

]

=

[
k1x̃

k2ỹ + k3θ̃

]

, (26)

where k1, k2, and k3 are positive constants. One sliding surface, σi, i = 1, 2, is
associated with each control input.

3.2. Generic model for nonlinear systems

The derivation of the VSC and the associated properties are carried out directly
for an important class of nonlinear systems, whose model in the form of state
equations is given by the following:

˙̃z(t) = A(z̃, ρ, t) +B(z̃, ρ, t)vc(z̃, t) + db(t), (27)

with A(z̃, ρ, t) = A0(z̃, t) + ∆A(z̃, ρ, t) and B(z̃, ρ, t) = B0(z̃, t) + ∆B(z̃, ρ, t),
where z̃(t) is the vector of states, A(z̃, ρ, t) is the vector of nonlinear func-
tions, vc(z̃, t) is the vector of control inputs, ρ(z̃, t) is the vector of parametric
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uncertainties, B(z̃, ρ, t) is the matrix of nonlinear functions, ∆A(z̃, ρ, t) and
∆B(z̃, ρ, t) are the respective vector and the matrix representing the distur-
bances in the system arising from the parametric uncertainties, db(t) is the
vector of external disturbances, and A0(z̃, t) and B0(z̃, t) refer to the vector and
the matrix of nominal parameters, respectively.

The aim of this study is the derivation of a VSC that is robust to the
disturbances present in the kinematic model (1). To ensure the robustness of
the controller, the disturbances should be bounded, the matrix B(z̃, ρ, t) should
be nonsingular, and the following matching conditions must be satisfied:

∆A(z̃, ρ, t) = B0(z̃, t)ã, ∆B(z̃, ρ, t) = B0(z̃, t)b̃, db(t) = B0(z̃, t)d̃0, (28)

which means that ∆A(z̃, ρ, t), ∆B(z̃, ρ, t), and db(t) must belong to the image
of B0(z̃, t), ã and b̃ are the respective vector and matrix that incorporate the
parametric uncertainties, and d̃0 represents the external disturbances.

Thus, the error dynamics (24) can be rewritten based on (27) and (28) as
follows:

˙̃z = A0(z̃, t) +B0(z̃, t)vc(z̃, t) + db(t), (29)

because there are no parametric uncertainties (∆A = 0, ∆B = 0), and db(t) is
defined as follows:

db(t) = B0(z̃, t)dv(t), (30)

for the case of the matched disturbance (24).

3.3. Variable structure control design

To provide influence also on the process of reaching the sliding surfaces, the
control vc(z̃, t) will be chosen in such a manner that σ(z̃, t) is imposed to have
the dynamics given by the following first-order differential equation:

σ̇(z̃, t) = −Gsign(σ)−Kph(σ), (31)

where G = diag {G11, G22} and Kp = diag {Kp11
,Kp22

}, h(σ) = σ (which could
be another function because σTh(σ) > 0), and sign(σ) = σ

|σ| is a discontinuous

function.
By rewriting (31) for the i-th sliding surface, one obtains the following:

σ̇i(z̃, t) + kpi
σi = −gisign(σi). (32)

Now, returning to (31) and taking into account (29) results in the following:

σ̇(z̃, t) =
∂σ(z̃, t)

∂z̃
˙̃z +

∂σ(z̃, t)

∂t

=
∂σ

∂z̃
(A0 +B0vc + db) +

∂σ

∂t

=
∂σ

∂z̃
(A0 +B0vc) +

∂σ

∂z̃
db +

∂σ

∂t
, (33)



60 N.A. Martins, M. de Alencar, W.C. Lombardi, D.W. Bertol, E.R. de Pieri and H.F. Filho

with

∂σ(z̃, t)

∂z̃
=

[
k1 0 0
0 k2 k3

]

, (34)

from which the following control law is derived:

vc = −B−1
0σ

(

A0σ +
∂σ

∂t
+Gsign(σ) +Kpσ

)

, (35)

in which

A0σ =
∂σ

∂z̃
A0 =

[
k1vlr cos(θ̃)

k2vlr sin(θ̃) + k3ωar

]

, (36)

B0σ =
∂σ

∂z̃
B0 =

[
−k1 k1ỹ
0 −k2x̃− k3

]

, (37)

B−1
0σ

=

[ − 1
k1

− ỹ
k2x̃+k3

0 − 1
k2x̃+k3

]

, (38)

and k2 = k3α, 0 6 α 6
1

‖x̃‖+1
, similarly as in the work of Cheng and Tsai

(2005).
Defining

v∗c = − (Gsign(σ) +Kpσ) , (39)

and replacing (35) in (33) results in the following:

σ̇ = A0σ−B0σB
−1
0σ

(

A0σ +
∂σ

∂t
− v∗c

)

+dσ+
∂σ

∂t
= −Gsign(σ)−Kpσ+ψ, (40)

where using (30), one obtains:

dσ =
∂σ

∂z̃
db =

∂σ

∂z̃
B0dv =

[

−k1
(

δv
l
− ỹδωa

)

− (k2x̃+ k3) δωa

]

, (41)

with B0σB
−1
0σ

= In and ψ = dσ being the disturbances in the system.

3.4. Stability analysis

Upon choosing the Lyapunov function candidate in the form

V1 =
1

2
σTσ, (42)

which is positive definite, the sliding surface will be attractive, because the
control law (35) ensures that V̇1 is negative definite. Using the result described
by (40), an expression for V̇1 is immediately obtained, i.e.,

V̇1 = σT σ̇ = −σTGsign(σ)− σTKpσ + σTψ. (43)
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Because σTKpσ > 0, the condition V̇1 6 0 can be expressed as follows:

σTGsign(σ) > σTψ, (44)

and this is satisfied, if the diagonal elements of G meet the following restriction:

gi >
∣
∣ψ̄i

∣
∣ , ∀i. (45)

If gi > ψ̄i, then V̇1 6 0 (V̇1 = 0 only when V1 = 0), which implies that V1
may decrease to V1 = 0 exponentially; however, if gi < ψ̄i, there is a value of
V1 = V1ss > 0, for which V̇1 = 0 can lead to nonzero errors. Therefore, it is
possible to affirm that if the disturbances are better estimated, the results will
be better.

However, for the existence and reachability of a sliding mode, it is sufficient
to select V1 > 0 such that the sliding surface will be attractive, because the
control law (35) ensures that V̇1 < 0. Therefore, in the derivation of (35), it
is necessary that matrix B0σ be nonsingular. Because G is a positive definite
diagonal matrix in (35), the sliding mode can be enforced under the condition
that the matrix B0σ is positive definite, and the elements of the matrix G are suf-
ficiently large. However, in this control law (35), the matrix B0σ is nonsingular
only. To solve this problem, a diagonalization method is used, which is based on
the fact that the equivalent system is invariant to a nonsingular sliding surface
transformation, as verified in Theorem 2, and the proof is described in DeCarlo
et al. (1988). Loosely stated, Theorem 2 says that the motion in the sliding
mode is independent of a nonsingular and possibly time-varying transformation
of the sliding surfaces and that any nonsingular transformation with bounded
derivatives will produce the same equivalent system.

In particular, consider the new sliding surfaces as follows:

σ∗(z̃, t) = Ψ(z̃, t)σ(z̃, t), (46)

for an adequate nonsingular transformation Ψ(z̃, t) ∈ ℜm×m, which is defined
as follows:

Ψ(z̃, t) =

(
∂σ

∂z̃
B0

)T

= (B0σ )
T
. (47)

Differentiating V1 and replacing (33) and (41) results in the following:

V̇1 = σT σ̇ = σT ∂σ

∂z̃
A0 + σT ∂σ

∂z̃
B0vc + σT ∂σ

∂t
+ σT ∂σ

∂z̃
B0dv, (48)

and in the sequence, by performing the necessary algebraic manipulations and
using (46) and (47), one obtains the following:

V̇1 = σTB0σ (B0σ)
−1
A0σ + σTB0σ (B0σ)

−1 ∂σ
∂t

+ σTB0σvc + σTB0σdv

=
(

(B0σ )
T
σ
)T

(B0σ)
−1 (

A0σ + ∂σ
∂t

)
+
(

(B0σ )
T
σ
)T

(vc + dv)

= σ∗T

(B0σ)
−1 (

A0σ + ∂σ
∂t

)
+ σ∗T

(vc + dv) .

(49)
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Selecting the control law vc,

vc = − (B0σ )
−1

(

A0σ +
∂σ

∂t

)

− (Gsign(σ∗) +Kpσ
∗) . (50)

By replacing (50) in (49), V̇1 becomes:

V̇1 = −σ∗T

(Gsign(σ∗) +Kpσ
∗) + σ∗T

dv, (51)

with σ∗ =
[

−k21x̃ k1ỹk1x̃− (k2x̃+ k3)
(

k2ỹ + k3θ̃
) ]T

. Equation (51) is sim-

ilar to (43), and therefore, the same conclusions on the stability analysis are
valid, considering (44) and (45). Moreover, the sliding mode occurs in the man-
ifold σ∗(z̃, t) = 0. The transformation in (46) and (47) is nonsingular, and
therefore, the manifolds σ(z̃, t) = 0 and σ∗(z̃, t) = 0 coincide, and the sliding
mode takes place in the manifold σ(z̃, t) = 0, which was selected to design the
sliding motion with the desired properties.

3.5. KNC

The design of the classical sliding mode controllers faces major disadvantages.
First, because of control actions that are discontinuous across σ and σ∗, chat-
tering occurs at a boundary of the surfaces σ and σ∗. This sort of high fre-
quency switching (chattering) might excite unmodeled dynamics and impose
undue wear and tear on the actuators, such that the control law would not be
considered acceptable. Second, prior knowledge of the boundary of uncertainty
is required in the compensators. If the boundary is unknown, a large value must
be applied to the gain of the discontinuous components of the control signals,
and this large control gain might intensify the chattering on the sliding surface.
Thus, due to the delays, physical limitations of actuators, and imperfections
of switching, it is not possible to switch the control from one value to another
instantaneously. Because of this situation, the state trajectories vary in the
vicinity around the sliding surface instead of sliding over it. This phenomenon,
known as chattering, can be avoided or at least reduced with the use of RBFNNs
(expressed similarly in (20)), which are nonlinear and continuous functions, to
approximate Gsgn(σ∗) in (50) (Martins et al., 2012). Therefore, vc becomes,

vc = −B−1
0σ

(
A0σ + ∂σ

∂t

)
− P̂v(σ

∗)−Kpσ
∗

= −B−1
0σ

(
A0σ + ∂σ

∂t

)
−
[{

Ŵσ∗

}T

• {ξσ∗(σ∗)}
]

−Kpσ
∗,

(52)

where
{

Ŵσ∗

}

, {ξσ∗(σ∗)} are the Ge-Lee (GL) vectors (Ge, 1996) with their

respective elements being Ŵσ∗

k
and ξσ∗

k
(σ∗), and P̂v(σ

∗) is an n × 1 output
vector of the RBFNNs.
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Thus, for the stability analysis, one can choose the Lyapunov function can-
didate as follows:

V1 =
1

2

(

σTσ +

n∑

k=1

W̃T
σ∗

k
Γ−1
σ∗

k
W̃σ∗

k

)

, (53)

where Γσ∗

k
is a dimensionally compatible symmetric positive definite matrix,

and
{

W̃σ∗

k

}

=
{
Wσ∗

k

}
−
{

Ŵσ∗

k

}

.

By differentiating (53), making the necessary mathematical manipulations,
and replacing (52), V̇1 is obtained as follows:

V̇1 = −σ∗T

[{

Ŵσ∗

}T

• {ξσ∗(σ∗)}
]

−σ∗T

Kpσ
∗+σ∗T

dv−
n∑

k=1

W̃T
σ∗

k
Γ−1
σ∗

k

˙̂
Wσ∗

k
. (54)

Recall that

σ∗T

[{

W̃σ∗

}T

• {ξσ∗(σ∗)}
]

=
n∑

k=1

W̃T
σ∗

k
ξσ∗

k
(σ∗)σ∗

k. (55)

Choosing the learning law of RBFNNs to be

˙̂
Wσ∗

k
= Γσ∗

k
ξσ∗

k
(σ∗)σ∗

k, (56)

and substituting (55) and (56) into (54), V̇1 becomes as follows:

V̇1 6 −Kpmin
|σ∗|2 + σ∗T

dv − σ∗T
[

{Wσ∗}T • {ξσ∗(σ∗)}
]

, (57)

where Kpmin
is the minimum singular value of Kp.

The expression for V̇1 can be rewritten as follows:

V̇1 6 −Kpmin
|σ∗|2 + |∆fv − Pv| |σ∗| , (58)

with Pv =
[

{Wσ∗}T • {ξσ∗(σ∗)}
]

being the optimal compensation for ∆fv = dv.

According to the property of universal approximation of RBFNNs (Li et al.,
2004), there exists µ > 0 satisfying |∆fv − Pv| 6 µ, where µ is arbitrary and can
be chosen to be as small as possible. Assuming that µ 6 β |σ̄| with 0 < β < 1,

one obtains |∆fv − Pv| |σ∗| 6 β |σ∗|2 = βσ∗2

; therefore, the following inequality
for V̇1 results:

V̇1 6 − (Kpmin
− β)σ∗2

. (59)

Because of Kpmin
> β, V̇1 is guaranteed to be negative definite.
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3.6. TNC: DNC plus RNC

Given the desired control velocity vc (52), one defines now the auxiliary velocity
tracking error ec as follows:

ec = vc − v =

[
vc1 − vl
vc2 − ωa

]

. (60)

Let Λ be a symmetric diagonal positive definite matrix (Lewis et al., 2004), one
introduces the following definitions:

vr = vc + Λs

∫ t

0

ecdt, v̇r = v̇c + Λsec,

s = vr − v = ec + Λs

∫ t

0

ecdt, ṡ = v̇r − v̇ = ėc + Λsec, (61)

where vr is the reference velocity vector, v̇r is the reference acceleration vector, s
is the filtered tracking error vector, and

∫ t

0
ecdt is an auxiliary position tracking

error that does not reflect the position tracking error z̃ directly (23) and does
not have a physical meaning.

Let
{

ŴH̄

}

, and
{

ŴC̄

}

be the estimation of the true parameters of matrices

{WH̄}, and {WC̄} of (2.4), and one defines the control input (TNC controller)
as follows:

τ̄ = ˆ̄τ − γs =
ˆ̄H(q)v̇r +

ˆ̄C(q, q̇)vr + (Ks + In)s− γs

=

[{

ŴH̄

}T

• {ξH̄(q)}
]

v̇r +

[{

ŴC̄

}T

• {ξC̄(z)}
]

vr
︸ ︷︷ ︸

DNC

+(Ks + In)s− γs,

(62)

where (Ks + In)
T = (Ks + In) > 0, In is the identity matrix, and γs is the

constant plus proportional rate reaching law with the aim of compensating the
bounded unknown disturbances (Utkin et al., 2009), which is defined as follows:

γs = −Gssgn(s), (63)

with GT
s = Gs > 0.

It is necessary to emphasize that in (63), the discontinuous control signal
will cause a significant chattering problem, which will excite the high-frequency
dynamics of the nonlinear system. Because this outcome is highly undesirable,
to eliminate or minimize the chattering, a smooth approximation (proper con-
tinuous function, shifted sigmoid function, and hyperbolic tangent function) is
recommended instead of the sign function. Then,

sgn(s) = s/(|s|+ δ),
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sgn(s) = (1− e−δs)/(1 + e−δs), (64)

sgn(s) = tanh(δs),

where δ is a positive parameter.
The present control design proposes an RBFNN expressed in a manner sim-

ilar to (20) as a continuous approximation of Gssgn(s) in γs (63). Then,

γs = −P̂s(s) = −
[{

ŴPs

}T

• {ξPs
(s)}

]

︸ ︷︷ ︸

RNC

, (65)

where P̂s(s) is an n× 1 vector, in which p̂sk is the output of the k-th RBFNN.
Substituting v = vr − s, v̇ = v̇r − ṡ of (61), (62), and (65) into the dynamics

(3), one obtains the closed-loop system error dynamics:

H̄(q)ṡ =

[{

W̃H̄

}T

• {ξH̄(.)}
]

v̇r +

[{

W̃C̄

}T

• {ξC̄(.)}
]

vr + τ̄cp

+ E − C̄(q, q̇)s− (Ks + In)s−
[{

ŴPs

}T

• {ξPs
(s)}

] , (66)

where
{

W̃.

}

= {W.}−
{

Ŵ.

}

are parameter errors, and E = EH̄ (q) v̇r+EC̄ (z) vr

defines the vector of neural network modeling errors.
For the TNC, (62) and (65), the learning algorithms for the neural networks

must be developed such that the control system will be stable, and both the
velocity and position tracking errors converge to zero.

Let us consider the following Lyapunov function candidate:

V = V1 + V2

V2 = 1
2

(

sT H̄(q)s+
n∑

k=1

W̃T
H̄k

Γ−1

H̄k
W̃H̄k

+
n∑

k=1

W̃T
C̄k

Γ−1

C̄k
W̃C̄k

+
n∑

k=1

W̃T
Psk

Γ−1
Psk

W̃Psk

)

+
(∫ t

0
ecdt

)T

Λs

∫ t

0
ecdt,

(67)

where V1 corresponds to the function dependent on the KNC, as described in
Subsection 3.5, and designed for the posture kinematic model (1), which assumes
that V1 > 0 and V̇1 6 0, ∀t > 0. In (67), ΓH̄k

, ΓC̄k
, and ΓPsk

are dimensionally
compatible symmetric positive definite matrices, and clearly, V2 > 0 if and only

if ec 6= 0,
∫ t

o
ecdt 6= 0, s 6= 0,

{

W̃H̄

}

6= 0,
{

W̃C̄

}

6= 0, and
{

W̃Ps

}

6= 0.

By differentiating V2 of (67), and substituting the error dynamics (66), V̇2
is obtained as follows:

V̇2 = sT
[{

W̃H̄

}T

• {ξH̄(q)}
]

v̇r + sT
[{

W̃C̄

}T

• {ξC̄(z)}
]

vr

+ sT τ̄cp + sTE − sT
[{

ŴPs

}T

• {ξPs
(s)}

]

− sT (Ks + In)s

−
n∑

k=1

W̃T
H̄k

Γ−1

H̄k

˙̂
WH̄k

−
n∑

k=1

W̃T
C̄k

Γ−1

C̄k

˙̂
WC̄k

−
n∑

k=1

W̃T
Psk

Γ−1
Psk

˙̂
WPsk

+ 2eTc Λs

∫ t

0
ecdt,

(68)
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where the skew-symmetry property of ( ˙̄H − 2C̄) has been used.
Recall that

sT
[{

W̃H̄

}T

• {ξH̄(q)}
]

v̇r =
n∑

k=1

{

W̃H̄k

}T

•
{
ξH̄k

(q)
}
v̇rsk,

sT
[{

W̃C̄

}T

• {ξC̄(z)}
]

vr =

n∑

k=1

{

W̃C̄k

}T

•
{
ξC̄k

(z)
}
vrsk, (69)

sT
[{

W̃P

}T

• {ξP (s)}
]

=

n∑

k=1

W̃T
Psk

ξPsk
(s)sk,

and choose the weight learning laws of the neural networks to be

˙̂
WH̄k

= ΓH̄k
•
{
ξH̄k

(q)
}
v̇rsk −KH̄k

ΓH̄k
‖s‖ ŴH̄k

,

˙̂
WC̄k

= ΓC̄k
•
{
ξC̄k

(z)
}
vrsk −KC̄k

ΓC̄k
‖s‖ ŴC̄k

, (70)

˙̂
WPk

= ΓPsk
ξPsk

(s)sk −KPsk
ΓPsk

‖s‖ ŴPsk
,

where K.k = K. > 0 are positive constants. The terms K.kΓ.k ‖s‖ Ŵ.k of (70)
correspond to ε modification (Lewis et al., 2004) from the adaptive control
theory. Therefore, they must be added to eliminate the condition of persistent
excitation and to ensure the bounded neural network weight estimates.

Substituting (69), and (70) into (68), V̇2 results in the following:

V̇2 6 −Ksmin
‖s‖2 − sT Ins+ ‖τ̄cp‖ ‖s‖+ ‖E‖ ‖s‖ − sT

[

{WPs
}T • {ξPs

(s)}
]

+ 2eTc Λs

∫ t

0

ecdt+ kH̄ ‖s‖
n∑

k=1

W̃T
H̄k
ŴH̄k

+ kC̄ ‖s‖
n∑

k=1

W̃T
C̄k
ŴC̄k

+ kPs
‖s‖

n∑

k=1

W̃T
Psk

ŴPsk
, (71)

where Ksmin
are the minimum singular values of Ks, and K. = k. > 0 are the

positive constants.

Observing that tr
(

W̃T
. Ŵ.

)

=
n∑

k=1

W̃T
.k
Ŵ.k , with tr (.) being trace function,

and assuming that the unmodeled and unstructured disturbances are bounded
as well as the neural networks modeling errors such that ‖τ̄cp‖ 6 bcp and ‖E‖ 6

εNN , one obtains V̇2 as follows:

V̇2 6 −Ksmin
‖s‖2 − ‖ec‖2 + bcp ‖s‖+ εNN ‖s‖ − sT

[

{WPs
}T • {ξPs

(s)}
]

−
(∫ t

0

ecdt

)T

ΛT
s Λs

∫ t

0

ecdt+ kH̄ ‖s‖ tr
(

W̃T
H̄
ŴH̄

)

+ kC̄ ‖s‖ tr
(

W̃T
C̄
ŴC̄

)

+ kPs
‖s‖ tr

(

W̃T
Ps
ŴPs

)

. (72)
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Using the Schwartz inequality (Li et al., 2004), the trace function can be written
as follows:

• For matrices:

tr
(

W̃T
H̄
ŴH̄

)

= tr(W̃T
H̄
(WH̄ − W̃H̄)) =

〈

W̃H̄ ,WH̄

〉

−
∥
∥
∥W̃H̄

∥
∥
∥

2

F

6

∥
∥
∥W̃H̄

∥
∥
∥
F
‖WH̄‖F −

∥
∥
∥W̃H̄

∥
∥
∥

2

F
6

∥
∥
∥W̃H̄

∥
∥
∥
F
wH̄max

−
∥
∥
∥W̃H̄

∥
∥
∥

2

F

tr
(

W̃T
C̄
ŴC̄

)

= tr(W̃T
C̄
(WC̄ − W̃C̄)) =

〈

W̃C̄ ,WC̄

〉

−
∥
∥
∥W̃C̄

∥
∥
∥

2

F

6

∥
∥
∥W̃C̄

∥
∥
∥
F
‖WC̄‖F −

∥
∥
∥W̃C̄

∥
∥
∥

2

F
6

∥
∥
∥W̃C̄

∥
∥
∥
F
wC̄max

−
∥
∥
∥W̃C̄

∥
∥
∥

2

F
;

(73)

• For vectors:

tr
(

W̃T
Ps
ŴPs

)

= tr(W̃T
Ps
(WPs

− W̃Ps
)) =

〈

W̃Ps
,WPs

〉

−
∥
∥
∥W̃Ps

∥
∥
∥

2

6

∥
∥
∥W̃Ps

∥
∥
∥ ‖WPs

‖ −
∥
∥
∥W̃Ps

∥
∥
∥

2

6

∥
∥
∥W̃Ps

∥
∥
∥wPsmax

−
∥
∥
∥W̃Ps

∥
∥
∥

2

;

(74)

where w.max are positive constants.
Substituting (73), and (74) into (72), leads to the following expression re-

garding V̇2:

V̇2 6 −Ksmin
‖s‖2 − ‖ec‖2 + (bcp + εNN ) ‖s‖ − sT

[

{WPs
}T • {ξPs

(s)}
]

−
(∫ t

0

ecdt

)T

ηs

∫ t

0

ecdt+ kH̄ ‖s‖
(∥
∥
∥W̃H̄

∥
∥
∥
F
wH̄max

−
∥
∥
∥W̃H̄

∥
∥
∥

2

F

)

+kC̄ ‖s‖
(∥
∥
∥W̃C̄

∥
∥
∥
F
wC̄max

−
∥
∥
∥W̃C̄

∥
∥
∥

2

F

)

+ kPs
‖s‖

(∥
∥
∥W̃Ps

∥
∥
∥wPsmax

−
∥
∥
∥W̃Ps

∥
∥
∥

2
)

,(75)

or

V̇2 6 −Ksmin
‖s‖2 − ‖ec‖2 + |∆fs − Ps| ‖s‖ − ηsmin

∥
∥
∥

∫ t

0
ecdt

∥
∥
∥

2

+ kH̄ ‖s‖
(∥
∥
∥W̃H̄

∥
∥
∥
F
wH̄max

−
∥
∥
∥W̃H̄

∥
∥
∥

2

F

)

+ kC̄ ‖s‖
(∥
∥
∥W̃C̄

∥
∥
∥
F
wC̄max

−
∥
∥
∥W̃C̄

∥
∥
∥

2

F

)

+ kPs
‖s‖

(∥
∥
∥W̃Ps

∥
∥
∥wPsmax

−
∥
∥
∥W̃Ps

∥
∥
∥

2
)

,

(76)

where ηs = ΛT
s Λs, with ηsmin

being the minimum singular values of ηs, and

Ps =
[

{WPs
}T • {ξPs

(s)}
]

being the optimal compensation for ∆fs = bcp+εNN .
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According to the property of universal approximation of RBFNNs (Li et al.,
2004), there exists µs > 0 satisfying |∆fs − Ps| 6 µs, where µs is arbitrary
and can be chosen as small as possible. Therefore, by making the necessary
mathematical manipulations, one obtains for V̇2 the following expression:

V̇2 6 −‖ec‖2 − η
smin

∥
∥
∥

∫ t

0
ecdt

∥
∥
∥

2

− ‖s‖ (Ksmin
‖s‖ − µs

+ kH̄

(∥
∥
∥W̃H̄

∥
∥
∥
F
− wH̄max

2

)2

− kH̄
w2

H̄max

4

+ kC̄

(∥
∥
∥W̃C̄

∥
∥
∥
F
− wC̄max

2

)2

− kC̄
w2

C̄max

4

+kPs

(∥
∥
∥W̃Ps

∥
∥
∥− wPsmax

2

)2

− kPs

w2

Psmax

4

)

.

(77)

Thus, V̇2 is guaranteed negative as long as the term in parenthesis in (77) is
positive, and either

‖s‖ > µs + kH̄
w2

H̄max

4
+ kC̄

w2

C̄max

4
+ kPs

w2

Psmax

4

Ksmin

, (78)

or

∥
∥
∥W̃H̄

∥
∥
∥
F
>

wH̄max

2
+

√

w
2max
H̄

4
+

µs+kC̄

w2

C̄max
4

+kPs

w2

Psmax
4

kH̄

∥
∥
∥W̃C̄

∥
∥
∥
F
>

wC̄max

2
+

√

w2

C̄max

4
+

µs+kH̄

w2

H̄max
4

+kPs

w2
Psmax

4

kC̄

∥
∥
∥W̃Ps

∥
∥
∥ >

w2

Psmax

2
+

√

w2

Psmax

4
+

µs+kH̄

w2

H̄max
4

+kC̄

w2

C̄max
4

kps
.

(79)

Therefore, V̇2 is negative definite within a particular compact set and is nega-
tive semidefinite outside this set, as defined by (78) and (79). The stability of
the global system is ensured because V̇1 and V̇2 are guaranteed to be negative
definite; thus, V̇ is also guaranteed negative definite. According to a standard
Lyapunov theory and LaSalle’s Theorem (Lewis et al., 2004), all signals of ‖z̃‖,
‖ec‖,

∥
∥
∥

∫ t

0
ecdt

∥
∥
∥, ‖s‖,

∥
∥
∥W̃H̄

∥
∥
∥
F
, and

∥
∥
∥W̃C̄

∥
∥
∥
F

and
∥
∥
∥W̃Ps

∥
∥
∥ are uniformly ultimate

bounded (u.u.b.).
A representation of the proposed control system (PANC: KNC plus TNC)

is shown in the block diagram of Fig. 6, which consists of two control loops:

• Kinematics → Uses the KNC controller in rectangular coordinates (KNC
block) to control the wheeled mobile robot kinematics (WMR Kinematics
block) to achieve posture tracking;

• Dynamics → Uses the TNC controller to control the wheeled mobile robot
dynamics (WMR Dynamics block) to achieve velocity tracking.

The function of the PANC controller is to perform a mapping between the
known information pieces (e.g., information on the reference position, reference
velocity and sensors) and the actuator commands, designed for a wheeled mobile
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Figure 6. Block diagram of the proposed control structure – the PANC controller

robot that performs a given task. Thus, the problem of control design for
wheeled mobile robots can be described as follows: given the reference positions
qr(t) and the reference velocities q̇r(t), design a control law to generate the
torques of the actuators τ̄ , which make the wheeled mobile robot move with
velocity v to perform the action of a smooth control velocity input vc (v → vc
when t → ∞), and as a result, lim

t→∞
(qr − q) = 0 through the use of the KNC

controller. In short, the TNC controller contains the function that corrects the
auxiliary velocity tracking error ec, whereas the KNC controller aims to correct
only the posture tracking error (qr − q).

4. Simulation results

The simulations were carried out in the MATLAB/Simulink software using Eu-
ler’s method with an integration size of 0.001 s.

In the simulations, the dynamic model was made use of, described in Souza
Junior et al. (2002), whose parameters of the Magellan PRO ISR wheeled
mobile robot (Silveira Junior and Hemerly, 2004) are: mc = 22.9644 kg, and
Ic = 0.4732 kgm2.

Beyond the disturbances in the kinematic model,

dv =

[
δvl
δωa

]

=

[
0.5 + 0.1 sin(0.01t)
0.8 + 0.1 cos(0.01t)

]

, (80)

a Coulomb friction vector is added to the wheeled mobile robot dynamics as a
disturbance (Hu et al., 2002), i.e.,

τp =

[
fs1sgn(vl)
fs2sgn(ωa)

]

, (81)

where fs1 = fs2 = 1.5 N.
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Considering that the guidance point of the wheeled mobile robot is null
(d = 0) for the wheeled mobile robot dynamics (3), it reduces to

H̄(q)v̇ + τ̄cp = τ̄ , (82)

and because of the matrix C̄(q, q̇), the result is

C̄(q, q̇) =

[
0 0
0 0

]

, (83)

and the disturbance vector τ̄cp becomes as follows:

τ̄cp = H̄(q)ḋv + τ̄p. (84)

For the trajectory tracking control problem, an eight-shaped trajectory is consid-
ered and is given by xr = sin(t/10), yr = sin(t/20) and θr = Atan2(ẏr, ẋr)+kπ
with k = 0, 1 (Oriolo et al., 2002). The reference angular and linear velocities
are given by vlr =

√

ẋ2r + ẏ2r and ωar
= ÿrẋr−ẍr ẏr

ẋ2
r+ẏ2

r
. The trajectory initiates

with [xr, yr, θr]
T = [0, 0, π/6]

T
and the initial posture of the wheeled mobile

robot is taken as [xc, yc, θ]
T = [0.2, − 0.3, π/3]T . Additionally, the reference

initial velocities are vlr (0) = 0.1118 m/s and ωar
(0) = 0.0 rad/s, and a full

cycle is completed in approximately 125.0 s. This trajectory is more general,
because its curvature is not constant; thus, the angular velocity will not display
a steady value throughout the trajectory tracking; this situation may result in
possible position tracking errors oscillating near zero during the movement of
the wheeled mobile robot, as shown later in the simulations.

In the simulations, integration of the kinematic controller is considered in
rectangular coordinates (KNC) with a torque controller. This torque controller
can be of the type of computed-torque (Oh et al., the 2004), neural network
controller (Hu and Yang, 2001), or the proposed TNC, in accordance with the
wheeled mobile robot dynamics (82) (Martins et al., 2012), which are related
by convenience.

The computed-torque controller (CTC) considers the precise knowledge of all
parameters of the wheeled mobile robot dynamics (82) and ignores disturbances
of any nature, i.e., τ̄cp = 0. Thus, the law of control of the type computed-torque
is given as follows:

τ̄ = H̄(q)ur, (85)

with

ur = v̇c +Krec, (86)

where ec is the auxiliary velocity tracking error, KT
r = Kr > 0, and v̇c is the

time derivative of the desired control velocity vc (60). Therefore, substituting
(85) and (86) into (82) produces the following:

H̄(q) (ėc +Krec) = 0, (87)
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which implies that v converges to vc with exponential rate −Kr. In Fierro and
Lewis (1995), the stability of the control law (85) is established locally. It is
important to note that the test requires that the parameters of the system be
determined with precision and that the system be free of disturbances.

The neural network controller (NNC) (Yu and Yang, 2001) considers the
completely unknown wheeled mobile robot dynamics (82) under unmodeled dis-
turbances (81).

Thus, the law of the neural network control is given as follows:

τ̄ = H̄ (q) v̇c + K̄vec = Ȳ (v̇cc) ϕ̄+ K̄vec = Ȳ (v̇cc)
ˆ̄W + K̄vec, (88)

where ec is the auxiliary velocity tracking error, K̄v is a diagonal positive defined
design matrix, as well as a robustness term to compensate for the unmodeled

disturbances, ˆ̄W is a vector that represents the connection weights of the neural
network and is also the approximation of ϕ̄, v̇c is the time derivative of the
desired control velocity vc (60), Ȳ (v̇cc) is the wheeled mobile robot regressor
(i.e., a coefficient matrix consisting of the known functions of wheeled mobile
robot, or, in this case, the control acceleration v̇cc), and ϕ̄ is a vector consisting
of the known and unknown wheeled mobile robot dynamics (in this case, mass
m and moment of inertia I). Therefore, Ȳ (v̇cc) and ϕ̄ are defined as follows:

Ȳ (v̇cc) =

[
v̇c1 0
0 v̇c2

]

ϕ̄ =
[
m I

]
.

(89)

In Yu and Yang (2001), the vector of estimation error of ϕ̄ is given as ˜̄W =

ϕ̄ − ˆ̄W = W̄ − ˆ̄W , and
˙̄̃
W = − ˙̄̂

W . Therefore, the learning law for the neural
network is obtained as follows:

˙̄̂
W = −Γ̄Ȳ T ec, (90)

where Γ̄ is a positive constant design matrix, and the weights ˆ̄Wof the neural
network are initialized to zero without any prior knowledge of the system un-
certainties and disturbances. The stability of the proposed control system and
the convergence of tracking errors to zero are rigorously proved using Lyapunov
theory (Yu and Yang, 2001).

In the simulations, the gains of the controllers are empirically chosen to
obtain acceptable tracking errors and control efforts, thus preventing damage
to the actuators. To view the influence of the disturbances on the dynamic
model of the wheeled mobile robot, the same gains as in the nominal case (free
of disturbances) are considered for the CTC, NNC and TNC controllers, as
well as for the KNC controller. It should be noted that for the KNC and TNC
controllers, the centers of the localized Gaussian radial basis functions are evenly
distributed to span the input space of the neural networks (Passold, 2009). The
weights of the RBFNNs were initialized to zero without any prior knowledge of
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the system uncertainties and disturbances. It is important to emphasize that
different tracking performances can be achieved by adjusting the parameter
gains and other factors, i.e., the size of the RBFNNs, centers, and variances of
the Gaussian radial basis functions.

The parameters of the controllers are as follows:

• KNC → k1 = 1, k2 = 1, k3 = 0.25, Kp11
= 7.5, Kp22

= 15, Γ
σ∗

k

= 0.37,

σσ∗

k
=

√
1.5, and the number of hidden neurons = 25;

• CTC → Kr = 5;
• NNC → Γ̄11 = 120, Γ̄22 = 25, K̄v11 = 45, K̄v22 = 25;
• TNC → Λs11 = 0.5, Λs22 = 0.5, Ks11 = 20, Ks22 = 12, ΓH̄11

= 3.75,
ΓH̄22

= 10, ΓPsk
= diag {0.5, 0.5}, kH̄k

= 0.01, kpsk
= 0.01, σH̄kj

= 4,

σpsk
=

√
1.5, and the number of hidden neurons = 25.

The simulation results are obtained by taking into account the kinematic and dy-
namic models with disturbances and without disturbances (free of disturbances)
and the following analysis, considering the respective control strategies:

• Control 1: Integration of the KNC controller (with or without the neural
term) (52) or (56) with the CTC controller;

• Control 2: Integration of the KNC controller (with or without the neural
term) (52) or (56) with the NNC controller;

• Control 3: Integration of the KNC controller (with or without the neural
term) (52) or (56) with the TNC controller.

4.1. Nominal case: use of KNC controller with or without the neural
term

In this case, the kinematic and dynamic models are free of disturbances, i.e.,
there are no disturbances.

For the results of simulations, Figs. 7 and 8 show that with the use of
Controls 1, 2, and 3, the RMR satisfactorily follows the desired trajectory.

 

Figure 7. Trajectory tracking without the neural term of the KNC controller
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Figure 8. Trajectory tracking without the neural term of the KNC controller

 

Figure 9. Estimated parameters for the inertia matrix H̄(q) by NNC controller

Then, Figs. 9, 10, 11 and 12 verify the estimation of parameters of the
inertia matrix H̄(q) for Controls 2 and 3. Considering a suitable choice of gains
for NNC controller of Control 2, without the neural term of the KNC controller
(Fig. 9), the estimated parameters tend to the true parameters of the inertia
matrix (H̄11 = 22.9644, and H̄22 = 0.4732), whereas with the neural term of the

KNC controller (Fig. 11), the estimated parameter ˆ̄H11 is located significantly

away from its true parameter, and the estimated parameter ˆ̄H22 is closer to its
true parameter. By observation, for TNC controller of Control 3, the estimated
parameters tend to stay close to the true parameters of the inertia matrix H̄(q).
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Figure 10. Estimated parameters for the inertia matrix H̄(q) by TNC controller
using the KNC controller without the neural term

This result is obtained with a suitable choice of gains, with or without the neural
term of the KNC controller (Figs. 10 and 12).

 

Figure 11. Estimated parameters for the inertia matrix H̄(q) by NNC controller

Moreover, after simulations for this case with or without the neural term of
the KNC controller, the results obtained were the following:

• The posture tracking errors (ex, ey, eθ) tend to converge to zero with the
use of Controls 1, 2, and 3;
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Figure 12. Estimated parameters for the inertia matrix H̄(q) by TNC controller
using the KNC controller with the neural term

• The linear and angular velocities
(

v(t) = vc(t) = [vl ωa]
T
)

do not display

chattering and these velocities tend to the desired values
(

vr = [vlr ωar
]
T
)

,

which represent the kinematic control signals (KNC controller) for the use
of Controls 1, 2, and 3;

• The control torques τ (dynamic control signals) using Controls 1, 2, and
3 also do not display chattering, and their magnitudes are within the
allowable ranges at the beginning of the transient behavior, these torques
showing steady-state behaviors that converge to zero;

• The auxiliary velocity tracking errors ec tend to converge to zero, and the

RBFNN outputs
(

P̂v(σ
∗)
)

of the KNC controller also tend to converge to

zero with the absence or presence of the neural term (neural compensator)
of the KNC controller by use of Controls 1, 2, and 3;

• Both the sliding surfaces σ, new sliding surfaces σ∗, and their derivatives
(σ̇, σ̇∗) converge to zero, and the chattering is eliminated for the use of
Controls 1, 2, and 3;

• The values of the RBFNN outputs
(

P̂s(s)
)

of the robustness term γs of

the TNC controller of Control 3 show that if there are no disturbances τp,
these outputs tend to converge to zero, i.e., they present behaviors similar
to the disturbances (magnitudes in absolute values) in the steady-state;

• The filtered tracking errors s converge to zero, and the chattering is elim-
inated by the use of Control 3.
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Figure 13. Trajectory tracking using the KNC controller without the neural
term

4.2. Case with disturbances: use of the KNC controller without the
neural term

In Fig. 13, it appears that Control 1 does not show good performance in the
reference trajectory tracking because of the disturbances that are not considered
in the CTC controller design. The wheeled mobile robot tracks the reference
trajectory by the use of the NNC controller of Control 2. With Control 3, which
uses the TNC controller designed with neural terms to estimate the parameters
of dynamics (parametric uncertainties) and compensate for the disturbances,
the wheeled mobile robot is guided over a satisfactory reference trajectory.

Regarding the posture tracking errors shown in Fig. 14, it is noticed that the
influence of the disturbances visibly affects the performance of Control 1, which
(for reasons described previously) cannot compensate for the disturbances, thus
showing significant posture tracking errors with behaviors alternating near zero.
With the use of Controls 2 and 3, these errors converge quickly to zero, which
is justified for the same reasons as described previously.

With respect to the control torques in Fig. 15, the behavior of the effects
produced by Control 1 is similar to the behavior generated for Controls 2 and 3,
except at the beginning of the trajectory and in the change of its direction. Fur-
thermore, these effects, produced by Control 1 are not sufficient to compensate
for the disturbances, resulting in auxiliary velocity tracking errors (Fig. 16) and
consequent posture tracking errors, as well (Fig. 14). Therefore, the wheeled
mobile robot does not adequately follow the reference trajectory (Fig. 13). The
effects produced for Controls 2 and 3 compensate for the disturbances and allow
the wheeled mobile robot to appropriately follow the reference trajectory. On
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Figure 14. Posture tracking errors using the KNC controller without the neural
term

the other hand, Fig. 15 verifies that in both Controls 1 and 3, the chattering
effect does not appear in the behaviors of the control torques, whereas Control
2 presents some chattering at the beginning of the trajectory and in the change
of its direction.

It is known that the KNC controller contains a function to correct the posture
tracking errors, whereas the CTC, NNC or TNC controller aims to correct the
auxiliary velocity tracking errors. With the integration of these controllers,
which results in Controls 1, 2 and 3, perfect velocity tracking is not maintained.
Thus, these auxiliary velocity tracking errors begin to be viewed as disturbances
to the kinematic model.

Given the above statements, with the use of Control 1 (Figs. 16, 20, 21, 22
and 23), the first auxiliary velocity tracking error ec1 , the first sliding surface σ1
and the derivative σ̇1, as well as the first new sliding surface σ∗

1
and the derivative

σ̇∗
1
tend to converge to zero. However, the second auxiliary velocity tracking

error ec2 , the second sliding surface σ2, and the second new sliding surface σ∗
2

do not converge to zero, whereas their derivatives σ̇2 , σ̇∗
2
converge to zero.

This observation is due to inadequate compensation of the disturbances (Fig.
24), affecting the wheeled mobile robot, because these disturbances primarily
influence the behavior of the control angular velocity (Fig. 25), thereby causing
the related auxiliary velocity tracking error and the consequent posture tracking
errors.

Regarding Control 2 (Figs. 17, 20, 21, 22 and 23), there is a behavior
similar to that for Control 1 regarding the auxiliary velocity tracking errors ec,
the sliding surfaces σ, the new sliding surface σ∗, and their derivatives σ̇, σ̇∗;
the disturbances (Fig. 24) have a small influence on the behavior of the control
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Figure 15. Control torques using the KNC controller without the neural term

angular velocity (Fig. 25), but the control torques were sufficient to compensate
for these disturbances and make the wheeled mobile robot track the reference
trajectory.

In the case of Control 3 (Figs. 18, 19, 20, 21, 22 and 23), the auxiliary
velocity tracking errors ec, the sliding surfaces σ, the new sliding surfaces σ∗,
and the filtered tracking errors s tend to converge to zero, from which it can
be said that the control velocities (Fig. 25) converge to their expected values,
and the disturbances (Fig. 24) affecting the wheeled mobile robot are properly
compensated.

It must be emphasized that for Controls 1, 2 and 3, the RBFNN outputs
of the KNC controller (Figs. 16, 17 and 18) are zero at all times due to the
absence of the neural term (neural compensator) of the KNC controller (Ŵσ̄k

is null). With the incidence of disturbances in the wheeled mobile robot, the
RBFNN outputs of the robustness term γs of the TNC controller of Control 3
attempt to compensate for them and exhibit behaviors with magnitudes similar
to the disturbances, as shown in Fig. 24. Additionally, in examining the amount
of compensation of these disturbances, the auxiliary velocity tracking errors ec
and filtered tracking errors s are minor. Already the NNC controller of Control
2 attempts to compensate for them, by generating control torques through the

estimation of the parameters, which justifies the parameter ˆ̄H11 to be so far away
from its true value. Furthermore, in examining the amount of compensation of
these disturbances, the auxiliary velocity tracking errors ec are minor.

Looking at the estimation of the parameters of the inertia matrix H̄(q)
by the NNC controller of Control 2, it is possible to observe that according

to Fig. 26, the estimated parameter ˆ̄H11 tends to converge to a value away
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Figure 16. Auxiliary velocity tracking errors of Control 1 and RBFNN outputs
(P̂v(σ

∗), (52)) of the KNC controller without the neural term

from its true value, whereas the estimated parameter ˆ̄H22 tends to approach
its true value. This is due to the fact that the NNC controller of Control 2
attempts to compensate for the disturbances generating control torques through
this estimation of the parameters.

With respect to the estimation of the parameters of the inertia matrix H̄(q)
by the TNC controller of Control 3, it is possible to observe that according

to Fig. 27, the estimated parameter ˆ̄H11 tends to approach its true value.

However, the estimated parameter ˆ̄H22 tends to converge to a value away from
its true value. This observation can be explained by the fact that the choice
of adaptation gains Γsk and the robustness term γs (65) of the TNC controller
of Control 3 for compensation of the disturbances affecting the wheeled mobile
robot will influence the behavior of the estimated parameters.

Moreover, for Controls 1, 2 and 3, no chattering occurs on the sliding surfaces
and new sliding surfaces, as shown in Figs. 20 and 22, respectively. In Fig. 19,
for Control 3, the chattering in the filtered tracking errors is eliminated.

By observing Figs. 15 and 25, it can be verified that no chattering occurs in
the control torques (except in the Control 2) as well as in the linear and angular
velocities.

Finally, one significant difference must be noted: Control 1 suffers only from
the influence of the disturbances; Control 2 suffers from and compensates for the
influence of disturbances through the estimation of the parameters, which may
result in the imposition of unnecessary torques to the wheeled mobile robot;
Control 3 suffers from and compensates for such influence through the RNC
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Figure 17. Auxiliary velocity tracking errors of Control 2 and RBFNN outputs
(P̂v(σ

∗), (52)) of the KNC controller without neural term

of the TNC controller, and the DNC of the TNC controller only compensates
for the dynamics (i.e., the inertia matrix), allowing the application of torques
required for wheeled mobile robot.

4.3. Case with disturbances: use of the KNC controller with the
neural term

For the use of Controls 2 and 3, Fig. 28 verifies that the wheeled mobile robot
presents good performance in reference trajectory tracking. The reasons for
such performance are the same as the ones mentioned in Subsections 4.1 and
4.2. In the use of Control 1, a significant improvement is evidenced in the
reference trajectory tracking compared with that of Control 1 of Subsection
4.2. Because the disturbances are not considered in the CTC controller, these
events cause auxiliary velocity tracking errors and consequent posture tracking
errors. However, the auxiliary velocity tracking errors (Fig. 31) are viewed as
disturbances for the kinematic model and are compensated by the neural term
(neural compensator) of the KNC controller, thus ensuring that the posture
tracking errors tend to converge to zero (Fig. 29).

Observing Fig. 29, with the use of Controls 2 and 3, we see that the posture
tracking errors converge quickly to zero, and the behaviors are similar to those
of Controls 2 and 3 of Subsections 4.1 and 4.2. For the use of Control 1 and
for reasons described previously, the posture tracking errors tend to converge to
zero.

With respect to the control torques of Fig. 30, the comments of Subsection
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Figure 18. Auxiliary velocity tracking errors of Control 3 and RBFNN outputs
(P̂v(σ

∗), (52)) of the KNC controller without neural term

4.2 are also valid for Controls 1, 2 and 3.
For Control 1, Fig. 31 shows that the existence of auxiliary velocity track-

ing errors must be due to disturbances that were not duly compensated by the
CTC controller, which contains the function to correct these errors. However,
because the function of the KNC controller is to correct the posture tracking
errors, the RBFNN outputs of this controller attempt to compensate for the
auxiliary velocity tracking errors, which are viewed as disturbances in the kine-
matic model. With this approach, the posture tracking errors tend to converge
to zero and therefore show satisfactory improvement in trajectory tracking.

In Controls 2 and 3 (Figs. 32 and 33), the NNC and TNC controllers correct
the auxiliary velocity tracking errors, because this controller has the ability to
estimate the unknown parameters of the wheeled mobile robot dynamics and to
compensate for the disturbances acting upon the wheeled mobile robot. More-
over, the RBFNN outputs of the KNC controller compensate for the possible
auxiliary velocity tracking errors, thus correcting the posture tracking errors
and producing more satisfactory reference trajectory tracking.

It is known that the KNC controller contains the function that corrects
the posture tracking errors, whereas the CTC, NNC or TNC controller aims
to correct the auxiliary velocity tracking errors. With the integration of these
controllers, which results in Controls 1, 2 and 3, perfect velocity tracking is not
maintained. Thus, these auxiliary velocity tracking errors begin to be viewed
as disturbances for the kinematic model.

It should be noted that for Control 2, the filtered tracking errors (Fig. 34)
converge to zero, and the chattering is eliminated. Additionally, for the Controls
1, 2 and 3, the sliding surfaces (Fig. 35) and new sliding surfaces (Fig. 37)
converge to zero, and the chattering is eliminated.
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Figure 19. Filtered tracking errors using the KNC controller without the neural
term

Figure 20. Sliding surfaces using the KNC controller without the neural term
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Figure 21. Derivatives of sliding surfaces using the KNC controller without the
neural term

Figure 22. New sliding surfaces using the KNC controller without the neural
term



84 N.A. Martins, M. de Alencar, W.C. Lombardi, D.W. Bertol, E.R. de Pieri and H.F. Filho

Figure 23. Derivatives of the new sliding surfaces using the KNC controller
without the neural term

 

Figure 24. Disturbances (80) and (81) and RBFNN outputs (P̂s(s)) of the
robustness term γs (65) of the TNC controller of Control 3 using the KNC
controller without the neural term
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Figure 25. Profile of the velocities using the KNC controller without the neural
term

 

Figure 26. Estimated parameters for the inertia matrix H̄(q) (62) by NNC
controller using the KNC controller without the neural term
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Figure 27. Estimated parameters for the inertia matrix H̄(q) (62) by TNC
controller using the KNC controller without the neural term

 

Figure 28. Trajectory tracking using the KNC controller with the neural term
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Figure 29. Posture tracking errors using the KNC controller with the neural
term

 

Figure 30. Control torques using the KNC controller with the neural term
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Figure 31. Auxiliary velocity tracking errors of Control 1 and RBFNN outputs
(P̂v(σ

∗), (52)) of the KNC controller with the neural term

 

Figure 32. Auxiliary velocity tracking errors of Control 2 and RBFNN outputs
(P̂v(σ

∗), (52)) of the KNC controller with the neural term


