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Abstract: We analyze the convergence of discretization schemes
for the adjoint equation arising in the adjoint-based derivative com-
putation for optimal control problems governed by entropy solutions
of conservation laws. The difficulties arise from the fact that the cor-
rect adjoint state is the reversible solution of a transport equation
with discontinuous coefficient and discontinuous end data. We de-
rive the discrete adjoint scheme for monotone difference schemes in
conservation form. It is known that convergence of the discrete ad-
joint can only be expected if the numerical scheme has viscosity of
order O(hα) with appropriate 0 < α < 1, which leads to quite vis-
cous shock profiles. We show that by a slight modification of the
end data of the discrete adjoint scheme, convergence to the correct
reversible solution can be obtained also for numerical schemes with
viscosity of order O(h) and with sharp shock resolution. The theo-
retical findings are confirmed by numerical results.
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1. Introduction

We consider optimal control problems for entropy solutions of scalar conserva-
tion laws

yt + f(y)x = 0, (t, x) ∈ ΩT
def
= (0, T )× R,

y(0, x) = u(x), x ∈ R,
(1)

where f ∈ C2(R) is a strongly convex flux function, i.e.,

f ∈ C2(R), f ′′ ≥ mf ′′ > 0 (2)
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with a contant mf ′′ > 0. Here, u ∈ L1(R) ∩BV (R), where BV (R) denotes the
space of functions of bounded variation.

The objective function is of the form

J(y)
def
=

∫

R

γ(x)ψ(y(t̄, x), yd(x)) dx (3)

with a weighting function γ ∈ C1
c (R), ψ ∈ C1,1

loc (R) and data yd ∈ C1(I). Often,
a continuously differentiable regularization term R(u) is added, but we focus
only on the differentiability properties and the numerical approximation of the
state dependent part (3).

The developments in this paper can also be extended to problems (1) with
source terms. This leads to additional technical complications and we prefer to
confine our study to conservation laws.

It is well known that, in general, the weak solutions of (1) develop dis-
continuities after finite time and that uniqueness holds only in the class of
entropy solutions. We recall that for given u ∈ L1(R) ∩ BV (R) a function
y = y(u) ∈ L∞(ΩT ) is an entropy solution of (1) in the sense of Kružkov (1970)
if it satisfies for all convex functions (entropies) η ∈ C0,1

loc (R) with corresponding
entropy fluxes q(y) =

∫ y

0 η
′(s) f ′(s) ds the entropy inequality

η(y)t + q(y)x ≤ 0

in the sense of distributions and the initial condition in the sense

ess lim
tց0

‖y(t, ·)− u‖1,K = 0 ∀K ⊂⊂ R.

As we will recall in Section 2, it is known that under a generic nondegeneracy
assumption the mapping

u ∈ PC1(R; z1, . . . , zN) 7→ J(y(u)) (4)

is Fréchet differentiable, where PC1(R; z1, . . . , zN ) denotes the space of piece-
wise C1 functions with possible discontinuities at z1, . . . , zN , see Pfaff and Ul-
brich (2015), Ulbrich (2002, 2003). Moreover, the derivative admits the adjoint
representation

d

du
J(y(u)) · δu =

∫

R

p(0, x) δu(x) dx, (5)

where p is a reversible solution, according to Definition 1 and Theorem 3 of the
adjoint equation, a transport equation with possibly discontinuous coefficient

pt + f ′(y)px = 0, (t, x) ∈ Ωt̄, (6)

p(t̄, x) = pt̄ =

{

γ(x)ψy(y(t̄, x), yd(x)) if y(t̄, ·) is continuous at x
γ(x) [ψ(y(t̄,x),yd(x))][y(t̄,x)] if y(t̄, ·) is discontinuous at x , x ∈ R.

(7)
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Here, for a function v ∈ BV (R), we denote by [v(x)] the jump [v(x)] := v(x+)−
v(x−) at x. As we will recall in Section 2, the coefficient f ′(y) satisfies a one-
sided Lipschitz condition. As a consequence, the solution of (6), (7) is not
unique if the state y contains shocks. The correct solution of (6), (7) is the
unique reversible solution and can be characterized by a monotonicity criterion,
see Definition 1. Equivalently, the reversible solution can be defined along the
generalized backward characteristics, see Remark 1.

While the convergence of numerical schemes for the conservation law (1) is
very well studied, there exist only few results on the convergence of discretiza-
tion schemes for the adjoint equation (6), (7), see Bardos and Pironneau (2005),
Castro, Palacios and Zuazua (2008), Giles and Ulbrich (2010a,b), Gosse and
James (2000), Hajian, Hintermüller and Ulbrich (2019), Homescu and Navon
(2003), Ulbrich (2001). However, this is of importance for obtaining convergent
approximations for the derivative (5) of the objective functional. In this paper,
we will analyze the convergence of numerical schemes for the state equation,
the adjoint equation and the resulting discrete approximation of the gradient
representation (5). The difficulties result from the fact that the end data p(t̄, x)
of (6), (7) are discontinuous at shock locations and have to be propagated in an
appropriate fashion by the discrete adjoint scheme to obtain convergence to the
correct reversible solution according to Theorem 3. So far, convergence results
for the adjoint schemes have only been considered for Lipschitz-continuous end
data (see Gosse and James, 2000; Hajian, Hintermüller and Ulbrich, 2019; Ul-
brich, 2001) or for schemes with increased numerical viscosity of order O(hβ)
for β < 1 (Giles and Ulbrich, 2010a,b).

We will consider monotone finite difference schemes in conservation form for
the state equation (1) and the corresponding discrete adjoint scheme for the
adjoint equation (6), (7). Variants, where the state is computed by other con-
vergent schemes, ensuring a discrete one-sided Lipschitz condition for the state,
are possible. As observed in Giles and Ulbrich (2010a,b) the convergence of the
discrete adjoint to the correct adjoint state is in general not ensured. In Giles
and Ulbrich (2010a,b) it is shown that a modified Lax-Friedrichs scheme with
numerical viscosity of order O(hβ) for appropriate 0 < β < 1 yields convergent
adjoint approximations. However, the increased numerical viscosity reduces the
accuracy of the numerical scheme in smooth regions, as well as the resolution
of shocks. In this paper we propose another approach that is inspired by the
continuous adjoint equation (6), (7) and does not require an increased numerical
viscosity. Numerical results underline the advantages of the approach.

The paper is organized as follows. In Section 2 we recall the known fact
on the state equation, the differentiability of objective functionals, the adjoint
euqation and an adjoint based derivative represenstation. In Section 3 we de-
rive for monotone difference schemes the corresponding sensitivity scheme and
adjoint scheme. We prove convergence of the adjoint scheme for Lipschitz end
data to the rversible solution and extend this result subsequently to discontinu-
ous end data as they arise in adjoint based derivative represenstation. This will
be achieved by a novel choice of the end data, which we propose in this paper.
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In Section 4 we apply the general results to the Engquist-Osher scheme and
the modified Lax-Friedrichs scheme and their adjoint schemes. The theoretical
findings are illustrated in Section 5 by numerical results.

2. Continuous problem

We summarize known results on entropy solutions of (1), the differentiability
properties of the objective function (3), (4) and the adjoint equation (6), (7) to
obtain the gradient representation (5).

Proposition 1 Let (2) hold. Then, for any u ∈ L∞(R) there exists a unique
entropy solution y = y(u) ∈ L∞(ΩT ). After modification on a set of measure
zero, one has y ∈ C([0, T ];L1(−R,R)) for all R > 0. Moreover, let u, û ∈
L∞(R) be arbitrary and Mf ′ = max|s|≤max(‖u‖

∞
,‖û‖

∞
) |f ′(s)|. Then

1. ‖y(t, ·;u)‖∞ ≤ ‖u‖∞ ∀ t ∈ [0, T ]
2. ‖y(t, ·;u)− y(t, ·; û)‖1,[a,b] ≤ ‖u− û‖1,[a−tMf′ ,b+tMf′ ] ∀ t ∈ [0, T ]

3. If u ∈ BV (R) and ux ≤ Mu′ with Mu′ ∈ [0,∞] then y(u) satisfies the
one-sided Lipschitz condition (OSLC)

yx(t, ·) ≤
1

M−1
u′ +mf ′′t

∀ t ∈ (0, T ].

Moreover,

|y(t, ·;u)|TV,[a,b] ≤ |u|TV,[a−tMf′ ,b+tMf′ ] ∀ t ∈ [0, T ]

Proof See, for example, Brenier and Osher (1988), Málek et al. (1996),
and Olĕinik (1963). ✷

The differentiability properties of the objective function (3), (4) have been
studied in Ulbrich (2002, 2003), see also Pfaff and Ulbrich (2015).

Theorem 1 Let (2) hold, let u ∈ PC1(R; z1, . . . , zN ) be arbitrary and let
t̄ ∈ (0, T ] be such that y(t̄, ·;u) has on supp(γ) no shock generation points and
finitely many nondegenerate shocks at x1 < x2 < . . . < xK that are all no shock
interaction points. Then, the objective function (3), (4) is Fréchet differentiable
at u and the derivative is given by (5), where p is the reversible solution of (6),
(7), see Definition 1 and Theorem 3.

Moreover, y(t̄, ·;u) is piecewise C1 and the shock locations x1 < x2 < . . . <
xK depend differentially on u.

Proof See Ulbrich (2002, 2003). ✷

To introduce reversible solutions we note that (6), (7) has the form

pt + apx = 0, (t, x) ∈ Ωt̄,

p(t̄, x) = pt̄.
(8)
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If u ∈ PC1(R; z1, . . . , zN) then a = f ′(y) satisfies, by Proposition, 1 the OSLC

ax(t, ·) = f ′(y(t, ·))x ≤
(

max
|s|≤‖u‖

∞

f ′′(s)

)

1

1/‖max(0, ux)‖∞ +mf ′′t
.

For simplicity, u ∈ PC1(R; z1, . . . , zN) is assumed in the rest of the paper
with ux ≤Mu′ <∞, i.e. u can only have down-jumps generating shocks. Then
there exists α ∈ L1(0, T ) such that

ax(t, ·) ≤ α(t) for a.a. t ∈ [0, t̄]. (9)

The case of u having up-jumps generating rarefaction waves can also be handled,
see Ulbrich (2001), but this gives rise to some technical complications that are
not the focus of this paper.

Reversible solutions for (8) in the case of pt̄ ∈ C0,1(R) have been introduced
and analyzed in Bouchut and James (1998) and has been extended to the case of
inhomogeneous right hand side and of discontinuous end data in Ulbrich (2002,
2003).

Definition 1 Consider (8) with a satisfying (9) and pt̄ ∈ C0,1(R). Denote by
L the space of Lipschitz continuous solutions of pt + apx = 0. Then, p ∈ L is
called reversible solution of (8) if there exist p1, p2 ∈ L such that p = p1 − p2
and (p1)x ≥ 0, (p2)x ≥ 0.

The following existence and uniqueness result has been shown in Bouchut and
James (1998).

Theorem 2 Let a ∈ L∞(Ωt̄) satisfy the OSLC (9). Then, for any pt̄ ∈ C0,1(R)
there exists a unique reversible solution p ∈ C0,1(Ωclt̄ ) of (8) with

‖p(t, ·)‖∞,I1
≤ ‖pt̄‖∞,I2

, (10)

‖px(t, ·)‖∞,I1
≤ e

∫ t̄
t
α‖pt̄x‖∞,I2

,

where Ωclt̄ denotes the closure of Ωt̄, I1 = (x1, x2) is arbitrary and I2 = (x1 −
‖a‖∞(t̄− t)), x2 + ‖a‖∞(t̄− t)).

Remark 1 It can be shown that the unique reversible solution can also be de-
fined along generalized characteristics, see Bouchut and James (1998), Ulbrich
(2002,2003). In fact, let for arbitrary (t, x) ∈ Ωt̄ the generalized forward char-
acteristic s ∈ [t, t̄] 7→ X(s; t, x) be defined by

d

ds
X(s; t, x) ∈ [a(s,X(s; t, x)+), a(s,X(s; t, x)−)].

By the OSLC (9), it can be shown that X(·; t, x) is unique. Now, the reversible
solution of (8) is uniquely defined by

p(s,X(s; t, x)) = pt̄(X(t̄; t, x)).
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Hence, the value pt̄(z) is propagated along all backward characteristics, emanat-
ing through (t̄, z), i.e., all X(·; t, x) with z = X(t̄; t, x).

As a consequence, if z is a shock location of y(t̄, ·;u), then p(t, x) = pt̄(z)
for all (t, x) in the shock funnel confined by the maximal and minimal backward
characteristic through (t̄, z).

For discontinuous data pt̄ we use the following stability property to define a
reversible solution.

Theorem 3 Let a ∈ L∞(Ωt̄) satisfy the OSLC (9). Denote by B(R) the Ba-
nach space of bounded functions, equipped with the sup-norm, and define

BLip(R)
def
=
{

w ∈ B(R) : ∃(wn) ⊂ C0,1(R), (wn) bounded in C(R) ∩W 1,1
loc (R)

such that wn → w pointwise everywhere
}

. (11)

Let pt̄ ∈ BLip(R) and let (pt̄n) ⊂ C0,1(R) be any sequence with (pt̄n) bounded in

C(R)∩W 1,1
loc (R) such that pt̄n → pt̄ pointwise everywhere. Then, the correspond-

ing reversible solution pn ∈ C0,1(Ωclt̄ ) satisfies

pn → p in C([0, t̄];L1
loc(R)) and boundedly everywhere on Ωclt̄ .

Here,

p ∈ B(Ωclt̄ ) ∩ C0,1([0, t̄];L1
loc(R)) ∩BVloc(Ωclt̄ ) ∩B([0, t̄];BVloc(R)),

satisfies (10) and is independent of the particular sequence (pt̄n). p is called
reversible solution of (8).

Proof See Ulbrich (2003). ✷

3. Discrete approximation

3.1. Finite difference schemes for state, sensitivity and adjoint equa-

tion

For the discretization of the state equation (1) we consider conservative finite
difference schemes. Let λ > 0 be fixed and set for a grid size h > 0

∆t = λh, tn
def
= n∆t, xj

def
= jh, Rj

def
= [xj− 1

2
, xj+ 1

2
), Qnj

def
= [tn, tn+1)×Rj .

Given grid values ynj at (tn, xj), n ∈ N0, j ∈ Z, we define the difference operators

∆+ynj
def
= (ynj+1 − ynj ), ∆−ynj

def
= (ynj − ynj−1)

and it will be convenient to use this notation also for functions φ ∈ L1
loc(ΩT ) by

setting

∆+φ(t, x)
def
= φ(t, x + h)− φ(t, x), ∆−φ(t, x)

def
= φ(t, x) − φ(t, x− h).
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Moreover, we associate with grid values (ynj )j,n and (vj)j the piecewise constant
functions yh, y

n
h , and vh by setting

yh(t, x) =
∑

n,j

ynj 1Qn
j
(t, x), ynh(x) = yh(tn, x), vh(x) =

∑

j

vj1Rj(x),

and use the convention (yh)
n
j ≡ ynj , (y

n
h)j ≡ ynj , (vh)j ≡ vj . Finally, given a

function v ∈ L1
loc(R), we obtain a grid function Thv by the averaging operator

Thv(x) =
1

h

∫

Rj

v(ξ) dξ for x ∈ Rj .

Let NT such that T ∈ [tNT , tNT+1) (analogously, we define Nt̄ for t̄ ∈ (0, T ]).
To discretize the state equation (1) we consider conservative finite difference
schemes of the form

yn+1
j = ynj − λ∆−fh,n

j+ 1
2

def
= H(ynj−K , . . . , y

n
j+K), j ∈ Z, n = 0, . . . , NT − 1,

y0j = uj, j ∈ Z,
(12)

where

fh,n
j+ 1

2

= fh(ynj−K+1, . . . , y
n
j+K), ∆−fh,n

j+ 1
2

= fh,n
j+ 1

2

− fh,n
j− 1

2

with a consistent numerical flux fh, i.e.,

fh ∈ C1,1
loc (R

2K), fh(y, . . . , y) = f(y) for all y ∈ R. (13)

We will sometimes assume that the scheme (12) is monotone, i.e.,

H(ynj−K , . . . , y
n
j+K) is nondecreasing in each argument. (14)

The grid function yh corresponding to ynj is an approximation of the entropy
solution y. For concreteness, the control u ∈ L∞(R) is approximated by the cell
averages

uj = (Thu)j. (15)

In terms of the associated piecewise constant functions the discrete control-to-
state mapping is thus

uh 7−→ yh. (16)

As discrete approximation of the objective functional (3) we choose, for
example

uh 7−→ Jh(yh)
def
=

∫

R

γh(x)ψ(yh(t̄, x), yd,h(x)) dx =
∑

j

h γj ψ(y
Nt̄
j , yd,j), (17)
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where γj = (Thγ)j and yd,j = (Thyd)j with associated grid-functions γh, yd,h.
The assumptions ensure that the discrete control-to-state mapping (16) and,

consequently, also the discrete objective functional (17) is continuously differ-
entiable. Obviously, we have

duh
yh · δuh = µh, (18)

where µh is the discrete sensitivity and the corresponding grid values µnj solve
the discrete sensitivity equation obtained by linearizing the scheme (12)

µn+1
j = µnj − λ

K
∑

k=1−K

∆−(fh,n
yk,j+

1
2

µnj+k),

µ0
j = δuj,

(19)

where fh,n
yk,j+

1
2

= fhyk(yj+1−K , . . . , yj+K) and fhyk , k = 1−K, . . . ,K, denotes the

partial derivative of fh(y1−K , . . . , yK) with respect to the (k+K)-th argument
yk.

If we set

anj+ 1
2 ,k

= fh,n
yk,j+

1
2

(20)

then the discrete sensitivity equation (19) reads

µn+1
j = µnj − λ

K
∑

k=1−K

∆−(anj+ 1
2 ,k
µnj+k)

µ0
j = δuj.

(21)

Using (18), it becomes obvious that the action of the derivative of the discrete
objective functional (17) is given by

d

duh
Jh(yh(uh)) · δuh =

d

dyh
Jh(yh) · µh

=

∫

R

γh(x)ψy(yh(t̄, x), yd,h(x))µh(t̄, x) dx =
∑

xj∈I

hγjψy(y
Nt̄

j , yd,j)µ
Nt̄

j

(22)

with the sensitivities µnj according to (19) (or equivalently (21)) and associated
grid function µh.

To derive the discrete adjoint scheme for (12), we introduce the discrete
Lagrangian

L(yh, uh, ph)

= Jh(yh(uh))− h
∑

j

(

p0j(y
0
j − uj)

Nt̄−1
∑

n=0

pn+1
j (yn+1

j − ynj + λ∆−fh,n
j+ 1

2

)

)

.
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Then, by standard adjoint calculus we obtain

d

duh
Jh(yh(uh)) · δuh = Luh

(yh, uh, ph) · δuh = h
∑

j

p0jδuj , (23)

where ph solves the discrete adjoint equation

Lyh(yh, uh, ph) = 0,

which is equivalent to

Lynj (yh, uh, ph) = 0 ∀ j ∈ Z, n = 0, . . . , Nt̄.

This yields by using the linearization (21) the discrete adjoint scheme

pnj = pn+1
j + λ

K
∑

k=1−K

aj−k+ 1
2 ,k

∆+pn+1
j−k , j ∈ Z, n = 0, . . . , Nt̄ − 1, (24)

pNt̄
j = γjψy(y

Nt̄
j , yd,j), j ∈ Z. (25)

It is well known that monotone finite difference schemes converge to the
unique entropy solution.

Theorem 4 Consider a scheme (12)–(13) that is monotone, see (14). Then
for any u, û ∈ L∞ ∩ L1(R) the corresponding grid function yh satisfies

1. ‖yh(t, ·;u)‖∞ ≤ ‖uh‖∞ ≤ ‖u‖∞ ∀ t ∈ [0, T ]
2. ‖yh(t, ·;uh)− y(t, ·; ûh)‖1 ≤ ‖uh − ûh‖1 ≤ ‖u− û‖1 ∀ t ∈ [0, T ]
3. If u ∈ BV (R) then

|yh(t, ·;uh)|TV ≤ |uh|TV ≤ |u|TV ∀ t ∈ [0, T ]

4. yh → y in L∞(0, T ;L1
loc(R)) as h ց 0, where y = y(u) is the entropy

solution of (1).
5. There exists a constant C(t) > 0 such that

‖yh(t, ·;uh)− y(t, ·;u)‖1 ≤ C(t) |u|TV h1/2 ∀ t ∈ [0, T ], 0 < h ≤ h0.

Proof See, for example, Crandall and Majda (1980), point 5 is demonstrated
in Kuznetsov (1976). ✷

Remark 2 For piecewise smooth solutions there exist improved versions of
point 5., see, for example, Teng and Zhang (1997).

Analogously to the OSLC (9) for entropy solutions, many standard schemes,
such as the (modified) Lax-Friedrichs scheme and Engquist-Osher scheme satisfy
for initial data uh = Thu, u ∈ BV (R), ux ≤Mu′ a discrete OSLC of the form

∆+ynj
h

≤ 1

M−1
u′ + βn∆t

∀ j ∈ Z, n = 0, . . . , NT − 1, (26)

with a constant β > 0, see Nessyahu and Tadmor (1992) and point 4 of Theorem
4. Using an interpolation inequality between the one-sided Lipschitz norm and
the L1-norm, one can show the following.
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Theorem 5 Let the assumptions of Theorem 4 hold and let (12)–(13) satisfy
the discrete OSLC (26). Then, for any t > 0 and x ∈ R there exists a constant
C(t) > 0 such that

|y(t, x)− yh(t, x)| ≤ C(t)

(

1 + max
|ξ−x|≤h1/3

|yx(t, ξ)|
)

h1/3

Proof See Nessyahu and Tadmor (1992). ✷

3.2. Convergence of the adjoint scheme for Lipschitz continuous end

data

We study now the convergence properties of the discrete adjoint scheme (24).
Instead of the end condition (25), we consider first the case of

pNt̄

j = pt̄j
def
= (Thp

t̄)j (27)

for pt̄ ∈ C0,1(R).
The analysis in this subsection is similar to that in Gosse and James (2000),

where only the case of Lipschitz end data is considered. We will provide all
estimates that are necessary to extend the convergence analysis later to the
case of discontinuous end data, which is not considered in Gosse and James
(2000).

To carry out the convergence analysis it will be convenient to associate with
the grid values anj+1/2,k the functions

ak,h(t, x)
def
=
∑

j,n

anj+ 1
2 ,k

1Qn
j
(t, x), ank,h(x)

def
= ak,h(tn, x). (28)

Moreover, we introduce for a grid function yh and an interval I the discrete
Lipschitz semi-norm

|yh(t, ·)|Liph(I)
def
= sup

x∈I

|yh(t, x+ h)− yh(t, x)|
h

and recall that for t ∈ [tn, tn+1) there holds

|yh(t, ·)|TV,I = |ynh |TV,I =
∑

x
j+1

2
∈I

|∆+ynj |, (29)

as long as I ∩ ∂I does not contain some xj+1/2.
To ensure consistency with the continuous problem, we will need the follow-

ing properties of the coefficients anj,k.

Assumption 1 There are constantsMa, h0 > 0 such that for all h = ∆t/λ ≤ h0

‖ak,h‖∞ ≤Ma, −K < k ≤ K, (30)
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and

ah
def
=

K
∑

k=1−K

ak,h → a in L1
loc(Ω

cl
t̄ ) as h→ 0. (31)

Moreover, there exist a function α ∈ L1(0, T ) and some h0 > 0 such that for all
h = ∆t/λ ≤ h0 the discrete OSLC holds

K
∑

k=1−K

∆+anj−k+ 1
2 ,k

≤ h

∆t

∫ tn+1

tn

α(s) ds ∀ j ∈ Z, n = 0, . . . , Nt̄ − 1. (32)

In Assumption 2 further on in this section, we state the properties of the nu-
merical flux function fh that ensure Assumption 1.

We start by deriving a priori estimates for the adjoint scheme (24), (27). In
order to derive the L∞-stability we note that (24) can be written in the form

pnj =

K
∑

k=−K

Bnj,kp
n+1
j−k , (33)

where with the Kronecker-symbol δ0,k there is

Bnj,k = δ0,k + λ(anj−k− 1
2 ,k+1 − anj−k+ 1

2 ,k
), −K < k < K,

Bnj,−K = λanj+K− 1
2 ,1−K

, Bnj,K = −λanj−K+ 1
2 ,K

. (34)

It is easy to check that

K
∑

k=−K

Bnj,k = 1. (35)

To derive bounds for the total variation of the associated grid function ph we
note that the difference of (24) for j + 1 and j can be written as

∆+pnj =

K
∑

k=−K

Cnj,k∆
+pn+1

j−k , (36)

where

Cnj,k = δ0,k + λ(anj−k+ 1
2 ,k+1 − anj−k+ 1

2 ,k
), −K < k < K,

Cnj,−K = λanj+K+ 1
2 ,1−K

, Cnj,K = −λanj−K+ 1
2 ,K

. (37)

We observe that

K
∑

k=−K

Cnj+k,k = 1 (38)
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and the following relation between Bnj,k and Cnj,k holds

Cnj,k = Bnj,k + λ∆−anj−k+ 1
2 ,k+1, −K ≤ k < K

Cnj,K = Bnj,K .
(39)

Lemma 1 If the coefficients Bnj,k in (3.2) satisfy

Bnj,k ≥ 0, −K ≤ k ≤ K, for all j ∈ Z, 0 ≤ n ≤ Nτ − 1, (40)

then the solution of the adjoint scheme (24), (27) satisfies

|pnj | = ‖ph‖∞,Qn
j
≤ ‖pt̄h‖∞,Inj

,

where Inj
def
= [xj −K(Nt̄ − n)h, xj +K(Nt̄ − n)h]. In particular, we have

‖ph‖∞,Ωcl
tNt̄

≤ ‖pt̄h‖∞ ≤ ‖pt̄‖∞. (41)

Proof This follows directly from (33), (35) and (40). ✷

We will need the following discrete Gronwall inequality.

Proposition 2 Let bn,Mn ≥ 0, n ∈ N0, with

Mn+1 ≤ (1 + ∆t bn)Mn, n ≥ 0.

Then

Mn+1 ≤M0 exp

(

n
∑

n′=0

∆t bn′

)

.

Proof Denote by M, b the piecewise constant functions with M(t) = Mn,
b(t) = bn for t ∈ [tn, tn+1), tn = n∆t. Then, for t ∈ [tn, tn+1] there holds

M(t) ≤M(tn) +

∫ t

tn

b(s)M(s) ds

and summing over n gives

M(t) ≤M0 +

∫ t

0

b(s)M(s) ds ∀ t ≥ 0.

Now, the classical Gronwall lemma yields

M(t) ≤M0e
∫ t
0
b(s) ds

and inserting t = tn+1 concludes the proof. ✷
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Lemma 2 Assume that the discrete OSLC (32) holds. If the coefficients Bnj,k,
Cnj,k in (3.2) and (3.2) satisfy

Bnj,k, C
n
j,k ≥ 0, −K ≤ k ≤ K, ∀ j ∈ Z, 0 ≤ n ≤ Nt̄ − 1,

then the solution of the adjoint scheme (24), (27) satisfies

|∆+pnj |
h

≤ |pt̄h|Liph(I
n
j ) e

∫ tNt̄
tn

α(s) ds,

where

Inj
def
= [xj −K(Nt̄ − n)h, xj +K(Nt̄ − n)h].

In particular, we have for all 0 ≤ n ≤ Nt̄ − 1 and t ∈ [tn, tn+1)

|ph(t, ·)|Liph(R)
≤ |pt̄h|Liph(R)

e
∫ tNt̄
tn

α(s) ds ≤ ‖pt̄x‖∞ e
∫ tNt̄
tn

α(s) ds.

Proof We use the abbreviation N = Nt̄. By (36) and the nonnegativity of
the coefficients Cnj,k, we conclude that

|∆+pnj | ≤
K
∑

k=−K

Cnj,k|∆+pn+1
j−k | ≤

(

K
∑

k=−K

Cnj,k

)

sup
|j′−j|≤K

|∆+pn+1
j′ |.

By inserting (39) and using (35), we derive

|∆+pnj | ≤
(

1 +

K−1
∑

k=−K

∆t

h
∆−anj−k+ 1

2 ,k+1

)

sup
|j′−j|≤K

|∆+pn+1
j′ |.

Since ∆−an
j−k+ 1

2 ,k+1
= ∆+an

j−(k+1)+ 1
2 ,k+1

, we have

K−1
∑

k=−K

∆−anj−k+ 1
2 ,k+1 =

K
∑

k=1−K

∆+anj−k+ 1
2 ,k
.

Thus, we conclude, by (32), that

|∆+pnj | ≤
(

1 +

∫ tn+1

tn

α(s) ds

)

sup
|j′−j|≤K

|∆+pn+1
j′ |.

As in the proof of Lemma 1, we fix some (tn′ , x), 0 ≤ n′ ≤ N − 1, and set

In
def
= [x−K(n− n′)h, x+K(n− n′)h].

After dividing by ∆t the last estimate gives for all n = n′, . . . , N − 1

|pnh|Liph(I
n) ≤

(

1 + ∆t

(

1

∆t

∫ tn+1

tn

α(s) ds

))

|pn+1
h |Liph(I

n+1).
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Thus, the discrete Gronwall lemma in Proposition 2 yields for n = n′, . . . , N − 1

|ph(tn, ·)|Liph(I
n) ≤

(

|pNh |Liph(I
N )

)

· e
∫ tN
tn

α(s) ds.

From this the assertions of the Lemma follow immediately. ✷

The next Lemma estimates the discrete Lipschitz constant of ph with respect
to t in terms of the discrete Lipschitz constant with respect to x.

Lemma 3 The solution of the adjoint scheme (24) satisfies

|pn+1
j − pnj |

∆t
≤ sup

−K<k≤K
|anj−k+ 1

2 ,k
|

K
∑

k=1−K

|∆+pn+1
j−k |
h

. (42)

If, in addition, (30) holds then we have in particular

|pn+1
j − pnj |

∆t
≤ 2KMa|ph(tn+1, ·)|Liph(R)

.

Proof From (24) we see that

|pn+1
j − pnj | ≤ λ

K
∑

k=1−K

|anj−k+ 1
2
,k||∆+pn+1

j−k |.

Now the lemma is obvious. ✷

Lemma 4 Let for the coefficients Cnj,k in (3.2) hold

Cnj,k ≥ 0, −K ≤ k ≤ K, for all j ∈ Z, 0 ≤ n ≤ Nt̄ − 1.

Then, for any n = 0, . . . , Nt̄ − 1 and any open interval I = (z1, z2) the solution
of the adjoint scheme (24), (27) satisfies

|ph(tn, ·)|TV,I ≤ |pt̄h|TV,In ≤ |pt̄|TV,In+[−h,h],

where

In = (z1 −K(Nt̄ − n)h, z2 +K(Nt̄ − n)h).

Moreover, if, in addition, (30) holds then one has for any 0 ≤ n′ < n ≤ Nt̄

‖ph(tn, ·)− ph(t
n′

, ·)‖1,I ≤ (tn − tn
′

)2KMa‖ph‖L∞(tn′ ,tn;BV (Î)), (43)

where Î
def
= (z1 −Kh, z2 +Kh).

Proof We use the abbreviation N = Nt̄. By (36) and the nonnegativity of
the coefficients Cnj,k, we obtain, as before

|∆+pnj | ≤
K
∑

k=−K

Cnj,k|∆+pn+1
j−k |.
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Let an open interval I = (z1, z2) be given, fix some tn′ , 0 ≤ n′ ≤ N − 1, and set

In
def
= (z1 −K(n− n′)h, z2 +K(n− n′)h).

Let n ∈ {n′, . . . , N − 1} be arbitrary. Summing the last inequality for all j with
xj+1/2 ∈ In yields, by (29)

|pnh|TV,In ≤
∑

x
j+1

2
∈In

K
∑

k=−K

Cnj,k|∆+pn+1
j−k |.

Using the nonnegativity of Cnj,k together with (38), we obtain the estimate

|pnh|TV,In ≤
∑

x
j+1

2
∈In

K
∑

k=−K

Cnj,k|∆+pn+1
j−k | =

K
∑

k=−K

∑

x
j+k+1

2
∈In

Cnj+k,k |∆+pn+1
j |

≤
∑

x
j+1

2
∈In+1

(

K
∑

k=−K

Cnj+k,k

)

|∆+pn+1
j | =

∑

x
j+1

2
∈In+1

|∆+pn+1
j | = |pn+1

h |TV,In+1.

Hereby, we have used, besides (29), that for any k = −K, . . . ,K there holds

{j : xj+k+1/2 ∈ In} ⊂ {j : xj+1/2 ∈ In+1}.

This proves the first assertion. Now let, in addition, (30) hold. Using Lemma
3, the weighted sum of (42) for {j : Rj ∩ I 6= ∅} = {j : xj+1/2 ∈ (z1, z2 + h)}
with weights Λ1(Rj ∩ I) (= h if Rj ⊂ I, Λ1 is the Lebesgue measure on R)
yields, by (29)

‖pn+1
h − pnh‖1,I

∆t
≤Ma

K
∑

k=1−K

∑

x
j+1

2
∈(z1,z2+h)

|∆+pn+1
j−k | ≤ 2KMa|pn+1

h |TV,Î .

Summing over n and applying the triangle inequality on the left hand side yields
(43). The proof is complete. ✷

Theorem 6 Let a ∈ L∞(Ωt̄), p
t̄ ∈ C0,1(R) and assume that (30), (31), and

(32) hold (then a satisfies automatically the OSLC (9)). Moreover, let the coef-
ficients Bnj,k, C

n
j,k in (3.2) and (3.2) satisfy

Bnj,k, C
n
j,k ≥ 0, −K ≤ k ≤ K, for all j ∈ Z, 0 ≤ n ≤ Nt̄ − 1.

Then, the solution of the adjoint scheme (24)–(27) converges locally uniformly
to the unique reversible solution p ∈ C0,1(Ωclt̄ ) of (8), i.e.,

ph → p in B([0, t̄]× [−R,R]) for all R > 0 as h = ∆t/λ→ 0.
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Remark 3 Note that Theorem 6 does not require that the state yh be generated
by the scheme, to which the adjoint scheme belongs, it is only important that yh
ensures (30), (31), and (32). Hence, also an optimize-then-discretize approach
is covered.

We show first the following auxiliary result.

Lemma 5 Under the assumptions of Theorem 6 any sequence hi → 0 contains
a subsequence h′i → 0 such that the corresponding solutions ph′

i
of the adjoint

scheme (24), (27) satisfy with I = [−R,R] for all R > 0

ph′

i
→ p in B([0, t̄]× I), (44)

where

p ∈ C0,1([0, t̄]× R) (45)

is a solution of (8).

Proof By Lemmas 1, 2 we find a constantMp > 0 such that for h ≤ h0 there
holds

‖ph‖B(Ωt̄)
≤Mp. (46)

Moreover, by Lemma 2 there exists a constant Lx with

|ph|B([0,t̄];Liph(R))
≤ Lx. (47)

Using (47), Lemma 3 yields for all t ∈ [σ, t̄) the discrete Lipschitz estimate in
time

sup
t′∈(t,t̄]

‖ph(t′, ·)− ph(t, ·)‖B(R)

|t′ − t|+∆t
≤ 2KMaLx

def
= Lt. (48)

We show next, by an Arzela-Ascoli type argument, that any sequence hi → 0
contains a subsequence (h′i) such that with I

def
= [−R,R] for all R > 0 (44) holds,

where p ∈ C0,1(Ωt̄).
In fact, we choose a countable dense subset (zl) of Ω

cl
t̄ and may by (46) select

a diagonal subsequence (h′i) such that ph′

i
(zl) converges for all zl.

Now, let R > 0 be arbitrary but fixed and set DR
def
= [0, t̄] × [−R,R]. For

every δ > 0 we then find an Lδ, such that the δ-balls (Bδ(zl))1≤l≤Lδ
cover the

compact set DR. Then, we find Nδ such that

sup
1≤l≤Lδ

|ph′

i
(zl)− ph′

j
(zl)| ≤ δ for all i, j ≥ Nδ

and may choose Nδ without restriction such that (∆t′)i, (h
′)i < δ for i ≥ Nδ.

Then, for any (t, x) ∈ DR there is 1 ≤ l ≤ Lδ with (t, x) ∈ DR ∩ Bδ(zl) and
(47)–(48) yield

|ph′

i
(t, x)− ph′

j
(t, x)| ≤ δ + (Lx + Lt)2δ ∀ i, j ≥ Nδ.
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This shows that

ph′

i
→ p in B(DR). (49)

Moreover, since the choice of the dense set (zl) and the diagonal sequence (h′i)
does not depend on R, this holds on DR for all R > 0. The regularity properties
(45) of the limit p are by the convergence (49) inherited from the properties (46),
(47) and (48) of ph.

In the next step we show that p solves (8). Clearly, p satisfies the end
condition, since by (27) and (44) we have for all I = [−R,R], R > 0,

‖p(t̄, ·)− pt̄‖B(I) ≤ lim
i→∞

‖(p− phi)(t̄, ·)‖B(I) + ‖phi(t̄, ·)− pt̄‖B(I) = 0.

In the following it will be convenient to recall for any φ ∈ B(Ωt̄) the notation

∆+φ(t, x)
def
= φ(t, x + h)− φ(t, x), ∆−φ(t, x)

def
= φ(t, x) − φ(t, x− h).

Using (28), the adjoint scheme (24) can be written down as

ph(t, x) − ph(t−∆t, x)

∆t
+

K
∑

k=1−K

ak,h(t−∆t, x− kh)
∆+ph(t, x− kh)

h
= 0.

For convenience, we write in the sequel h instead of hi. It is obvious that

ph(t, x) − ph(t−∆t, x)

∆t
→ pt in D′(Ωt̄) as h→ 0,

since for all φ ∈ D(Ωt̄) and h ≤ dist(suppφ, ∂Ωt̄) there holds
∫

Ωt̄

φ
ph(t, x)− ph(t−∆t, x)

∆t
dx dt =

∫

Ωt̄

φ(t, x)− φ(t +∆t, x)

∆t
ph dx dt

→ −
∫

Ωt̄

φt p dx dt as h→ 0.

Hereby, we have used (44) and the fact that the difference quotient of φ converges
boundedly everywhere to φt. Moreover, we have for all φ ∈ D(Ωt̄) and with ah
defined in (31)

∫

Ωt̄

φ

K
∑

k=1−K

ak,h(t−∆t, x− kh)
∆+ph(t, x− kh)

h
dx dt

=

∫

Ωt̄

K
∑

k=1−K

φ(t, x+ kh)ak,h(t−∆t, x)
ph(t, x+ h)− ph(t, x)

h
dx dt

=

∫

Ωt̄

φ(t, x) ah(t−∆t, x)
ph(t, x+ h)− ph(t, x)

h
dx dt

+

∫

Ωt̄

K
∑

k=1−K

(φ(t, x+ kh)− φ(t, x))ak,h(t−∆t, x)
∆+ph(t, x)

h
dx dt

=: I1 + I2.
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Now choose R > 0 large enough such that suppφ ⊂ [0, t̄] × [−R,R] def
= DR. I2

tends to zero, since (30) and (47) yield

|I2| ≤MaLx

K
∑

k=1−K

‖φ(t, x+ kh)− φ(t, x)‖1,Ωt̄
→ 0 as h→ 0.

To analyze the first term, we note that, as above

ph(t, x+ h)− ph(t, x)

h
→ px in D′(Ωt̄)

and also in L∞(DR)-weak
∗, since its absolute value is on DR bounded by Lx.

On the other hand, (31) yields

φah(·−∆t, ·) = φa+φ
(

(a(·−∆t, ·)−a)+(ah−a)(·−∆t, ·)
)

→ φa in L1(Ωt̄)

as h→ 0 and has support in DR. Therefore, we obtain

lim
hi→0

I1 + I2 =

∫

Ωt̄

φa px dx dt.

This shows that the limit p of ph′

i
satisfies (8) in the sense of distributions, where

pt and px are the distributional derivatives. Using the local Lipschitz-continuity
of p on Ωt̄, p is by Rademacher’s theorem almost everywhere differentiable in the
classical sense with partial derivatives pt and px. Thus, p is a classical solution
of (8) and has the regularity (45). The lemma is proven. ✷

As a quite immediate consequence we can now prove Theorem 6, since re-
versible solutions can be characterized by the monotonicity property of Defini-
tion 1.

Proof (of Theorem 6) It is obvious, by (31) and (32), that the limit
coefficient a satisfies the OSLC (9). Thus, (8) has, by Theorem 2, a unique
reversible solution p ∈ C0,1(Ωt̄). We know from Bouchut and James (1998),
see Definition 1, that a Lipschitz continuous solution p of (8) on Ωt̄ is the
unique reversible solution, if and only if there exist Lipschitz solutions p1, p2 of
pt + apx = 0 with

(p1)x, (p2)x ≥ 0, p = p1 − p2 on Ωt̄. (50)

Now, given the sequence of end data pt̄h, we easily find by collecting only up
jumps or down jumps, respectively, monotone increasing end data (pl)

t̄
h, l = 1, 2,

with discrete Lipschitz constant Lt̄, such that pt̄h = (p1)
t̄
h − (p2)

t̄
h. Hence, we

find a sequence hi → 0 with (pl)
t̄
hi

→ pt̄l ∈ Lip(R) in Bloc(R) as i → ∞,

where (pt̄l)x ≥ 0, l = 1, 2, and pt̄ = pt̄1 − pt̄2. Using Lemma 5, we can choose a
subsequence h′i such that for i→ ∞ the corresponding solutions ph′

i
and (pl)h′

i

of (24)–(25) converge in B([0, t̄]× [−R,R]) for all R > 0 to Lipschitz solutions
p, pl of (8) for end data pt̄, pt̄l , respectively. In particular, we have p = p1 − p2.
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It remains to show that (pl)x ≥ 0, l = 1, 2. But (36) yields, together with
Cnj,k ≥ 0, the monotonicity of the adjoint scheme (24). Thus, the monotonicity

properties of the end data (pl)
t̄
h, l = 1, 2, are preserved. Hence, p = p1 − p2 is

the unique reversible solution of (8).
Therefore, we have shown that any sequence hi → 0 contains a subsequence

h′i with ph′

i
→ p in the sense of (44), where p is the unique reversible solution

of (8). Thus, ph → p in the sense of (44) holds generally for h → 0 by a
subsequence-subsequence-argument. The proof is complete. ✷

We recall that the coefficient in the adjoint scheme (24) is defined by

anj+ 1
2 ,k

= fh,n
yk,j+

1
2

. (20)

Moreover, the adjoint equation (6), (7) can be written in the form (8) with the
coefficient

a = f ′(y). (51)

In order to apply the convergence results of the previous section we have to
verify Assumption 1 as well as

Bnj,k, C
n
j,k ≥ 0, −K ≤ k ≤ K, for all j ∈ Z, 0 ≤ n ≤ Nt̄ − 1. (52)

For convenience, we recall that by (3.2), (20)

Bnj,k = δ0,k + λ(fh,n
yk+1,j−k−

1
2

− fh,n
yk,j−k+

1
2

), −K < k < K,

Bnj,−K = λfh,n
y1−K ,j+K− 1

2

, Bnj,K = −λfh,n
yK,j−K+ 1

2

,
(53)

and by (3.2), (20)

Cnj,k = δ0,k + λ(fh,n
yk+1,j−k+

1
2

− fh,n
yk,j−k+

1
2

), −K < k < K,

Cnj,−K = Bnj+1,−K , Cnj,K = Bnj,K .
(54)

We need the following properties of the numerical flux function.

Assumption 2 fh ∈ C1,1
loc (R

2K) and is consistent with f , i.e., (13) holds.
With constants h0,My > 0 and the entropy solution y = y(u) of (1) for all

h = ∆t/λ ≤ h0 there holds

‖yh‖∞ ≤My, yh(t, ·) → y(t, ·) in L1
loc(R) for all t ∈ [0, T ] as h→ 0,

(55)

fhyk are on [−My,My]
2K nondecreasing in each argument. (56)

With a function γ ∈ L1(0, T ) and some h0 > 0 for all h = ∆t/λ ≤ h0 the
discrete OSLC holds

∆+ynj ≤ h

∆t

∫ tn+1

tn

γ(t) dt ∀ j ∈ Z, n = 0, . . . , NT − 1. (57)



364 P. Schäfer Aguilar, J.M. Schmitt, S. Ulbrich and M. Moos

We show now that Assumption 2 implies Assumption 1.

Lemma 6 (i) If (13) holds for fh and yh satisfies (55), then the coefficients
anj+1/2,k = fnyk,j+1/2 satisfy (30) and (31) and we can choose

Ma = sup
y∈[−My,My ]

2K

−K<k≤K

|fhyk(y)|. (58)

(ii) If (56) holds for fh and yh satisfies (55), (57) then the coefficients
anj+1/2,k = fnyk,j+1/2 satisfy the discrete OSLC (32).

Proof (i): By (55) we have ‖yh‖∞, ‖y‖∞ ≤ My for h ≤ h0. Moreover, fhyk
are continuous on [−My,My]

2K by (13). Thus, Ma in (58) is bounded and is
obviously an upper bound for |anj+1/2,k| = |fnyk,j+1/2| if h ≤ h0. This yields (30).

It remains to show (31). Since (13) ensures fh(y, . . . , y) = f(y), we have

K
∑

k=1−K

fhyk(y, . . . , y) = f ′(y).

Therefore, we obtain for (t, x) ∈ ΩT
∣

∣

∣

∣

∣

K
∑

k=1−K

(

f ′(y(t, x))− (fhyk)h(t, x)
)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

k=1−K

(

fhyk(y(t, x), . . . , y(t, x))

−fhyk(yh(t, x− (K − 1)h), . . . , yh(t, x+Kh))
)

∣

∣

∣

∣

∣

.

(59)

(55) yields for all I = [−R,R], R > 0, and all h = ∆t/λ ≤ h0

‖yh(·, ·+ kh)− y‖1,(0,T )×I ≤ ‖yh − y‖1,(0,T )×(−R−1,R+1)

+ ‖y(·, ·+ kh)− y‖1,(0,T )×I → 0 as h→ 0.

Since fhyk are by (13) Lipschitz continuous on [−My,My]
2K , we see that the

right hand side of (59) tends to zero in L1
loc(Ω

cl
T ), which shows (31).

(ii): Let yh satisfy (55) and (57). By (13), fhyk has a Lipschitz constant Lk on

[−My,My]
2K . We use the notation α∨β := max(α, β). Then the monotonicity

of fhyk in all arguments on [−My,My]
2K , ensured by (56), yields, by (57), where

we assume without restriction that γ ≥ 0

∆+fh,n
yk,j−k+

1
2

≤ fhyk(y
n
j−k−K+2∨ynj−k−K+1, . . .)− fh,n

yk,j−k+
1
2

≤ Lk

K
∑

l=1−K

max(∆+ynj−k+l, 0) ≤
h

∆t

∫ tn+1

tn

Lkγ(t) dt.
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Therefore, (32) holds with α = (L1−K+. . .+LK)γ, and (57) yields α ∈ L1(0, T ).
✷

The previous lemma shows that the convergence results of Theorem 6 can
be applied if the coefficients Bnj,k in (53) and Cnj,k in (54) satisfy (52). This
condition is examined in the following lemma.

Lemma 7 Let (13) hold.
(i) The condition

Bnj,k ≥ 0 for all ynj ∈ [−My,My]

with Bnj,k in (53) is satisfied if and only if the finite difference scheme (12)
is monotone on [−My,My] in the sense of (14).

(ii) If ‖yh‖∞ ≤ My and the coefficients Bnj,k in (53) satisfy Bnj,k ≥ β > 0,
−K < k < K then the coefficients Cnj,k in (54) satisfy automatically Cnj,k ≥
0 under the Courant-Friedrichs-Lewy (CFL) condition

λ =
∆t

h
≤ β

2Ma
, Ma as in (58).

Proof (i): It is easy to check that the partial derivative of the scheme (12) is
given by Bnj+k,k. Hence, (i) is obvious.

(ii): Now assume that Bnj,k ≥ β > 0, −K < k < K. Then we have, by (3.2),
(3.2), Cnj,K = Bnj,K ≥ 0 and Cnj,−K = Bnj+1,−K ≥ 0, and by (39)

Cnj,k = Bnj,k + λ∆−anj−k+ 1
2 ,k+1 ≥ β − 2λMa, −K < k < K

with Ma from (58). Therefore, Cnj,k ≥ 0 is ensured under the CFL condition
λ ≤ 2Ma/β. ✷

Remark 4 In the case of a monotone three-point scheme, i.e., K = 1, one has
only to check Cnj,0 ≥ 0.

3.3. Convergence of the adjoint scheme for discontinuous end data

Consider the situation of Theorem 1, where y(t̄, ·;u) is piecewise C1 and has
finitely many shocks at x1 < x2 < . . . < xK . Then, the end data of the
adjoint equation (6), (7) for the adjoint-based derivative representation (5) of
the objective functional (3) are given by

pt̄(x) =

{

γ(x)ψy(y(t̄, x), yd(x)) if x /∈ {x1, . . . , xK}
γ(x) [ψ(y(t̄,x),yd(x))][y(t̄,x)] if x ∈ {x1, . . . , xK} , x ∈ R. (60)

and are thus discontinuous and contained in BLip(R), see (11). Even more, they
have particular values at the points x ∈ {x1, . . . , xK}, which are propagated in
the whole shock funnel, see Remark 1.
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It has been demonstrated in Giles and Ulbrich (2010a,b) that the conver-
gence of the discrete adjoint, given by (24), (25), is not ensured within the shock
funnels if the numerical scheme has numerical viscosity O(h). However, conver-
gence was proven in Giles and Ulbrich (2010a,b) for the end data (25) and a
modified Lax-Friedrichs scheme with numerical viscosity O(hβ) for appropriate
0 < β < 1.

We present now a new approach that ensures convergence of the discrete
adjoint by using (24) with slightly modified end data. To this end, we use the
fact that the correct end data of the adjoint equation are given by (60) and
that we can use yh(t̄, ·;uh) and the pointwise convergence result of Theorem 5
to compute convergent approximations of the left and right limits y(t̄, x±;u) at
x ∈ {x1, . . . , xK}.

To approximate the shock locations x1, . . . , xK we determine the K regions,
where ∆+yNt̄

j = −O(
√
h) and choose xhk as the middle point xjk of the k-th

region. Then, we approximate pt̄(xk) in (60) by

pt̄xh
k
= γ(xhk)

[ψ(yh(t̄, x
h
k + h1/3), yd(x

h
k))− ψ(yh(t̄, x

h
k − h1/3), yd(x

h
k))]

[yh(t̄, xhk + h1/3)− yh(t̄, xhk − h1/3)]
.

Now, let r > 0 with r < min1≤k<K |xhk+1 − xhk |/8 and define the weighting
function

ωr(x) =

{

1 if |x| ≤ r,

max
{

2r−|x|
r , 0

}

if |x| > r.

Next, we approximate (60) by

pNt̄,r
j =











γjψy(y
Nt̄

j , yd,j) if |xj − xhk | > 2r, 1 ≤ k ≤ K,

ωr(xj − xhk)p
t̄
xh
k

+ otherwise.

(1− ωr(xj − xhk))γjψy(y
Nt̄

j , yd,j)

(61)

We have the following result.

Theorem 7 Let y satisfy the assumptions of Theorem 1. Consider the scheme
(24) with end data (61). Assume that (30), (31), and (32) hold. Moreover, let
the coefficients Bnj,k, C

n
j,k in (3.2) and (3.2) satisfy

Bnj,k, C
n
j,k ≥ 0, −K ≤ k ≤ K, for all j ∈ Z, 0 ≤ n ≤ Nt̄ − 1.

Then, there exists a piecewise constant function r(h) > 0 with r(h) → 0 as
h → 0 such that with the choice r = r(h) in (61) the solution of the adjoint
scheme (24), (61) satisfies

ph → p in C([0, t̄];L1
loc(R)) and boundedly everywhere on Ωclt̄ as h→ 0

with the unique reversible solution p of the adjoint equation (6), (7).
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Remark 5 Note again that Theorem 7 does not require that the state yh be
generated by the scheme, to which the adjoint scheme belongs; yh has only to
ensure (30), (31), (32) and that the convergence properties of Theorems 4 and
5 hold. Hence, also an optimize-then-disretize approach is covered.

Proof (of Theorem 7) Similarly to (61) we define pt̄,r ∈ C0,1(R) by

pt̄,r(x) =











γ(x)ψy(y(t̄, x), yd(x)) if |x− xk| > 2r, 1 ≤ k ≤ K,

ωr(x− xk)
[ψ(y(t̄,xk),yd(xk))]

[y(t̄,xk)]
otherwise.

+(1− ωr(x− xk))γ(x)ψy(y(t̄, x), yd(x))

We consider first the case of fixed r > 0. Theorem 4, point 5. yields

‖yh(t̄, ·;uh)− y(t̄, ·;u)‖1 = O(h1/2),

and this implies |xk − xhk | = O(h1/2). Therefore, for h small enough, y(t̄, ·)
is C1 outside of [xhk − h1/3, xhk + h1/3] and thus Theorem 5 yields that pt̄,rh
corresponding to (61) converges uniformly to pt̄,r. If prh and pr denote the
corresponding solution of (24), (61) and the reversible solution of (8) with data
pt̄,r, respectively, then Theorem 6 yields

prh → pr in B([0, t̄]× [−R,R]) for all R > 0 as h = ∆t/λ→ 0. (62)

Moreover, pt̄,r converges for r ց 0 to pt̄ ∈ BLip(R) in the sense of Theorem 3.
Hence, Theorem 3 yields

pr → p in C([0, t̄];L1
loc(R)) and boundedly everywhere on Ωclt̄ , (63)

where p is the reversible solution of the adjoint equation (6), (8).
To conclude the proof, we define a piecewise constant function r(h) > 0 with

r(h) → 0 for h→ 0 as follows. Let 0 < h0 < 1 be the initial grid size and choose

r0 > h0, for example, as r0 = h
1/3
0 . First of all, we note that pr and prh are

independent of 0 < r ≤ r0 outside of [0, t̄] × [−R,R] for R > 0 big enough by
the finite propagation speed of (8) and of the scheme (24).

Let (νi)i∈N be a monotone decreasing sequence with νi → 0, for example
νi = 1

i . We construct inductively a sequence h0 > hi ց 0 such that with

ri = h
1/3
i−1 for all i ∈ N there holds

‖prih − pri‖B([0,t̄]×[−R,R]) ≤ νi ∀ 0 < h ≤ hi. (64)

This is possible by (62). Now, we set

r(h) = ri for h ∈ (hi+1, hi].

Then, (63) and (64) yield

pr(h) → p in C([0, t̄];L1
loc(R)) and boundedly everywhere on [0, t̄]× [−R,R].
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Since, pr = p as well as prh are independent of r outside of [0, t̄] × [−R,R], the
convergence there follows from (62). ✷

Theorem 7 does not give an explicit formula for the choice of r(h). It should
be enough if the intervals [xhk−r(h), xhk+r(h)] cover the numerical shock profile
and hence, by Theorem 5, r(h) = O(h1/3) should be a safe upper bound for
the choice of r(h). While an exact proof of this fact is beyond the scope of this
paper, we will give numerical evidence in Section 5 and will provide in Section
4 a proof for the adjoint Engquist-Osher scheme and a simplified structure of
the coefficients an

j+ 1
2 ,k

in (20), see Theorem 8.

4. Application to sensitivity and adjoint schemes for stan-

dard finite difference schemes

In this section, we apply the convergence results of the previous section to
several well known difference schemes (12) and the associated adjoint schemes.
We assume throughout that the convexity assumption (2) holds.

4.1. The Engquist-Osher scheme

The Engquist-Osher scheme (EO-scheme) has the monotone numerical flux, see,
e.g., Engquist and Osher (1981)

fEO(y0, y1) = f(ȳ) +

∫ y0

ȳ

f ′(y)+ dy +

∫ y1

ȳ

f ′(y)− dy,

where f ′(y)+
def
= max(f ′(y), 0), f ′(y)−

def
= min(f ′(y), 0), and ȳ ∈ R is fixed. Al-

though fEO does not depend on the choice of ȳ, it will be convenient to choose ȳ
as the sonic point, i.e., f ′(ȳ) = 0, if it exists. Thus, the Engquist-Osher scheme
(12) reads

yn+1
j = ynj − λ

(

∫ ynj

ynj−1

f ′(y)+ dy +

∫ ynj+1

ynj

f ′(y)− dy

)

. (65)

In order to apply the convergence results of Theorems 6 and 7 for the associated
adjoint scheme we make the following observations:

• The Engquist-Osher flux is consistent and C1,1
loc . Thus, (13) holds. More-

over, we have

fEO
y0 = f ′(y0)

+, fEO
y1 = f ′(y1)

−,

and these are nondecreasing functions. Therefore, (56) holds.
• The scheme has the form (12) with K = 1. The sensitivity and adjoint
scheme are given by (19) and (24), the coefficients (20) are

aEO,n

j+ 1
2 ,0

= fEO,n

y0,j+
1
2

= f ′(ynj )
+, aEO ,n

j+ 1
2 ,1

= fEO,n

y1,j+
1
2

= f ′(ynj+1)
−. (66)
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This yields, for the coefficients Bnj,k in (33), (3.2),

BEO ,n
j,−1 = λf ′(ynj )

+ ≥ 0,

BEO ,n
j,0 = 1 + λ(f ′(ynj )

− − f ′(ynj )
+) = 1− λ|f ′(ynj )|,

BEO ,n
j,1 = −λf ′(ynj )

− ≥ 0.

Thus, the scheme is monotone on [−My,My] according to (14), under the
CFL condition

λ sup
|y|≤My

|f ′(y)| ≤ 1.

In particular, we have BEO ,n
j,k ≥ 0 on [−My,My].

• Let the CFL condition hold with My = ‖u‖∞. Then, the EO-scheme is
convergent in the sense of (55) by Theorem 4 and generates iterates in
[−My,My].

• The coefficients Cnj,k in (36) are

CEO ,n
j,−1 = BEO ,n

j+1,−1 ≥ 0, CEO ,n
j,1 = BEO,n

j,1 ≥ 0, (67)

CEO ,n
j,0 = 1 + λ(f ′(ynj+1)

− − f ′(ynj )
+) ≥ 1− λ(|f ′(ynj+1)|+ |f ′(ynj )|).

Hence, CEO ,n
j,k ≥ 0 is ensured under a 1/2-CFL condition, i.e.,

λ sup
|y|≤My

|f ′(y)| ≤ 1

2
. (68)

• It can be shown that for the initial data u ∈ BV (R), satisfying an OSLC
ux ≤ Mu′ with Mu′ ∈ [0,∞], the EO-scheme satisfies the discrete OSLC
(57) under a 1/2-CFL condition (68), see Brenier and Osher (1988), Ul-
brich (2001).

We thus have the following result.

Corollary 1 Under a 1/2-CFL condition (68), the EO-scheme and its adjoint
scheme satisfy Assumption 2. Hence, the convergence results of Theorems 4, 6,
and 7 hold.

We show now, for the simplified case of a piecewise constant state yh with
one stationary shock, that for the adjoint EO-scheme Theorem 7 holds with
r(h) = O(hβ) for any β ∈ [1/3, 1/2).

Theorem 8 Let ul > ur with f(ul) = f(ur) and f ′(ul) > 0 > f ′(ur). Let
u(x) = ul for x ≤ 0 and u(x) = ur for x > 0 and let y be the corresponding
entropy solution of (1) (Riemann problem) given by

y(t, x) =

{

ul x ≤ 0,

ur x > 0.
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Let a 1/2-CFL condition (68) hold and let yh be the grid function corresponding
to ynj = y(tn, xj). Then, under the assumptions of Corollary 1, the convergence

result of Theorem 7 holds for the adjoint EQ-scheme for r(h) = O(hβ) with any
β ∈ [1/3, 1/2).

Proof The adjoint EQ-scheme reads

pnj = λf ′(ynj )
+pn+1

j+1 + (1− λ|f ′(ynj )|)pn+1
j − λf ′(ynj )

−pn+1
j−1 . (69)

The shock location at t = t̄ is x̄ = 0 and the shock funnel is confined by the
characteristics ξl(t) = −f ′(ul)(t̄− t) and ξr(t) = −f ′(ur)(t̄− t).

We estimate the dependence of pn̄
j̄
inside the shock funnel on the values pNt̄

j

at xj sufficiently far away from the shock location x̄.
Without restriction we consider only n̄ = 0. Let (0, xj̄) be inside the shock

funnel and to the left of the shock. Since f ′(ynj ) = f ′(ul) > 0 to the left of the
shock and f ′(ynj ) = f ′(ur) < 0 to the right of the shock, the adjoint EO-scheme
(69) to the left of the shock reads with al = f ′(ul) > 0

pnj = (1− λal)p
n+1
j + λalp

n+1
j+1 (70)

and with ar = f ′(ur) < 0 on the right hand side of the shock:

pnj = (1 + λar)p
n+1
j − λarp

n+1
j−1 . (71)

Hence, p0
j̄
is a convex combination of pNt̄

j̄+i
, 0 ≤ i ≤ 1− j̄, with weights βi, and

we have

βi =

(

Nt̄
i

)

(λal)
i(1− λal)

Nt̄−i for 0 ≤ i ≤ −2− j̄.

Hence, the fraction p0
j̄
(l) of p0

j̄
that depends on pNt̄

j for j ≤ l ≤ −2 can be
estimated by

|p0j̄(l)| ≤
l−j̄
∑

i=0

(

Nt̄
i

)

(λal)
i(1−λal)Nt̄−i|pNt̄

j̄+i
| ≤ ‖pt̄h‖∞

l−j̄
∑

i=0

(

Nt̄
i

)

(λal)
i(1−λal)Nt̄−i,

where the right hand side vanishes for l < j̄ and is an integral over the tail of a

binomial distribution X with expected value E(X) = Nt̄λal =
t̄f ′(yl)
h > 0 and

variance V (X) = t̄f ′(yl)
h (1− λf ′(yl)).

Since (0, xj̄) is in the shock funnel, we have xj̄ + t̄f ′(yl) ≥ 0 and thus
j̄ + E(X) ≥ 0. Hence, Chebyshev’s inequality yields

R(l) :=

l−j̄
∑

i=0

(

Nt̄
i

)

(λal)
i(1−λal)Nt̄−i ≤ P (|X−E(X)| ≥ −l) ≤ V (X)

l2
=
O(1)

hl2
.
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If now −lh = O(hβ) with β ∈ [1/3, 1/2), then 1
l2h = O(h1−2β) → 0 as h → 0,

and the proof is complete, since p0
j̄
does not depend on pNt̄

j for j ≥ 2 as observed
above.

A sharper estimate is obtained by using Stirling’s formula that yields (see
Theorem of Moivre-Laplace)

P (X = i) =
1 + o(1)
√

2πV (X)
e−

(i−E(X))2

2V (X) .

Hence, we obtain, with the substitution s = z−E(X)√
V (X)

,

R(l) ≤ C

∫ l+E(X)

−∞

1
√

2πV (X)
e−

(z−E(X))2

2V (X) dz = C

∫ l/
√
V (X)

−∞

1√
2π
e−t

2/2 dt.

If now −lh = O(hβ) with β ∈ [1/3, 1/2), then −l = O(hβ−1), while V (X) =
O(h−1). Hence,

R(l) ≤ C

∫ O(−hβ−1/2)

−∞

and the right hand side tends to zero exponentially for h→ 0. ✷

Remark 6 If yh is constant outside of a numerical shock profile, then an anal-
ogous proof is possible. One has only to choose xl outside of the shock profile
instead of l ≤ −2.

The general case of a nonstationary shock can also be handled, but the proof
is quite technical. An extension to general piecewise smooth solutions with shocks
should also be possible.

4.2. Modified Lax-Friedrichs scheme

The numerical flux is given by

fLF (y0, y1) =
1

2

(

f(y0) + f(y1)−
γ

λ
(y1 − y0)

)

, γ ∈ [λmax |f ′(y)|, 1),

where the maximum is taken over the whole region in which y0, y1 vary. Then,
the scheme (12) reads

yn+1
j =

1

2
(γynj−1 + (2− 2γ)ynj + γynj+1)−

λ

2
(f(ynj+1)− f(ynj−1)). (72)

Obviously, the scheme is for any γ ∈ (0, 1] monotone on [−My,My] under the
CFL condition

λ sup
|y|≤My

|f ′(y)| ≤ γ.
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The original Lax-Friedrichs (L-F) scheme is obtained for γ = 1 and can be
analyzed on the decoupled staggered grids (n + j) mod 2 = const. In the
following, we study the case of γ ∈ (0, 1). In order to apply Theorems 6 and 7
we collect the following properties.

• The Lax-Friedrichs flux is consistent and C1,1
loc . Thus, (13) holds. More-

over, we have

fLF
y0 =

1

2
f ′(y0) +

γ

2λ
, fLF

y1 =
1

2
f ′(y1)−

γ

2λ
,

and these are nondecreasing functions. Therefore, (56) holds.
• The LF-scheme has the form (12) with K = 1. The sensitivity and adjoint
scheme are given by (19) and (24), and the coefficients (20) are

aLF ,n
j+ 1

2 ,0
= fLF ,n

y0,j+
1
2

=
1

2
(f ′(ynj )+

γ

λ
), aLF ,n

j+ 1
2 ,1

= fLF ,n

y1,j+
1
2

=
1

2
(f ′(ynj+1)−

γ

λ
).

This yields for the coefficients Bnj,k in (33), (3.2)

BLF ,n
j,−1 =

1

2
(λf ′(ynj ) + γ),

BLF ,n
j,0 = 1− γ > 0

BLF ,n
j,1 =

1

2
(−λf ′(ynj ) + γ).

Thus, the LF-scheme is monotone on [−My,My], according to (14), under
the CFL condition

λ sup
|y|≤My

|f ′(y)| ≤ γ.

In particular, we have BLF ,n
j,0 ≥ 0 on [−My,My].

• Let the γ-CFL condition hold with My = ‖u‖∞. By the monotonicity, the
LF-scheme is convergent in the sense of (55) by Theorem 4 and generates
iterates in [−My,My].

• The coefficients Cnj,k in (36) are

CLF ,n
j,−1 = BLF ,n

j+1,−1 ≥ 0, CLF ,n
j,1 = BLF ,n

j,1 ≥ 0,

CLF ,n
j,0 = 1 +

1

2
(λ(f ′(ynj+1)− f ′(ynj ))− 2γ).

Hence, CLF ,n
j,k ≥ 0 is ensured under a (1− γ)-CFL condition.

Corollary 2 Under a min(γ, 1 − γ)-CFL condition the modified Lax-
Friedrichs-scheme and its adjoint scheme satisfy Assumption 2. Hence, the
convergence results of Theorems 4, 6, and 7 hold.
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5. Numerical example

We consider the state equation (1) with f(y) = y2/2 and initial data

u(x) =

{

2 for x ≤ 0,

−1 for x > 0.

The objective function is

J(y) =

∫

R

γ(x)
y(1, x)2

2
dx

with γ ∈ C1
c (R) and γ ≡ 1 on [−2, 2]. The entropy solution has a single shock

with speed s = 1/2 and is given by

y(t, x) =

{

2 for x ≤ t/2,

−1 for x > t/2.

The reversible solution of the adjoint equation (6) on [0, T ]× [−2, 2] is

p(t, x) =











2 for −2 ≤ x < 1/2− 2(1− t),

−1 for 1/2 + (1− t) < x ≤ 2,
1
2 for 1/2− 2(1− t) ≤ x ≤ 1/2 + (1− t).

We apply the EO-scheme (65) with λ = 1/4 to compute yh and its adjoint
scheme (24), (66) to compute ph. As end data for the adjoint scheme we choose
on the one hand (25), which yields the exact discrete adjoint, and on the other
hand (61) with r(h) = h9/20, which ensures convergence to the correct adjoint
state by Theorems 7 and 8.

Figure 1 shows the discrete state yh(1, ·), the discrete adjoint ph(0, ·) for data
(25) and discrete adjoint ph(0, ·) for data (61) when using the Engquist-Osher
scheme and its adjoint scheme with h = 2−6 and h = 2−10, respectively. As
already observed in Giles and Ulbrich (2010a,b), the end data (25) corresponding
to the exact discrete adjoint do not yield the correct value 1/2 of ph in the shock
funnel. The sharp shock profile does not allow to propagate the correct value
in the shock funnel. In Giles and Ulbrich (2010a,b) it has been shown that a
numerical viscosity O(hβ) with β < 1 is necessary to obtain convergence.

The modified end data (61) that have been proposed and analyzed in this
paper yield also the correct value 1/2 up to machine precision without using
very dissipative state solvers as required in Giles and Ulbrich (2010a,b). The
proposed approach provides an easily applicable remedy to ensure convergence
to the correct adjoint also for schemes with sharp shock resolution.
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h ‖(ph − p)(0, ·)‖L1 for
data (25)

‖(ph − p)(0, ·)‖L1 for
data (61)

exp. order of conv.

2−6 1.0749 0.3785
2−7 1.0194 0.2579 0.5536
2−8 0.9815 0.1856 0.4741
2−9 0.9552 0.1273 0.5443
2−10 0.9369 0.0887 0.5215

Table 1. Left: L1-error of adjoint (EO) ph(0, ·) for data (25); right: L1-error of
adjoint (EO) ph(0, ·) for data (61) and experimental order of convergence

Table 1 shows for different mesh sizes the L1-error ‖(ph − p)(0, ·)‖L1(−2,2)

for the data (25) (left) and for the data (61) (right). While the error for data
(25) remains O(1), it converges for the proposed data (61) to zero with an
experimental order of convergence of approximately h1/2.
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Figure 1. From above: state (EO) yh(1, ·), adjoint (EO) ph(0, ·) for data (25),
adjoint (EO) ph(0, ·) for data (61), h = 2−6 (left), h = 2−10 (right)


